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A VARIATIONAL PRINCIPLE FOR THE
HAUSDORFF DIMENSION OF FRACTAL SETS

C. D. CUTLER and L. OLSEN

Abstract.

Let 2(E) denote the set of probability measures on a Borel set E < R", and let R(u), R(1) denote
respectively the lower and upper Rényi dimensions associated with a measure ue #(E). We prove
that the Hausdorff dimension dim (E) satisfies

dim (E) £ sup R(u)
ue?(E)
while, if E is additionally bounded, the packing dimension Dim (E) satisfies
Dim(E) 2 sup R(p).
HeP(E)

As a consequence, for any bounded Borel set E satisfying Taylor’s definition of a fractal (i.e.
dim (E) = Dim (E)) we obtain the variational principle

dim(E) = Dim(E) = sup R(u) = sup R(u).

ne?(E) une?(E)

In addition we provide an example showing that the hypothesis “bounded” cannot be eliminated.

1. Introduction.

In recent papers on fractals attention has shifted from sets to measure, cf.
[1,2,3,4,5,6,8,9,10,12]. Thusit seems reasonable to make an attempt at finding
a relation between the dimension of a fractal E and parameters connected with
measures supported by E. Such relations have already been investigated, cf. in
particular [ 14, Theorem 1 p. 62] and Young [18]. Our principal result states that
if E = R"is a bounded Borel set satisfying Taylor’s definition of a fractal, i.e. the
Hausdorff dimension dim (E) of E is equal to the packing dimension Dim (E) of E,
cf. [15] and [16], then

1) dim (E) = Dim (E) = sup R(y) = sup R(»)

ue®(E) ueP(E)
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where R(u) and R(u) denote, respectively, the lower and upper Rényi dimensions
and 2(E) is the family of all Borel probability measures on E.

Formula (1) is a variational principle — i.e. it establishes an equality between
a number naturally connected with a space or a map (in this case dim E) and the
supremum of certain numbers connected to a class of probability measures
supported by E. It is well-known that variational principles play a major role in
ergodic theory (cf. e.g. [17, Chapter 8-9]) since these principles yield a canonical
way of choosing measures. Formula (1) yields in a similar way a canonical way of
choosing measures — namely measures u € 2(E) such that R(u) and R(u) are close
to dim (E) and Dim (E). It is interesting to note that our variational principle is
formulated in terms of the Rényi dimension since generalised Rényi dimensions
play an important part in so-called multifractal analysis, cf. e.g. Rand [13] and
the references therein.

We begin in section 2 by collecting the relevant facts and setting the notation.
Then in section 3 we derive some auxiliary inequalities and prove the variational
principle contained in formula (1).

2. Preliminaries.

This section contains a survey of the fractal dimensions which we will consider.
Let (X,d) be a separable metric space, E < X and s 2 0. Then the s-dimen-
sional Hausdorff measure s#°(E) of E is defined by

H*(E) = sup inf{ Y. (diam E)’|E € U, E;, diam E; < é for all ie N}.
>0 i=1
The Hausdorff dimension dim E of E is defined by
dimE = inf {s 2 0| #*(E) < o0} = sup {s 2 0| #*(E) > 0}.
The s-dimensional packing measure 2°(E) of E is defined in two stages. First put

i

PY(E) = inf sup{

(diam B;*| B;nBj = Jfori +j
>0 =1

and B, is a closed ball of radius at most é

with center in E for all ie N}.

Then

P(E) = inf{i P (E)|E< U2, E}

i=1

The packing dimension Dim E of E is defined by
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Dim E = inf{s = 0| #*(E) < o0} = sup {s = 0| #°(E) > 0}.

It is a well-known fact that dim E < Dim E for all E < R", cf. [14].

Two other useful dimensions of a bounded set E are the upper and lower box
dimensions. For each > 0 let N4(E) be the least number of sets of diameter at
most é that cover E. Then the upper and lower box dimensions of E are defined by

_ . log N4(E)
C(E) = limsup—————
(E) Mp “logd
and
. . .log Ns(E)
C(E) = lim inf ——————
respectively.

