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AN EXISTENCE RESULT FOR SIMPLE
INDUCTIVE LIMITS OF INTERVAL ALGEBRAS

JESPER VILLADSEN

Given a C*-algebra 4 with unit 1 we define the Elliot triple of A4 to be
(KO(A)’ T(A)’ rA)

where K y(A) has the usual ordering and [1] as order-unit, T(A) is the tracial state
space of 4, and with S the state space functor, r: T(A4) - S(Ky(4)) is given by
r4(t)[p] — [q]) = ©(p — g)forall e T(A) and projections p, g € M, (A) where  is
extended to M, (A) by (a;;)— ), t(a;). We identify two such triples (G, 4;, f3),
i = 1,2 if there are isomorphisms ¢4:G, - Gy, ¢r:4, — 4, such that the dia-
gram

4, 25, 4,

A

S(Gy) Sdo S(G»)

commutes. Elliott [3] proved that this triple is a complete invariant for the simple
unital C*-algebras which arise as inductive limits of finite direct sums of matrix
algebras over C([0, 1]) — AI algebras for short. The project of determining the
range of the Elliott triple when applied to simple unital AI algebras was initiated
by Thomsen [6]. When A is a simple unital Al algebra K,(4) is a simple
dimension group, S(K((A)) is a metrizable Choquet simplex, T(4) is another
metrizable Choquet simplex and the map r 4 is an affine continuous surjection.
Furthermore, we know from [6] that the map r, preserves extreme points i.e.
r4(0: T(A4)) = 0.S(Ko(4))-

In this paper we show that, whenever G is a simple noncyclic dimension group,
such that the extreme boundary of the state space is compact and totally
disconnected, 4 is a metrizable Choquet simplex and f:4 — S(G) an affine
continuous map with f(d.4) = 0.5(G), then (G, 4, f) is the Elliott triple of some
simple unital Al algebra.
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NortaTiON 1. For K a compact convex subset of a linear topological space, we
denote by Aff(K) the complete order-unit space of affine continuous real-valued
functions on K with pointwise ordering and 1 as the order-unit. For A: K —» L
a continuous affine map between compact convex sets, let Aff(4): Aff(L) —»
Aff(K) be the positive order-unit-preserving homomorphism given by
Aff(A)(h) = hoAfor all he Aff(L). It is well-known that for K a compact convex
subset of a locally convex Hausdorff space, the state space of Aff(K) is naturally
isomorphic to K via evaluation.

For convenience we write s* for AffS(s) when s is a homomorphism of ordered
groups, and write “homomorphism” instead of “positive order-unit-
preserving homomorphism” when dealing with homomorphisms of order-unit
spaces.

DErFINITIONS 2. Let 4 be a Choquet simplex. A partition of unity vy,..., v, in
Aff(4) is said to be extreme if there are closed non-empty faces 4,,...,4; in
A with 4 = hull {4,,..., 4,} such that v;|4, = J;; for 1 £i,j < k. A partition of
unity vy, ..., 0 in Aff(4) is peaked if ||v;| = 1,j = 1,...,k. Note that in this case
span {vy,..., 0} = I with vy,...,v, as the standard basis.

For v,1 — v an extreme partition of unity in Aff(4) with corresponding faces
E,E° we let Aff(4), = {f e Aff(4): f|g- = 0}, which is an order-unit space with
order-unit v, and define a homomorphism =, : Aff(4) — Aff(4), by n,(f)le = fle
and 7,(f)lz- = 0 for f e Aff(A4).

LEMMA 3. Suppose that 4 is a Choquet simplex and (177, v;) an inductive system
withlim (12, v;) = Aff(4). Let vy,. .., v, be a peaked partition of unity in Aff(4) and
let ¢ > 0. There is an ie N and a homomorphism p :span {vy,... v} — I3 such that
lveiop —id|| <e.

PROOF. Since U2 | v,(l) ") is densein Aff(4)* thereare x,,...,x, - ()"

with

€ £
‘(1 ———2’E>Ul—-‘ vooio(xj)“ <2_k2,] = 1,...,k bt 1. NOW

k-1 € k-1 e
Vooig 'ij < 1——2—k— ~Zlvj+§l:§1
j=

j=1

and there is an i 2 ip so that v; (3 %21 x;) < 1. Let y; = vy (xj)j=1,...,k — 1
and y, =1 —Y%Z1y; Then (y;)5_, is a partition of unity in [3?. Since

-2 _(1-=X <kf()<1 .
k % Uk j=1vooi Vi 2% Uk

we have that
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€ [ €
(1 - "Z‘k—) U < vwi(yk) < I + <1 - E{')Uk.

