AN EXISTENCE RESULT FOR SIMPLE INDUCTIVE LIMITS OF INTERVAL ALGEBRAS

JESPER VILLADSEN

Given a C*-algebra A with unit 1 we define the Elliot triple of A to be

$$(K_0(A), T(A), r_A)$$

where $K_0(A)$ has the usual ordering and [1] as order-unit, T(A) is the tracial state space of A, and with S the state space functor, $r_A : T(A) \to S(K_0(A))$ is given by $r_A(\tau)([p] - [q]) = \tau(p-q)$ for all $\tau \in T(A)$ and projections $p, q \in M_\infty(A)$ where τ is extended to $M_\infty(A)$ by $(a_{ij}) \mapsto \sum_i \tau(a_{ii})$. We identify two such triples (G_i, Δ_i, f_i) , i = 1, 2 if there are isomorphisms $\phi_0 : G_2 \to G_1$, $\phi_T : \Delta_1 \to \Delta_2$ such that the diagram

commutes. Elliott [3] proved that this triple is a complete invariant for the simple unital C^* -algebras which arise as inductive limits of finite direct sums of matrix algebras over C([0,1]) — AI algebras for short. The project of determining the range of the Elliott triple when applied to simple unital AI algebras was initiated by Thomsen [6]. When A is a simple unital AI algebra $K_0(A)$ is a simple dimension group, $S(K_0(A))$ is a metrizable Choquet simplex, T(A) is another metrizable Choquet simplex and the map r_A is an affine continuous surjection. Furthermore, we know from [6] that the map r_A preserves extreme points i.e. $r_A(\partial_e T(A)) = \partial_e S(K_0(A))$.

In this paper we show that, whenever G is a simple noncyclic dimension group, such that the extreme boundary of the state space is compact and totally disconnected, Δ is a metrizable Choquet simplex and $f: \Delta \to S(G)$ an affine continuous map with $f(\partial_e \Delta) = \partial_e S(G)$, then (G, Δ, f) is the Elliott triple of some simple unital AI algebra.

Received January 13, 1993.

NOTATION 1. For K a compact convex subset of a linear topological space, we denote by Aff(K) the complete order-unit space of affine continuous real-valued functions on K with pointwise ordering and 1 as the order-unit. For $\lambda: K \to L$ a continuous affine map between compact convex sets, let $Aff(\lambda): Aff(L) \to Aff(K)$ be the positive order-unit-preserving homomorphism given by $Aff(\lambda)(h) = h \circ \lambda$ for all $h \in Aff(L)$. It is well-known that for K a compact convex subset of a locally convex Hausdorff space, the state space of Aff(K) is naturally isomorphic to K via evaluation.

For convenience we write s* for AffS(s) when s is a homomorphism of ordered groups, and write "homomorphism" instead of "positive order-unit-preserving homomorphism" when dealing with homomorphisms of order-unit spaces.

DEFINITIONS 2. Let Δ be a Choquet simplex. A partition of unity v_1, \ldots, v_k in Aff(Δ) is said to be *extreme* if there are closed non-empty faces $\Delta_1, \ldots, \Delta_k$ in Δ with $\Delta = \text{hull } \{\Delta_1, \ldots, \Delta_k\}$ such that $v_i|_{\Delta_j} \equiv \delta_{ij}$ for $1 \leq i, j \leq k$. A partition of unity v_1, \ldots, v_k in Aff(Δ) is *peaked* if $||v_j|| = 1, j = 1, \ldots, k$. Note that in this case span $\{v_1, \ldots, v_k\} \cong l_k^{\infty}$ with v_1, \ldots, v_k as the standard basis.

For v, 1-v an extreme partition of unity in $Aff(\Delta)$ with corresponding faces E, E^c we let $Aff(\Delta)_v = \{f \in Aff(\Delta) : f|_{E^c} \equiv 0\}$, which is an order-unit space with order-unit v, and define a homomorphism $\pi_v : Aff(\Delta) \to Aff(\Delta)_v$ by $\pi_v(f)|_E = f|_E$ and $\pi_v(f)|_{E^c} \equiv 0$ for $f \in Aff(\Delta)$.