Let us introduce the Rényi dimension. Fix pe 2(X) and write

Y. w(E)log u(E;)|(E;); is a countable Borel

i=1

h,(u) = inf {
partition of X and diam E; < r}

for r > 0. Then the upper and lower Rényi dimensions of u are defined by

YT h, (1)
R(w) = llr:is;xp logr
and
_ h, ()
= liminf —
R(w hr’rl :) logr
respectively, (cf. [18]).
3. Inequalities and the Variational Principle.
We want to prove that
) dim(E) £ sup R(w)
peP(E)
for a Borel subset E of R", and
©)] Dim(E) 2 sup R(w)
ne?(E)

for a bounded Borel subset E of R". Both proofs are based on the following result:



A VARIATIONAL PRINCIPLE FOR THE HAUSDORFF DIMENSION OF ... 67

THEOREM 1. Let E < R" be a Borel set. Then the following assertions hold:

i)

dim(E) = sup (inflim infw).
peP(E) \xeE r\0 logr
i) If
log u(B
Ec {xllim sup BABT) a} and w(E) > 0,
"0 logr
then

Dim (E) = a.

PRrROOF. i) Follows easily from [14, Theorem 1]. ii) Follows from [14, The-
orem 1], however see also Theorem 3.2 of [5].

We begin with three small technical lemmas

LEMMA 2. Let p be a Borel probability measure on R". Let E be a Borel set,t 2 0
and 6 €10, 1[. Suppose

log u(B(x,r)) < tlogr
for all xe E and re€]0, 6[. Then
R(w) =2 w(E).

PrOOF. Let re]0, [ and (E;); be a partition of R” such that diam (E;) < r. Let
I={i|E;nE + &}. If iel then we can choose a point x;€ E; N E such that
E; < B(x;,r), whence
4) log u(E;) < log u(B(x;,r)) £ tlogrforiel.

By (4) we have

— L ME)log u(E;) 2 — ) w(E)log u(E) 2 — ) p(E)tlogr

iel iel
= —p(U E,-) tlogr = — u(E)tlogr.
iel
Since the partition (E;); was arbitrary this inequality implies that
h(p) = — u(E)tlogr for re 10,6

whence

.o h(p
R(u) = liminf — ~l—(—)—g—r~ 2= tu(E).

r—0
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LEMMA 3. Let F = R"be abounded Borel set andr > Q. Then there exists a finite
collection F,. .., F, of disjoint Borel sets with diam (F;) < r such that F < U;F;
and such that for each i, there exists an x; € F satisfying

B(x,', %r) < Fi.

Proor. Construct a sequence of balls B(x,3r), B(x,,3r),... such that x;e F
and d(x;,x;) > 3r for i % j. Because F is totally bounded this process must
terminate at some finite stage, giving balls B(x,,37),. .., B(xn, 37) such that any
x € F must satisfy min; d(x, x;) < ir (consequently F =< U™, B(x;,3r)). Note that
the smaller balls B(x,,47),..., B(xn, 1) are disjoint. Set

Fl = B(xla%r)\ U B(xj’%r)
J

=2

m

i—-1

F, = B(x,3V\| U F;u U B(xj,;}r))fori=2,...,m—1
j=1
m—1

j=i+1

Fo = Bltm 3\ U Fi

J

Itis clear that the F;’s are disjoint, and since B(x,,37),. . ., B(x,,, 37) are disjoint we
can conclude that B(x;,47) < F;and F < U,F,.

LEMMA 4. Let E < R" be a bounded Borel set and jie P(E). Let F < E be a Borel
set,t = 0and 6€]0,1[. Assume

log u(B(x,7)) = tlogr
forall xe Fand 0 <r < 6. Then
R(y) <t + w(E\F)C(E\F).