&
N

Let p:span {v,...,v} — [ be the homomorphism given by p(v;) = y; for
j=1,...,k Clearly, |[ve;cp — id|| <e.

Hence, "UJ - vw'(yj)” < ,j = 1,. ey k

LEMMA 4. Let A be a metrizable Choquet simplex and w,1 — w an extreme
partition of unity in Aff (4). Let V be a subspace of Aff(4d) with1eVand V = I® for
some meN. Let F < Aff(4),, be a finite subset and let ¢ > 0. There is a subspace
W of Aff(4),, withwe W = I for some ne N such that dist(f, W) < e forall fe F
and a homomorphism n: V — W with |5 — n,|y| <e.

PROOF. There is a 6 > 0 such that if x,,...,x;e [P+ with Y., x;— 1| <
then there are y,...,y,€l®* with Z§=1y,-=1 and |x; — yill <—2§n7 for

1 i<l It follows from Theorem 2.7.2 of [1] that there is a subspace W of

Aff(4),, with we W and W = I for some ne N such that dist(f, W) < ¢ for all

54/: for 1 £i £ mwhere ey, ...,e, is the standard

basis for V =I®. Since dist(n,(e;), W) < 2dist(n,(e;), W) there are
OnE

f€F and dist(n,(e;), W) <

Xi,. .., Xm€ W with ||x; — n,.(e)] < for1 <ismSo|Yr,x;i—w|<$é

2m
and there are y,,...,y.e W' with 2;"=1yi=w and |[x; — yill <% for
1<i<m Let n: V- W be the homomorphism given by #(e;) = y; for
1Zi<m Let xeV with |x| £1. Then x=z;"=1<xiei for some
oy,...,0%,€[—1,1] and

m

n(x) — mu ()l = .Zl lou| 1y — muledll = .Zl (ly: = xill + lIx; — mulell) <e.

DEFINITION 5. A tree is a triple (X, <, x,) where (X, <) is a partially ordered
set with a maximal element x, such that s(x) = {ye X :y <x,Vz < x:y & z} is
finite for every x€ X, s(x) N s(y) = & when x # y and X is the union of the level
sets &' given by £ = {x,} and F**! = U, gis(y) for ieN. For ieN we let
L=%"u{yeli., #:VxeX:x €y} - the leaves of Ui ¥’ — and
c(x)={yeL*':y < x} for xe L.

REMARK 6. Let 4 be a metrizable Choquet simplex with compact and totally
disconnected extreme boundary. Since every locally compact, totally discon-
nected topological space has a basis of sets being both open and closed, there is
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a basis Y for the compact, totally disconnected metric space d.4 such that . 4e Y
and (Y, ¢, d.4)is a tree, where s(y) is either empty or consists of mutually disjoint

sets with union y for every ye Y. Now put X = {geAff(4):3ye Y:gls.4 = 1,}.

Then (X, £, 1)is a tree where each L is an extreme partition of unity in Aff(4) and
the span of X is dense in Aff(4).

PROPOSITION 7. Let G be a simple noncyclic dimension group, such that the
extreme boundary of the state space is compact and totally disconnected. Let A be
a metrizable Choquet simplex and let f: 4 — S(G) be a continuous affine map with
f(0.4) = 0.5(G). There is a system (Z%,s;) with positive order-unit-preserving
connecting homomorphisms and inductive limit lim(Z™,s;) = G, a collection
1e X < AffS(G) with dense span such that (X, <,1) is a tree where each L' is an
extreme partition of unity in AffS (G) and homomorphisms p;: W, — AffS (Z"), §;:
AffS (Z™) — W, , where W, = span (L) such that

16i°pi —id]l <27,

lpis1°6 —s¥ll < 2‘ini-l,

Is%: — &l <27

for allie N and moreover there are Markov operators 6,: Cx([0, 1]) = Cx([0, 1]) of
the form 6, = N;7*(0; + ... + OY%) where 0,...,0% are restrictions of unital *-
endomorphisms of C([0,1]) for he L', i = 2 such that

Aff(4) = lim (W, ® Cx([0,1]), 6)),
0oi(v @ 1) = AT (f)(v), ve W, ieN
where 0;: W; ® Cg([0,1]) = W, ® Cg([0, 1] is the homomorphism given by

9,-(2 g®xg>= Y. h® 0i(x,)

geLi geLi
hec(g)

and
mult (S,-) g 2iNi # E+1.