LEMMA 3. Suppose that Δ is a Choquet simplex and $(l_{n_i}^{\infty}, v_i)$ an inductive system with $\lim_{n \to \infty} (l_{n_i}^{\infty}, v_i) = \operatorname{Aff}(\Delta)$. Let v_1, \ldots, v_k be a peaked partition of unity in $\operatorname{Aff}(\Delta)$ and let $\varepsilon > 0$. There is an $i \in \mathbb{N}$ and a homomorphism ρ : span $\{v_1, \ldots v_k\} \to l_{n_i}^{\infty}$ such that $\|v_{\infty i} \circ \rho - id\| < \varepsilon$.

PROOF. Since $\bigcup_{i=1}^{\infty} v_{\infty i}((l_{n_i}^{\infty})^+)$ is dense in Aff(Δ)⁺ there are $x_1, \dots, x_{k-1} \in (l_{n_{i_0}}^{\infty})^+$ with $\left| \left| \left(1 - \frac{\varepsilon}{2k} \right) v_j - v_{\infty i_0}(x_j) \right| \right| < \frac{\varepsilon}{2k^2}, j = 1, \dots, k-1$. Now

$$v_{\infty i_0} \left(\sum_{j=1}^{k-1} x_j\right) < \left(1 - \frac{\varepsilon}{2k}\right) \sum_{j=1}^{k-1} v_j + \frac{\varepsilon}{2k} \le 1$$

and there is an $i \ge i_0$ so that $v_{ii_0}(\sum_{j=1}^{k-1} x_j) < 1$. Let $y_j = v_{ii_0}(x_j), j = 1, \dots, k-1$ and $y_k = 1 - \sum_{j=1}^{k-1} y_j$. Then $(y_j)_{j=1}^k$ is a partition of unity in $l_{n_i}^{\infty}$. Since

$$1 - \frac{\varepsilon}{k} - \left(1 - \frac{\varepsilon}{2k}\right)v_k < \sum_{j=1}^{k-1} v_{\infty i}(y_j) < 1 - \left(1 - \frac{\varepsilon}{2k}\right)v_k$$

we have that

$$\left(1 - \frac{\varepsilon}{2k}\right) v_k < v_{\infty i}(y_k) < \frac{\varepsilon}{k} + \left(1 - \frac{\varepsilon}{2k}\right) v_k.$$

Hence, $||v_j - v_{\infty i}(y_j)|| < \frac{\varepsilon}{k}, j = 1, \dots, k.$

Let ρ : span $\{v_1, \ldots, v_k\} \to l_{n_i}^{\infty}$ be the homomorphism given by $\rho(v_j) = y_j$ for $j = 1, \ldots, k$. Clearly, $\|v_{\infty i} \circ \rho - id\| < \varepsilon$.

LEMMA 4. Let Δ be a metrizable Choquet simplex and w, 1-w an extreme partition of unity in $Aff(\Delta)$. Let V be a subspace of $Aff(\Delta)$ with $1 \in V$ and $V \cong l_m^{\infty}$ for some $m \in \mathbb{N}$. Let $F \subseteq Aff(\Delta)_w$ be a finite subset and let $\varepsilon > 0$. There is a subspace W of $Aff(\Delta)_w$ with $w \in W \cong l_n^{\infty}$ for some $n \in \mathbb{N}$ such that $dist(f, W) < \varepsilon$ for all $f \in F$ and a homomorphism $\eta: V \to W$ with $\|\eta - \pi_w\|_V \| < \varepsilon$.

