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MODULAR SUBSTRUCTURES IN PSEUDOMODULAR
LATTICES

A. DRESS, W. HOCHSTATTLER, W. KERN

Abstract.

Pseudomodular lattices have been used in [DL 86] in order to investigate combinatorial properties of
algebraic matroids and were further analyzed in [BL 87]. The purpose of our paper is to present local
conditions, characterizing modular sublattices of a pseudomodular lattice. As an application, we
derive a result of [HK 89], implying that Lovasz’ min — max formula for matchings in projective
geometries remains valid for pseudomodular lattices, and we discuss a relation woth B. Lindstroms
construction of subgeometries of full algebraic combinatorial geometries which are isomorphic to
projective geometries over skew fields.

1. Introduction.

All lattices we consider will be geometric, i.e. of finite length, relatively comple-
mented, graded, and the rank function defined by the grading is semimodular.
Each lattice L will be endowed with a strictly increasing semimodular rank
function (which may or may not be identical to the one induced by the grading),
i.e. r: L > Ny is strictly increasing and satisfies

Vx,yeL:r(x) + r(y) 2 r(x v y) + r(x A y).

Recall that r is called modular if this inequality is satisfied by equality for every
pair x,ye L.

Recently, [DL 86] and [BL 87] introduced an interesting generalization of
modular lattices, the class of so called pseudomodular lattices, which was shown
in [DL 86] to contain all full algebraic combinatorial geometries and which may
be defined as follows:

DEerINITION (cf. [BL 87]). A geometric lattice L endowed with a strictly
increasing semimodular function r: L — N is called pseudomodular, is for any
a,b, c € L the following implications holds:

If

ravey—r@=ribve—rib)=ravbvc)—ravb),
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then
rlaveyabve)—r@anb)y=rav c)—ra).

It is easy to see that pseudomodularity actually is a generalization of modular-
ity. However, as we will see in Section 2, there is somewhat more to say about the
relation between pseudomodular lattices and modular ones. Essentially, it will
turn out that modular sublattices of pseudomodular ones can be chaacterized by
local conditions which can be checked easily. In Section 3 we will use this fact to
derive a result of [HK 89], implying that Lovasz’ min — max formula for
matching in projective geometries extends to pseudomodular lattices. Finally, in
the last section we comment on B. Lindstréms construction of large projective
geometries, defined over skewfields, which are contained in full algebraic combi-
natorial geometries.

2. Modular Substructures.

Let L be a geometric lattice with a strictly increasing semimodular rank function
r:L — Ng and let M be a geometric lattice with strictly increasing modular rank
function p: M — N,. Furthermore, let ¢: M — L be a mapping. We say that
¢ defines a modular substructure of L if
® ¢:M — Lis a homomorphism, i.e. itis A-and v -preserving and
o p(x) =r(p(x)) YxeM.

The following result states that, if L is pseudomodular, then modular substruc-
tures can be characterized by local conditions which in concrete situations are
easy to check (cf. Section 3):

THEOREM 2.1. If L is pseudomodulair, then ¢ : M — L defines a modular sub-
structure if and only if

(i) ¢ is A-preserving,

i) o(x v y) = @(x) v @(y) whenever x v y = 1,

(iii) if I = [x, 157] is an interval of length 2, then p(y) = r(p(y)) for all yel.

Proor. We show that if ¢ satisfies conditions (i) — (iii) above, then for any
upper interval I = [x, 1], theinduced map ¢ : I — Lis a homomorphism satisfy-
ing p(y) = ro(y) for all yel. The proof is by induction on k:= length of I.

If k = 2, the claim is immediate from conditions (i) — (iii). Thus suppose thatk = 3
and assume the claim holds for smaller values of k. We have to show that for any
two y,,y, €I we have

1) o(y1 v ¥2) = 0(y1) v @(y2) and
v py1 A y2) =10y A y2)
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We may assume that y, A y, = x, for otherwise the claim follows from our
inductive assumption by looking at the interval [y, A y,, 1)]. Let us first show
that (1) holds. If y, v y, = 1, then (1) is the content of condition (ii). Hence
assume that y; v y, < 1. Let y; € M be acomplement of y; v y, in the interval
[xs lM]

Applying ¢, we are in a situation as shown in Figure 1 below, where u:= ¢(y,) v
@(y2), v:=@(y1) v @(y3), and w:= @(y2) v @(y3):

#(y2V ya)

Ligure 1.