Proor. Let (2™, s;) be a system with positive order-unit-preserving connecting
homomorphisms and inductive limit lim (Z",s;) = G. Since G is simple and
noncyclic we may assume that mult(s;) - oo as i » oo where mult denotes the
smallest entry of a given matrix. We may therefore also assume that mult(s;) = 1
for all ieN.

By the above remark there is a collection 1€ X < AffS(G) with dense span
such that (X, <, 1) is a tree where each L is an extreme partition of unity in
AffS(G).
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Note that Aff(f) takes extreme partitions of unity in AffS(G) to extreme
partitions of unity in Aff(4) because f(0.4) = 0.5(G).

For convenience we write Aff(4), and n, for Aff(4)ace(r)g) a0 Tage(ry(q) TESPECt-
ively for ge X.

For meN a partition of unity {,,...,{, in Cg([0,1]) is chosen such that

Ci<l;1>_1 1 £i<m,and we let 1,,: 12 — Cx([0,1]), K, : Ca([0,1]) = [ be

-1
the homomorphisms given by 1,,(¢;) = {;,1 < i S mandk,(x) = Y1, x< >e,~

for x € Cx([0, 1]). Note that x,, o1, = id.

Let (d;){2 ; and (a;); ; be dense sequences in Cg([0, 1]) and Aff(4) respectively.
We show that there are increasing sequences (i,);- 1, (j,)p=1 in N (j; = 1) and
e subspaces Aff(f)(g)eZ, = Aff(4), such that Z, =~ I for some m;e N and

dist(n,(a,), Z,) <2 Pforall 1 £ q < p,gelr peN,

e homomorphisms #,:Z, —» Z, such that |, — mlz || <277 for all ge L,
hel**' h<g,peN,

e Markov operators 0,: Cg([0,1]) - Cg([0, 1]) which are of the form 0, =
N, '(6s + ... + 6)) where 6;,...,0;" are restrictions of unital *-endomor-
phisms of C([0,1]) and [|6,(f) — t,onu°k,(f)| <277 for all feF,, geLr,
helir*', h<g, peN where 1, =, °¢,:Z, > C([0,1]), K, = ¢, ' oKp,:
Cg([0,1]) = Z, for some 1somorphlsm ¢,:Z, —»l . and

p
F,= U (gygq({db cosdph) Uge Hgg, ° Kgq({dl" > dp})
q=1
where g, € s is the unique function g, 2 g,
e homomorphisms p,: W, - AffS(Z"») and 6,: ARS(Z"") —» W, , where W, =
span (I7) such that

sk, o pp —idll <2777,
1
sk, — 0l <2777 n. ",
-1
”pp+1°5p z,+1;p" <2" pn

for all pe N and such that
e mult(s;,, ;) 2 2°N, # Lr** for all peN.

By Lemma 3, thereis an i; € N and a homomorphism p, : W; — AffS (Z"+) such
that |s%, o p; —id|| <272 Since the span of X is dense in AffS(G) there is
a j, > 1 and a homomorphism &, : AffS(Z"') > W, such that ||s?, — | <
272n; %, It follows from Theorem 2.7.2 of [1] that there is a subspace 1€ Z, <
Aff(4) such that Z; = I? eN and dist(a;,Z;) <27

Suppose that (z,)p 1 (j,, P+1areincreasing sequencesin N (j; = 1)and that Z,,
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gelr, 1 S p<P,n, 0, hel?,2<p < P, 6,,p, 1 <p < Pand mult(s;,, ;)
1 £ p £ P — 1 satisfies the above conditions. It follows from Lemma 4 that for
everyge I", he IP+' h < g thereis a subspace Aff (f)(h)e Z, < Aff(4), such that
Z, = I for some m,eN and a homomorphism #,,: Z, - Z, such that

dISt(nh(aq),Zh) < 2*(P+l), 1 é q é P+ 1’

14 — malz, Il < 27°.