PROOF. There is a $\delta > 0$ such that if $x_1, \ldots, x_l \in l_k^{\infty^+}$ with $\|\sum_{i=1}^l x_i - 1\| < \delta$ then there are $y_1, \ldots, y_1 \in l_k^{\infty^+}$ with $\sum_{i=1}^l y_i = 1$ and $\|x_i - y_i\| < \frac{\varepsilon}{2m}$ for $1 \le i \le l$. It follows from Theorem 2.7.2 of [1] that there is a subspace W of $\mathrm{Aff}(\Delta)_w$ with $w \in W$ and $W \cong l_n^{\infty}$ for some $n \in \mathbb{N}$ such that $\mathrm{dist}(f, W) < \varepsilon$ for all $f \in F$ and $\mathrm{dist}(\pi_w(e_i), W) < \frac{\delta \wedge \varepsilon}{4m}$ for $1 \le i \le m$ where e_1, \ldots, e_m is the standard basis for $V \cong l_m^{\infty}$. Since $\mathrm{dist}(\pi_w(e_i), W^+) \le 2\mathrm{dist}(\pi_w(e_i), W)$ there are $x_1, \ldots, x_m \in W^+$ with $\|x_i - \pi_w(e_i)\| < \frac{\delta \wedge \varepsilon}{2m}$ for $1 \le i \le m$. So $\|\sum_{i=1}^m x_i - w\| < \delta$ and there are $y_1, \ldots, y_m \in W^+$ with $\sum_{i=1}^m y_i = w$ and $\|x_i - y_i\| < \frac{\varepsilon}{2m}$ for $1 \le i \le m$. Let $\eta \colon V \to W$ be the homomorphism given by $\eta(e_i) = y_i$ for $1 \le i \le m$. Let $x \in V$ with $\|x\| \le 1$. Then $x = \sum_{i=1}^m \alpha_i e_i$ for some $\alpha_1, \ldots, \alpha_m \in [-1, 1]$ and

$$\|\eta(x) - \pi_{w}(x)\| \leq \sum_{i=1}^{m} |\alpha_{i}| \|y_{i} - \pi_{w}(e_{i})\| \leq \sum_{i=1}^{m} (\|y_{i} - x_{i}\| + \|x_{i} - \pi_{w}(e_{i})\|) < \varepsilon.$$

DEFINITION 5. A tree is a triple (X, \leq, x_0) where (X, \leq) is a partially ordered set with a maximal element x_0 such that $s(x) = \{y \in X : y < x, \forall z < x : y \neq z\}$ is finite for every $x \in X$, $s(x) \cap s(y) = \emptyset$ when $x \neq y$ and X is the union of the level sets \mathcal{L}^i given by $\mathcal{L}^1 = \{x_0\}$ and $\mathcal{L}^{i+1} = \bigcup_{y \in \mathcal{L}^i} s(y)$ for $i \in \mathbb{N}$. For $i \in \mathbb{N}$ we let $L^i = \mathcal{L}^i \cup \{y \in \bigcup_{j=1}^i \mathcal{L}^j : \forall x \in X : x \neq y\}$ — the leaves of $\bigcup_{j=1}^i \mathcal{L}^j$ — and $c(x) = \{y \in L^{i+1} : y \leq x\}$ for $x \in L^i$.

REMARK 6. Let Δ be a metrizable Choquet simplex with compact and totally disconnected extreme boundary. Since every locally compact, totally disconnected topological space has a basis of sets being both open and closed, there is

a basis Y for the compact, totally disconnected metric space $\partial_e \Delta$ such that $\partial_e \Delta \in Y$ and $(Y, \subseteq, \partial_e \Delta)$ is a tree, where s(y) is either empty or consists of mutually disjoint sets with union y for every $y \in Y$. Now put $X = \{g \in \text{Aff}(\Delta) : \exists y \in Y : g | \partial_{e^{\Delta}} = 1_y\}$. Then $(X, \leq, 1)$ is a tree where each L is an extreme partition of unity in Aff (Δ) and the span of X is dense in Aff (Δ) .

PROPOSITION 7. Let G be a simple noncyclic dimension group, such that the extreme boundary of the state space is compact and totally disconnected. Let Δ be a metrizable Choquet simplex and let $f: \Delta \to S(G)$ be a continuous affine map with $f(\partial_e \Delta) = \partial_e S(G)$. There is a system (\mathbf{Z}^{n_i}, s_i) with positive order-unit-preserving connecting homomorphisms and inductive limit $\lim_{\to} (\mathbf{Z}^{n_i}, s_i) = G$, a collection $1 \in X \subseteq \text{AffS}(G)$ with dense span such that $(X, \leq, 1)$ is a tree where each L^i is an extreme partition of unity in AffS(G) and homomorphisms $\rho_i : W_i \to \text{AffS}(\mathbf{Z}^{n_i}), \delta_i : \text{AffS}(\mathbf{Z}^{n_i}) \to W_{i+1}$ where $W_i = \text{span}(L^i)$ such that