Proor. Let re]0, [ and choose by Lemma 3 a finite pairwise disjoint cover-
ing(F,,. .., F,)of F withdiam F; < r and such that there exists points x; € F for all
i satisfying

B(xi, %r) c Fi'

The set E\ F can be covered by N = N,(E\ F) closed balls B, . .., By of diameter
at most r. Define Q,...,Qy by

0, = (Bin(E\F)\; F;
0: = (Bin(E\F)\(v;F;u UiZiQ)fori=2,...,N.

Then Fy,...,F,, Q,,...,Qy are disjoint sets of diameter not exceeding r, and

E=0U(FinE)uu;Q;, v;Q;<E\F.
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Hence

h(W) < — 3, pF; 0 E)log w(F;n E) — 3, (@) log p(Qy)

i=1

= - ;1 u(F;)log u(F;) — ; #(Q:)log u(Q:)

m N
< = Y u(F)log w(B(x;, 5r)) — Y. u(Q:)log u(Q;)
i=1 i=1
< — Y u(F)tlogln — Y. u@)logu(@)
< —tlog(dr) — Y w(Q:)log u(Q)).
i=1

We know that if py,...,p, 20 and Y f_, p; = s€[0,1] then in fact —

1
logp; < slogk — slogs < slogk + e Therefore

ol 1
h(w) < —tlogGr) + 3 w(Q)logN + "

i=1
N

< —tlog(3r) + u(_U Qi>log N,(E\F) + %

A

—tlog(37) + w(E\F)log N,(E\F) + %

for r < d, whence

69

k
i=1Di

1

R(p) = lim sup———
r\ o0

— logr
<t + w(E\F)C(E\F).
We are now ready to prove (2) and (3).

PROPOSITION 5. Let E < R". Then the following assertions hold:
i) If E is a Borel set then

dim E £ sup R(w).

ne®(E)

ii) If E is a bounded Borel set then

a0 éﬁmsup( lgg(zr)+ e\ ) OB NENE)
r\ o0

elogr

)
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sup R(u) < DimE.
ue(E)

ProOF. i) Let t < dim E. Then Theorem 1 part i) implies that there exists
a measure u e 2(E) such that

log u(B(x, 7))

(5) t < liminf for all xeE.
F\0 logr
Now put
1 B(x, 1
E,= {er|w> tforO<r <——}, meN.
logr m

Let ¢ > 0 and observe that (5) implies that E,, / E. We can thus choose an integer
NeN so u(Ey) = p(E) — e = 1 — &. An application of Lemma 2 then yields

sup R(4) 2 R(y) = w(Ex)t 2 (1 — e)t

AeP(E)
which proves the first part of the proposition since t < dim E and ¢ > 0 were
arbitrary.

ii) Let ue #(E) and t > Dim (E). Then Theorem 1 part ii) implies that
1 B
lim sup —w < Dim(E) p-a.s.
r\ o0

and we can thus choose a subset F of E with u(F) = 1 such that limsup, o
log u(B(x,r))

< t for all xe F. Now put
logr

log u(B(x, r))

Fm={xeF| logr

<tfor0<r<i}, meN.
m

An application of Lemma 4 then yields
R(p) £t + W(E\Fy)C(E) = t + p(F\F,)C(E).

Since F,, 1 F we conclude that R(u) < t. This completes the proof since both
ueP(E) and t > Dim (E) were arbitrary.

Proposition 5 immediately yields the following variational principle
PRrROPOSITION 6. If E < R" is a bounded Borel set satisfying dim (E) = Dim (E),
then

dim(E) = Dim(E) = sup R(x) = sup R(y).
ue?(E) ue®(E)
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It is easily seen that the inequality in Proposition 5) ii) may not hold if
the assumption “bounded” is omitted. Indeed put E=N and q,=

c((n + )(log(n + 1))»! for neN where ¢ = I/Z,ﬂzm, and define

peP(E)by pu =Y »q,0, (here d, denotes the Dirac measure concentrated at x). If
0 <r <1 and (E); is a countable partition of E = N then (E; N E); = ({n})nens
whence

hw) _ —Yau(nhlog(uin}) _ —3.dnlogd _

—logr —logr —logr

which implies that R(u) = R(u) = 0 > 0 = Dim(E).
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