It follows from the Krein-Milman theorem for Markov operators of [5] that
there is a Markov operator 6,: C([0, 1]) of the form 6, = N, (0} + ... + 0¥
where 0}, ...,0Y" are restrictions of unital *-endomorphisms of C([0, 1]) such
that [|0,(f) — oo k()| < 27F for all f € F,. We may assume that Np, = Np
forall he I*+'. Thereisa k; > ipsuch that mult (s, ;) 2 2P Np # EP* . It follows
from Lemma 3 that there is a k, > k; and a homomorphism p:Wp,; —
AffS(Z™) such that ||s%,,cp — idw,, | <27% 2n;'. Since

Is%i,2po0p — shipll < lIskr,°po0p — Opll + 10p — 54l <277n!

and the unit ball in AffS (Z"#)is compact, itfollows that thereisanip . = k, such
that ||s%, .. cp°dp — s, il <27Pn_ ! Note that mult(s;,,, ;) = 2°Np # L**!
and put pp,; = sk ;.op. Since the span of X is dense in AffS(G) there is
a jpip >jps+y and a homomorphism Op+ 1 AfS(2™r+) > Wp,, such that
ls%ip., — Opsall <27 ®*D=1n-1 The result follows from Zorn’s lemma.

For pe N let Z,, be the subspace of Aff (4) spanned by (Z,),c.s,- Note that Z, is
isomorphic to the order-unit-space direct sum of (Z,),cLi,. Moreover dist (a,, Z,) <

277foralll1 £q<p. Letn,:Z,— Z,,, be the homomorphism given by

w( Tu)= T e

geLirp geu P
heLip+1
hsg

forv,eZ,, ge L. Thenn »is a homomorphism with n,(Aff(f)(g)) = Aff(f)(g) for

all geW,. Let ve Z, with |v| < 1. Then v is of the form v = ) /s, v, Where
v,€Z,, vl £1 and

""p(v) - U” = Z (nh(vy) - nh(vg)) = max ""h(vg) - nh(vg)” <277
geLip geLir
heLip+1 heLip+1
hsg hsg

Therefore the sequence (17,,(v));% , in Aff(4) is Cauchy for every ve Z,, - let a,(v)
denote the limit. Then «,:Z, —» Aff(4) is a homomorphism with «,, o1, = a,
and o,(Aff(f)(g)) = AfE(f)(g) for all ge W,. Thus there is a homomorphism
a:lim(Z,,n,) —> Aff(4) with aen,,=a, By |n,) vl <277|v|| the
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homomorphism « is seen to be isometric. Using that (a;)®2 , is dense in Aff(4),
dist(a,, Z,) <27 Pforall1 < q < pand 1eZ,forall pe N and the fact that a is
isometric, one shows that a is an isomorphism.

Define I,: Z, - W, ® Cg([0,1]) and K ,: W, ® Cg([0,1]) = Z, by

Ip( > va) = Y. 9® vy,

geLJ» geLi»

Kp( ) g®xg) = 2 Kqlx,)
geLip geLip
for v,eZ,, x,€Cg([0,1]), g L>. The maps I,, K, are homomorphisms and
K,°I,=1id. Letting w, = I, °n,°K,and B, =n,,°K,wehave f,,,cw, =
B, and so there is a homomorphism B:lim (W, ® Cy([0, 1]), w,) - im(Z,,,7,)
with fow,, = B,, pe N. Itis easy to see that this is an isomophism. In addition
2o Bplg ® 1) = a5 Ny © Kplg ® 1) = w0 1, (A (f)9)) = (AT (f)(g)) =
Aff(f)(g) for all ge W,,.

Let 6,: W, ® Cy([0,1]) = W, . ; ® Cg([0, 1]) be the homomorphism given by

6p<z g®xy)= Z h ® 0,(x,).

geLJ» geLi»
heLlp+:
hzg

The set {) gersr g ® x,:x,€{d;:ie N}} is dense in W, ® C([0,1]) and

U (o,,,,{ ¥ h®x,,:x,,e{d,,...,d,,}}uwm{ 3 h®x,,:x,,e{d1,...,dp}})

q=1 heLJq heLiq

is equal to {3 g g ® X4:x,€ F,}. For z = Y ;11,9 ® x, where x, € F, we have

“9,,(2) - CUI,(Z)" = Z th(xg) — ponp° Kg(xg)” é 27F

and it follows from (a slight modification of) Lemma 3.4 of [5] that there is an
isomorphism y:lim (W, ® Cg([0, 1]),0,) = lim (W, ® Cg([0, 1]),w,) such that
700, =y, Where y,: W, ® Cg([0,1]) - lim (W, ® Cg([0, 1), w,) is the homo-
morphism given by y,(x) = lim,_, o, @ 4 © 0,,(x) for x € W, ® Cg([0, 1]). Note that
g ® 1) = 0y,(g® 1) forall ge W,.