$$\|\delta_{i} \circ \rho_{i} - id\| < 2^{-i},$$

$$\|\rho_{i+1} \circ \delta_{i} - s_{i}^{\#}\| < 2^{-i}n_{i}^{-1},$$

$$\|s_{\infty i}^{\#} - \delta_{i}\| < 2^{-i}$$

for all $i \in \mathbb{N}$ and moreover there are Markov operators $\theta_h: C_R([0,1]) \to C_R([0,1])$ of the form $\theta_h = N_i^{-1}(\theta_h^1 + \ldots + \theta_h^{N_i})$ where $\theta_h^1, \ldots, \theta_h^{N_i}$ are restrictions of unital *-endomorphisms of C([0,1]) for $h \in L^i$, $i \geq 2$ such that

$$Aff(\Delta) = \lim_{\rightarrow} (W_i \otimes C_{\mathsf{R}}([0,1]), \theta_i),$$

$$\theta_{\infty i}(v \otimes 1) = Aff(f)(v), v \in W_i, i \in \mathsf{N}$$

where $\theta_i: W_i \otimes C_R([0,1]) \to W_{i+1} \otimes C_R([0,1])$ is the homomorphism given by

$$\theta_i \left(\sum_{g \in L^i} g \otimes x_g \right) = \sum_{\substack{g \in L^i \\ h \in c(g)}} h \otimes \theta_h(x_g)$$

and

$$\operatorname{mult}(s_i) \geq 2^i N_i \# L^{i+1}.$$

PROOF. Let (\mathbf{Z}^{n_i}, s_i) be a system with positive order-unit-preserving connecting homomorphisms and inductive limit $\lim_{i \to \infty} (\mathbf{Z}^{n_i}, s_i) = G$. Since G is simple and noncyclic we may assume that $\operatorname{mult}(s_i) \to \infty$ as $i \to \infty$ where mult denotes the smallest entry of a given matrix. We may therefore also assume that $\operatorname{mult}(s_i) \ge 1$ for all $i \in \mathbb{N}$.

By the above remark there is a collection $1 \in X \subseteq AffS(G)$ with dense span such that $(X, \leq, 1)$ is a tree where each L^i is an extreme partition of unity in AffS(G).

Note that Aff(f) takes extreme partitions of unity in AffS(G) to extreme partitions of unity in $Aff(\Delta)$ because $f(\partial_e \Delta) = \partial_e S(G)$.

For convenience we write Aff $(\Delta)_g$ and π_g for Aff $(\Delta)_{Aff(f)(g)}$ and $\pi_{Aff(f)(g)}$ respectively for $g \in X$.

For $m \in \mathbb{N}$ a partition of unity ζ_1, \ldots, ζ_m in $C_R([0, 1])$ is chosen such that $\zeta_i\left(\frac{i-1}{m}\right) = 1, 1 \le i \le m$, and we let $l_m: l_m^{\infty} \to C_R([0, 1]), \kappa_m: C_R([0, 1]) \to l_m^{\infty}$ be

the homomorphisms given by $\iota_m(e_i) = \zeta_i$, $1 \le i \le m$ and $\kappa_m(x) = \sum_{i=1}^m x \left(\frac{i-1}{m}\right) e_i$ for $x \in C_R([0,1])$. Note that $\kappa_m \circ \iota_m = \mathrm{id}$.

Let $(d_i)_{i=1}^{\infty}$ and $(a_i)_{i=1}^{\infty}$ be dense sequences in $C_R([0,1])$ and Aff (Δ) respectively. We show that there are increasing sequences $(i_p)_{p=1}^{\infty}$, $(j_p)_{p=1}^{\infty}$ in N $(j_1 = 1)$ and