Note that, due to condition (ii), we have

o(y1) v 0(y2 v y3) = o(ly),

hence

uv oy vys)=o(ly),

asindicated in Figure 1 above. Furthermore, note that ¢ is order preserving since
it was assumed to be A -preserving. This implies that

o(y1 v y) 2 u= () Vv o(y)

etc. We are to show that actually equality holds. First note that modularity of
p gives

P(y1 VvV y2) A(y2 Vv y3) = p(yr Vv y2) + p(y2 v y3) — p(ly) =
= p(y1) + p(y2) — p(x) + p(y2) + p(y3) — p(x) — p(1p)
= p(y1 Vv y2) + p(y3) — p(x) — p(lp) + p(y2) = p(¥2)

and therefore

(*) 1 vy A2V ys)=y,.
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By induction on k, we know that ¢,,, ,,,; defines a modular substructure of L.
Thus, in particular,

(%) re(yy v y2) + ro(y2 v y3) = re(ly) + ro(y,).

Now, applying the semimodularity of L with respect to u and ¢(y, v y;), we get
—usingu v @(y; v y3) = ¢(ly)and r(u A @(y2 v ¥3)) 2 ro(y,) - the inequality

r() 2 ro(ly) + ro(y2) — ro(y2 v 3) S ro(y; v ya),
which together with ¢(y; v y,) = u implies (1), that is,
o(y1 vV y2))=u=0(y) v 0(y2)

in view of the strict monotonicity of r.
We are left to show that (2) holds, i.e.

p(x) = ro(x).
Since the length k of the interval I = [x, 1,,] is at least 3, we can find y,, y,,y; €
I'\ {x} such that each y; is a relative complement to the join of the other two y;’s,
ie, with y; v y, v y3 = 1y and p(y1) + p(y2) + p(y3) = p(Lag) + 2p(x). From
our argument above, we conclude that, applying ¢, we are in a situation as
sketched in Figure 2 below:

#(ya V ya)

Figure 2.

Now let a:= ¢(y;), b:= ¢(y3) and c:= ¢(y,). Since, by induction, ¢ defines
a modular substructure of L when restricted to each of the intervals [ y;, 1,/], we
get

rave)—r@=r@@vbve)—ravby=rbvc)—rb) =ply,)— px).

Since L is pseudomodular, we conclude that
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rlave)abvce)—ranb)=r(avc)—r(a),ie. (cf. (),

ro(y2) —ro(x) =ro(y, v y2) —ro(y,)
and therefore

ro(x) = p(y2) + p(y1) — p(y1 v y2) = p(x),

as claimed.

3. An application in Matching Theory.

In this section we assume the reader to be familiar with the basic theory of
matroids and geometric lattices. Suppose L is a geometric lattice with point set
E and let now r denote the rank function induced by the grading. A subset A < E
is called a double circuit, if r(A) = r(A\ a) = |A| — 2for every a € A or, equivalent-
ly, if A is the complement of a coline, i.e., a flat of codimension 2, in the dual of L.
These sets play a central role in the context of matching in geometric lattices (cf.
[HK 89] for more details). It is easy to see (cf. [HK 89]) that the following holds:

LEMMA 3.1. Let A < E be a double circuit. Then there exists a partition

A = Al O .. .L.J Ad
suchthat C;:= A\ A;is acircuit fori = 1,...,d and these are all circuits contained
in A.

Proor. If in the dual of L the hyperplanes containing the coline E\ A are
H,,...,H;, then A;:=H,nA,...,A;:= H;n A are precisely the subsets de-
scribed above.