To sum up, there is anisomorphism a © f o y: lim (W, ® Cr([0, 1]),6,) - Aff (4)
with oo foyof:(g ® 1) = Aff(f)(g) for all ge W, and ie N.

LEMMA 8. Let M,NeN and Aq,...,A, =0 with Z;-"=11,->0. There are
ky,. .., kmeNg such that
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M—-N<NY k=M,

i=1
™ | Nk; 2Nm l m
<=+ |1=3 J
j; M YT M ,21 !

M .,
PrOOF. Put A=)T 4, and y;=—=)>71_,4 for 1 £j<m There is an
J J }»N

hJ€N0WlthﬂJ“1<hJ§ﬂ}f0rléjém. Putk1=h1 andkj+1 =hj+1'"hj
for1 <j<m— 1 Wehave

M—N=N(@y,—1)<Nh,=NY kj< Ny, =M,
i=1

Nk, M| N Mi| N N
l M /1' M| T N I'M'k‘_”"<M
and
Nk; 4 N MA; N N
MJ—‘A_J =M j"ml’ =ﬁl(hj_hj—l)—'(ﬂj_/‘j—l)l<2"M
for 2 < j < m. Therefore
| Nk; . 2Nm
— Al <——+ 11 =4
,.; M YT M

THEOREM 9. Let G be a simple noncyclic dimension group, such that the extreme
boundary of the state space is compact and totally disconnected. Let A be a metriz-
able Choquet simplex and let f: A — S(G) be a continuous affine map with f (0, 4) =
0.5(G). Then (G, 4,f) is the Elliott triple of some simple unital Al algebra.

PrOOF. Let(Z",5;), X, (0:)i2 1, (0:)i% 1> (On)nex - 1y and mult (s;) be as in Proposi-
tion 7. Let (a},), (4;,), (15,) and (v,) be the matrices for s;, d;, s and p; respectively
and put Z; = {(p,q): 1 Sp <My, 1 £q 21y, Y perie1 Vi ' Ay = O} — the zero
entries of the matrix for p;,°d; for ieN.

It follows from Lemma 8 that for (p, q) ¢ Z; there are (k}, )ucri+ 1 in Ng such that

i B i
Gy — Ni<N; ¥ kpy < ay,,

heLi+1
h i+19i i+1 i+1 i
Nikpq _ Vph hq < 2Ni # L + 1 _ vph A‘hg
al' i ai i :
heLi*! Pq Hpq Pq heLi+1  Hpq

For (p,g)€ Z; choose (kb )neri++ S No such that aj,, — Ni < N; Y pepiv1 kby < dby.
Letr,, =ab, — N;Y pepi1kifor1 Sp<m.,1 S g<nmandieN.Letm; =
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(mf, ..., mi ) denote the order-unit in Z*. Then 4, = @%_, M, ® C([0,1]) is the

interval algebra with Ko(4;) = Z™. Forall he L*!,1 <r < N;and ie N there is
a continuous function wj:[0,1] —[0,1] such that 6j(x) = x-w}, for all
xe C([0,1]). Let y;: A; > A;, be the *-homomorphism with characteristic
functions w}, repeated k%, times, he L*',1 < r < N; and idyo 1, repeated r},, times
from the gth summand of A4; to the pth summand of 4;,, for 1 Zp < n;,4,
1 £ qg<n;andieN. Let B = lim (4;, §;) and note that Ko(B) = lim (Z",s;) = G.

Let 1;: W, =, W,,; be inclusion and let $:W,,, ® Cr([0,1])> W, ®
Cr([0, 1) be the homomorphism given by

.9,~< )y h®x,,) = Y h®0i(x).
heLi+! heLi+ 1
Observe that 0;° (1; ® idcyo,1y)- Define
i = 9i°(6; ® idcqqro,1) : AIT (4;) » Wi ® CR([0, 1)),
i = pi ® idcyqo,1): Wi @ Cr([0,1]) » AffT (4,)

forieN.
We show that the triangles of the following diagram commutes up to an error
which is summable.