- subspaces $\operatorname{Aff}(f)(g) \in Z_g \subseteq \operatorname{Aff}(\Delta)_g$ such that $Z_g \cong l_{m_g}^{\infty}$ for some $m_g \in \mathbb{N}$ and $\operatorname{dist}(\pi_g(a_g), Z_g) < 2^{-p}$ for all $1 \leq q \leq p, g \in L^{j_p}, p \in \mathbb{N}$,
- homomorphisms $\eta_h: Z_g \to Z_h$ such that $\|\eta_h \pi_h|_{Z_g} \| < 2^{-p}$ for all $g \in L^{j_p}$, $h \in L^{j_{p+1}}$, $h \leq g$, $p \in \mathbb{N}$,
- Markov operators $\theta_h: C_R([0,1]) \to C_R([0,1])$ which are of the form $\theta_h = N_p^{-1}(\theta_h^1 + \ldots + \theta_h^{N_p})$ where $\theta_h^1, \ldots, \theta_h^{N_p}$ are restrictions of unital *-endomorphisms of C([0,1]) and $\|\theta_h(f) \iota_h \circ \eta_h \circ \kappa_g(f)\| < 2^{-p}$ for all $f \in F_g$, $g \in L^p$, $h \in L^{p+1}$, $h \leq g$, $p \in \mathbb{N}$ where $\iota_g = \iota_{m_g} \circ \phi_g : Z_g \to C_R([0,1])$, $\kappa_g = \phi_g^{-1} \circ \kappa_{m_g} : C_R([0,1]) \to Z_g$ for some isomorphism $\phi_g : Z_g \to l_{m_g}^\infty$ and

$$F_{g} = \bigcup_{q=1}^{p} (\theta_{gg_{q}}(\{d_{1},\ldots,d_{p}\}) \cup \iota_{g} \circ \eta_{gg_{q}} \circ \kappa_{g_{q}}(\{d_{1},\ldots,d_{p}\}))$$

where $g_q \in L^{j_q}$ is the unique function $g_q \ge g$,

• homomorphisms $\rho_p: W_p \to \text{AffS}(\mathbf{Z}^{n_{i_p}})$ and $\delta_p: \text{AffS}(\mathbf{Z}^{n_{i_p}}) \to W_{p+1}$ where $W_p = \text{span}(\dot{L}^p)$ such that

$$\begin{aligned} \|s_{\infty i_p}^{\#} \circ \rho_p - \mathrm{id}\| &< 2^{-p-1}, \\ \|s_{\infty i_p}^{\#} - \delta_p\| &< 2^{-p-1} n_{i_p}^{-1}, \\ \|\rho_{p+1} \circ \delta_p - s_{i_{p+1} i_p}^{\#}\| &< 2^{-p} n_{i_p}^{-1} \end{aligned}$$

for all $p \in \mathbb{N}$ and such that

• $\operatorname{mult}(s_{i_{p+1}i_p}) \ge 2^p N_p \# L^{j_{p+1}} \text{ for all } p \in \mathbb{N}.$

By Lemma 3, there is an $i_1 \in \mathbb{N}$ and a homomorphism $\rho_1: W_1 \to \mathrm{AffS}(\mathbb{Z}^{n_{i_1}})$ such that $\|s_{\infty i_1}^\# \circ \rho_1 - \mathrm{id}\| < 2^{-2}$. Since the span of X is dense in $\mathrm{AffS}(G)$ there is a $j_2 > 1$ and a homomorphism $\delta_1: \mathrm{AffS}(\mathbb{Z}^{n_{i_1}}) \to W_2$ such that $\|s_{\infty i_1}^\# - \delta_1\| < 2^{-2}n_{i_1}^{-1}$. It follows from Theorem 2.7.2 of [1] that there is a subspace $1 \in \mathbb{Z}_1 \subseteq \mathrm{Aff}(\Delta)$ such that $\mathbb{Z}_1 \cong l_{m_1}^\infty \in \mathbb{N}$ and $\mathrm{dist}(a_1, \mathbb{Z}_1) < 2^{-1}$.