As can be seen from [HK 89], the crucial point in proving Lovasz’ min — max
formula for matchings conxists in showing that in case L is pseudomodular the
closures C; of the circuits in 4 induce a modular sublattice of L. More precisely,
one has to show (cf. Theorem 3.1 of [HK 89]) that

d
r(ﬂ C,)?__d—Z.
i=1

As we will see next, this is a simple consequence of Theorem 2.1;
Indeed, let M = M, denote the Boolean algebra of (all) subsets of {1,...,d}.
Obviously, M is modular relative to the map p: M — N, defined by

iel

p):= 4] -2 - %(Md -D=2(4l-1)+d-2

forall I < {1,...,d}. We claim
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PROPOSITION 3.2. If— with the above notations — we define

o:M->L
by
(p(l):=néi
i¢l

for all proper subsets I < {1,...,d} of {1,...,d} and
o({1,....d}):= 4,
then ¢ defines a modular substructure in L.
ProOF. Obviously, ¢ is A -preserving and for U J = {1,...,d} we have
Az o) v oU) = N{ANAi¢ 1} v A {ANZ;j¢J}
2 {A\A]i¢I} v A{A\ 4;]j¢J}
= u{A;liel} v U{4jljeJ} 2 4

and therefore ¢(I) v ¢(J) = A. Thus we are left to show that condition (iii) of
Theorem 2.1 is satisfied, too. Too check this, observe that p({1,...,d}) =
|A| — 2 = r(A4) and p({1,...,d} \ {i}) = |A] — |4;| — 1 = r(C)), since C; = A\ 4;
is a circuit. Finally, for i + j, we have

r(Cin C)) = p({L,...,d}\ {i.j}) = |4] — |4l — |4]
in view of the following sequence of inequalities
rCinC)=r(C)+r(C)—r(CivC)=
(4] =14l — 1) + (4] = |4l = 1) — (4] = 2) =
Al — |4l = 14l = |1C:n Cjl r(C; A C-j)’

the first one of which holds because L is semimodular, while the second one holds
because C; N C;, being a proper subset of a circuit, must be independent.

COROLLARY 3.3. Under the assumptions of Proposition 3.2, one has

(fre)=a2

PROOF. Since ¢: M — L defines a modular substructure, we conclude that
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d d
r(_(_\1 CH-) =p@® =141 -2- Y (4l -D)=d -2

i=1

as claimed.

4. Projective Geometries in Full Algebraic Matroids.

In [L 88] B. Lindstrom shows that for every field F of prime characteristic p the
full algebraic matroid L = L,(F) of rank n, whose flats are the algebraically
closed subfields of the algebraic closure F(X, .. ., X,) of the purely transcenden-
tal extension F(X,,...,X,) of F in n algebraically independent variables
X,...,X, contains as a subgeometry a full projective space of (projective)
dimension n — 1 over a certain skew-field, defined in terms of the “p-poly-
nomials” in the polynomial ring F[X] in one variable X over F, that is, the
F-linear combinations of the monomials of type X™ (h=0,1,2,...). More
specifically, his surprising and beautiful result asserts that

(i) the set of all p-polynomials in F[X] forms an Ore-domain R(F) with
quotient skew-field, say, Li(F), when for any two such polynomials P[X], Q[ X] €
R(F) one defines the sum P[X] + Q[X] as usual and the product P[X] o Q[X]
by composition, i.e., by

P[X]oQ[X]:= P[Q[X]],
and that

(ii) there exists a modular substructure ¢: L,(F), where M = M(Li(F)") de-
notes the relatively complemented modular lattice of (all) subspaces U, V..., of
the n-dimensional (right) vectorspace Li(F)" over Li(F) (with dimension as rank
function) and where for U < Li(F)" the field ¢(U) is the algebraic closure in
F(X,,...,X,) of all polynomials

Q[Xb-- Xl = Ql[Xl] +...+ Qn[Xn]

with (Q,[X],...,0,[X])e U n R(F)".

Unfortunately, to verify that ¢: M — L satisfies the conditions in Theorem 2.1
requires almost all the work, Lindstrém has done to establish his result directly.
So one saves not much by invoking Theorem 2.1 in this specific context. Still,
Theorem 2.1 together with the fact from [DL 86], referred to already in the
Introduction, that every full algebraic matroid is pseudomodular, seems to
present a conceptual framework with regard to which Lindstrdm’s amazing
construction can be understood and appreciated more easily and in a more
systematic way and which may help to find similar results, e.g. for full algebraic
matroids defined over fields of characteristic 0.
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