W, ® Ca([0,1]) —2— W4y ® C([0,1])

" l / l"

ART (4) rr ART(4i11)

As for the upper triangle we have
10; = Gomill = [18io( ® idcn([o.u)) —9;°(6: ® idbR([o.1])) o(p; ® idCR(lo.ll))”
S u— e pill
<27i

Let x = (xy,...,%,)€AffT(4;) and 1 £ p < n;4;. The pth coordinate of AffT
Wi)(x) is
ni mi Ni .
Y g ) k:quqow;,+r'qu
a=1m, heLit1  r=1
and the pth coordinate of #; ., ° {i(x) is

ST Va0

q=1 heLi+1
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Assume that ||x|] < 1. Then
IART (Y)(x) — 7i+ 1 CX)|l

ni mikh Ni
q%pg i+t ji r
< max 2 il Voh = Anq N Z Xq° Wy Z ,+1 "x I
1SpsSmi+: \g=1 heLi+! P i r=1
N o ma 27"
l+l i
S  max { ;+1 Ang| + Z mit1
1<psni+1 g= 1 heL”l
i kh '+l/1 .
< max { Y Hh 1 A
1<psmier heL'“ apq Hpq
kh
< max —-ﬂ——-+ Y
1<ps<ni+ l<q<n1 heL”‘ apq 1<q<n;
(P.q)eZ; (P.@)¢Z;

2N E‘+1 i+1/1 .
x(-—‘#}——+ 1- e P
apq heLi+1 “pq
< max { Yo +2V Y = Y VA, +2"'}
1spsnivr Ulsqsn 15qsm heLi+1
(p.9)eZ; (P.94Z:
< max { Y lpieredi—sFl+2"7 + ) "pi+l°6i—'si#”+2_i}
1spsnivy \1SgsSm 1<5q2n
(p.9)€Zi (P.9)4Z:
=nllpis1°6; — ¥l +3-27°
<427
Since

10i+1°8 — Livi o ART ()l

S0ieroli = GwrroMivr o Gll + M roMivroli — Givq o ART ()]
S0iv1 = GaroMisall + Miv a0l — AT W)l

<5-27F

the sequence (0 + 1 © (i ° AffT (Y1;)(x))i>; is Cauchy for all x e AffT (4;) —let a;(x)
denote the limit. Then o;:AffT(4;) » Aff(4) is a homomorphism with
;41 °AffT (Y;) = o;. Thus there is a homomorphism a: AffT(B) —» Aff (4) with
ao AfIT (Y o) = ;. Using that (JAT (i) — ;41 ° Gll)iZ 1 and (1o m — 6il)2,
are summable one shows that « is an isomorphism.

Note that T(B) = 4 via S(x): 4 — T(B). We now show that rzo S(a) = f. Let k;
and y; be the inclusions
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Ki: Wi o W ® Cr([0,1]), g— 9 ® 1,
1i: AffS(Z") = AffS(Z2™") ® Cr([0,1]) = AfT(4,), g g ® 1.
With these definitions we have that
Oei ok = AT (f)lw,
Cioxi =Kiv1°0;
and p = y;[p] for every projection pe A; = AffT(A4;). Let we 4 and pe A4; be
a projection.
rs° S@W) [V »i(p)]
= S(@)(W)(¥ »i(P))
=woaoy.(p)
= weo(p)
= lim wefx+1 ° & Yii(p)

k— o

= lim wo 000k+ 1° Ck ° Xk ['/Ikl(p)]

k= o

= lim wo b i 41 °Ker1 0k [Vii(p)]

k— o

= f (W)(k]im Ok ['/’ki(l’)])

=S WY :(p)].

Hence (G, 4, f) is the Elliott triple of B.

The final step of the proof consists of replacing B by a simple Al algebra with
the same Elliott triple. Let ¢; be the *-homomorphism obtained from y; by
replacing two of the characteristic functions in each entry of y; by hy and h, where

holt) = %and hy() = ; L for te[0, 1] and all i€ N. It follows from [2] that the

C*-algebra 4 = lim (4, ¢;) is simple. Note that Ko(¢;) = Ko(;) = s;. Since
IAfFT(¢;) — AfFT ()| < 2mult(s) ™' <2'7°

the sequence (AT T ok ° Pri)(x))i~; is Cauchy for every xe AffT(4;), ieN — let

y:i(x) denote the limit. Then y;: AffT (4;) — AffT (B) is a homomorphism with

Yi+1° AffT(¢;) = y; for all ie N. There is an isomorphism y: Aff T (4) - AffT(B)
such that y o AffT (¢,;) = 7; for all ie N. Let 7€ T(B) and p € 4; be a projection.
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Then
r4° SO [Pwi(P)] = SOND)(Pi(P))
= y° AfiT (¢.,:)(p)(7)
= 7i(p)(7)
= lim AffT (Y ok ° D) (P)(7)

k- o

lim (Y oo © Pri (D))

k-

= (Y xi(P))
rs( V¥ «i(P)].

We conclude that r o S(y) e S(a2) = f.
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