Suppose that $(i_p)_{p=1}^P$, $(j_p)_{p=1}^{P+1}$ are increasing sequences in $N(j_1=1)$ and that Z_g ,

 $g \in L^{j_p}$, $1 \le p \le P$, η_h , θ_h , $h \in L^{j_p}$, $2 \le p \le P$, δ_p , ρ_p , $1 \le p \le P$ and mult $(s_{i_{p+1}i_p})$, $1 \le p \le P - 1$ satisfies the above conditions. It follows from Lemma 4 that for every $g \in L^{j_p}$, $h \in L^{j_{p+1}}$, $h \le g$ there is a subspace $Aff(f)(h) \in Z_h \subseteq Aff(\Delta)_h$ such that $Z_h \cong L^{\infty}_{m_h}$ for some $m_h \in \mathbb{N}$ and a homomorphism $\eta_h : Z_g \to Z_h$ such that

$$\operatorname{dist}(\pi_h(a_q), Z_h) < 2^{-(P+1)}, 1 \le q \le P+1,$$
$$\|\eta_h - \pi_h\|_{Z_n}\| < 2^{-P}.$$

It follows from the Krein-Milman theorem for Markov operators of [5] that there is a Markov operator $\theta_h \colon C_R([0,1])$ of the form $\theta_h = N_{Ph}^{-1}(\theta_h^1 + \ldots + \theta_h^{N_{Ph}})$ where $\theta_h^1, \ldots, \theta_h^{N_{Ph}}$ are restrictions of unital *-endomorphisms of C([0,1]) such that $\|\theta_h(f) - \iota_h \circ \eta_h \circ \kappa_g(f)\| < 2^{-P}$ for all $f \in F_g$. We may assume that $N_{Ph} = N_P$ for all $h \in L^{j_{P+1}}$. There is a $k_1 > i_P$ such that mult $(s_{k_1 i_P}) \ge 2^P N_P \# L^{j_{P+1}}$. It follows from Lemma 3 that there is a $k_2 > k_1$ and a homomorphism $\rho \colon W_{P+1} \to AffS(Z^{n_{k_2}})$ such that $\|s_{\infty k_2}^\# \circ \rho - \mathrm{id}_{W_{P+1}}\| < 2^{-P-2} n_{i_P}^{-1}$. Since

$$\|s_{\infty k_2}^{\#} \circ \rho \circ \delta_P - s_{\infty i_P}^{\#}\| \leq \|s_{\infty k_2}^{\#} \circ \rho \circ \delta_P - \delta_P\| + \|\delta_P - s_{\infty i_P}^{\#}\| < 2^{-P} n_{i_P}^{-1}$$

and the unit ball in AffS ($\mathbf{Z}^{n_{i_P}}$) is compact, it follows that there is an $i_{P+1} \geq k_2$ such that $\|s_{i_{P+1}i_P}^\# \circ \rho \circ \delta_P - s_{i_{P+1}i_P}^\#\| < 2^{-P} n_{i_P}^{-1}$. Note that mult $(s_{i_{P+1}i_P}) \geq 2^P N_P \# L^{i_{P+1}}$ and put $\rho_{P+1} = s_{i_{P+1}i_P}^\# \circ \rho$. Since the span of X is dense in AffS (G) there is a $j_{P+2} > j_{P+1}$ and a homomorphism δ_{P+1} : AffS ($\mathbf{Z}^{n_{i_{P+1}}}$) $\to W_{P+2}$ such that $\|s_{\infty i_{P+1}}^\# - \delta_{P+1}\| < 2^{-(P+1)-1} n_{i_{P+1}}^{-1}$. The result follows from Zorn's lemma.

For $p \in \mathbb{N}$ let Z_p be the subspace of Aff (Δ) spanned by $(Z_g)_{g \in L^{j_p}}$. Note that Z_p is isomorphic to the order-unit-space direct sum of $(Z_g)_{g \in L^{j_p}}$. Moreover dist $(a_q, Z_p) < 2^{-p}$ for all $1 \le q \le p$. Let $\eta_p: Z_p \to Z_{p+1}$ be the homomorphism given by

$$\eta_p \left(\sum_{g \in L^{J_p}} v_g \right) = \sum_{\substack{g \in L^{J_p} \\ h \in L^{J_p + 1} \\ h \le g}} \eta_h(v_g)$$

for $v_g \in Z_g$, $g \in L^{j_p}$. Then η_p is a homomorphism with $\eta_p(\mathrm{Aff}(f)(g)) = \mathrm{Aff}(f)(g)$ for all $g \in W_p$. Let $v \in Z_p$ with $\|v\| \le 1$. Then v is of the form $v = \sum_{g \in L^{j_p}} v_g$ where $v_g \in Z_g$, $\|v_g\| \le 1$ and

$$\|\eta_{p}(v) - v\| = \left\| \sum_{\substack{g \in L^{j_{p}} \\ h \in L^{j_{p+1}} \\ h \leq g}} (\eta_{h}(v_{g}) - \pi_{h}(v_{g})) \right\| = \max_{\substack{g \in L^{j_{p}} \\ h \in L^{j_{p+1}} \\ h \leq g}} \|\eta_{h}(v_{g}) - \pi_{h}(v_{g})\| < 2^{-p}.$$

Therefore the sequence $(\eta_{qp}(v))_{q=p}^{\infty}$ in Aff(Δ) is Cauchy for every $v \in Z_p$ – let $\alpha_p(v)$ denote the limit. Then $\alpha_p \colon Z_p \to \operatorname{Aff}(\Delta)$ is a homomorphism with $\alpha_{p+1} \circ \eta_p = \alpha_p$ and $\alpha_p(\operatorname{Aff}(f)(g)) = \operatorname{Aff}(f)(g)$ for all $g \in W_p$. Thus there is a homomorphism $\alpha \colon \lim_{p \to \infty} (Z_p, \eta_p) \to \operatorname{Aff}(\Delta)$ with $\alpha \circ \eta_{\infty p} = \alpha_p$. By $\|\eta_p(v) - v\| < 2^{-p} \|v\|$ the

homomorphism α is seen to be isometric. Using that $(a_i)_{i=1}^{\infty}$ is dense in Aff(Δ), dist $(a_q, Z_p) < 2^{-p}$ for all $1 \le q \le p$ and $1 \in Z_p$ for all $p \in \mathbb{N}$ and the fact that α is isometric, one shows that α is an isomorphism.

Define $I_p: Z_p \to W_p \otimes C_R([0,1])$ and $K_p: W_p \otimes C_R([0,1]) \to Z_p$ by

$$I_p\left(\sum_{g\in L^{j_p}}v_g\right)=\sum_{g\in L^{j_p}}g\otimes \iota_g(v_g),$$

$$K_p \left(\sum_{g \in L^{j_p}} g \otimes x_g \right) = \sum_{g \in L^{j_p}} \kappa_g(x_g)$$

for $v_g \in Z_g$, $x_g \in C_R([0,1])$, $g \in L^{j_p}$. The maps I_p , K_p are homomorphisms and $K_p \circ I_p = \text{id}$. Letting $\omega_p = I_{p+1} \circ \eta_p \circ K_p$ and $\beta_p = \eta_{\infty p} \circ K_p$ we have $\beta_{p+1} \circ \omega_p = \beta_p$ and so there is a homomorphism $\beta : \lim_{n \to \infty} (W_p \otimes C_R([0,1]), \omega_p) \to \lim_{n \to \infty} (Z_p, \eta_p)$ with $\beta \circ \omega_{\infty p} = \beta_p$, $p \in \mathbb{N}$. It is easy to see that this is an isomorphism. In addition $\alpha \circ \beta_p(g \otimes 1) = \alpha \circ \eta_{\infty p} \circ K_p(g \otimes 1) = \alpha \circ \eta_{\infty p}(Aff(f)(g)) = \alpha_p(Aff(f)(g)) = Aff(f)(g)$ for all $g \in W_p$.

Let $\theta_p: W_p \otimes C_R([0,1]) \to W_{p+1} \otimes C_R([0,1])$ be the homomorphism given by

$$\theta_p \left(\sum_{g \in L^{j_p}} g \otimes x_g \right) = \sum_{\substack{g \in L^{j_p} : h \in L^{j_{p+1}} \\ h \in A}} h \otimes \theta_h(x_g).$$

The set $\{\sum_{g \in L^{j_p}} g \otimes x_g : x_g \in \{d_i : i \in \mathbb{N}\}\}\$ is dense in $W_p \otimes C_R([0,1])$ and

$$\bigcup_{q=1}^{p} \left(\theta_{pq} \left\{ \sum_{h \in L^{J_q}} h \otimes x_h : x_h \in \{d_1, \dots, d_p\} \right\} \cup \omega_{pq} \left\{ \sum_{h \in L^{J_q}} h \otimes x_h : x_h \in \{d_1, \dots, d_p\} \right\} \right)$$

is equal to $\{\sum_{g\in L^{j_p}}g\otimes x_g:x_g\in F_g\}$. For $z=\sum_{g\in L^{j_p}}g\otimes x_g$ where $x_g\in F_g$ we have

$$\|\theta_p(z) - \omega_p(z)\| = \sum_{\substack{g \in L^{j_p} \\ h \in L^{j_{p+1}} \\ h \leq g}} \|\theta_h(x_g) - \iota_h \circ \eta_h \circ \kappa_g(x_g)\| \leq 2^{-p}$$

and it follows from (a slight modification of) Lemma 3.4 of [5] that there is an isomorphism $\gamma: \lim_{p \to \infty} (W_p \otimes C_R([0,1]), \theta_p) \to \lim_{p \to \infty} (W_p \otimes C_R([0,1]), \omega_p)$ such that $\gamma \circ \theta_{\infty p} = \gamma_p$ where $\gamma_p: W_p \otimes C_R([0,1]) \to \lim_{p \to \infty} (W_p \otimes C_R([0,1]), \omega_p)$ is the homomorphism given by $\gamma_p(x) = \lim_{q \to \infty} \omega_{\infty q} \circ \theta_{qp}(x)$ for $x \in W_p \otimes C_R([0,1])$. Note that $\gamma_p(g \otimes 1) = \omega_{\infty p}(g \otimes 1)$ for all $g \in W_p$.

To sum up, there is an isomorphism $\alpha \circ \beta \circ \gamma : \lim_{n \to \infty} (W_p \otimes C_R([0, 1]), \theta_p) \to \text{Aff}(\Delta)$ with $\alpha \circ \beta \circ \gamma \circ \theta_{\infty i}(g \otimes 1) = \text{Aff}(f)(g)$ for all $g \in W_i$ and $i \in \mathbb{N}$.

LEMMA 8. Let $M, N \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_m \ge 0$ with $\sum_{j=1}^m \lambda_j > 0$. There are $k_1, \ldots, k_m \in \mathbb{N}_0$ such that

$$M - N < N \sum_{j=1}^{m} k_j \leq M,$$

$$\sum_{j=1}^{m} \left| \frac{Nk_j}{M} - \lambda_j \right| < \frac{2Nm}{M} + \left| 1 - \sum_{j=1}^{m} \lambda_j \right|.$$

PROOF. Put $\lambda = \sum_{j=1}^{m} \lambda_j$ and $\mu_j = \frac{M}{\lambda N} \sum_{l=1}^{j} \lambda_l$ for $1 \le j \le m$. There is an $h_j \in \mathbb{N}_0$ with $\mu_j - 1 < h_j \le \mu_j$ for $1 \le j \le m$. Put $k_1 = h_1$ and $k_{j+1} = h_{j+1} - h_j$ for $1 \le j \le m - 1$. We have

$$M - N = N(\mu_m - 1) < Nh_m = N \sum_{j=1}^m k_j \le N\mu_m = M,$$

$$\left| \frac{Nk_1}{M} - \frac{\lambda_1}{\lambda} \right| = \frac{N}{M} \left| k_1 - \frac{M\lambda_1}{N\lambda} \right| = \frac{N}{M} \left| k_1 - \mu_1 \right| < \frac{N}{M}$$

and

$$\left|\frac{Nk_j}{M} - \frac{\lambda_j}{\lambda}\right| = \frac{N}{M} \left|k_j - \frac{M\lambda_j}{N\lambda}\right| = \frac{N}{M} \left|(h_j - h_{j-1}) - (\mu_j - \mu_{j-1})\right| < 2\frac{N}{M}$$

for $2 \le j \le m$. Therefore

$$\left|\sum_{j=1}^{m} \left| \frac{Nk_j}{M} - \lambda_j \right| < \frac{2Nm}{M} + |1 - \lambda|.$$

Theorem 9. Let G be a simple noncyclic dimension group, such that the extreme boundary of the state space is compact and totally disconnected. Let Δ be a metrizable Choquet simplex and let $f: \Delta \to S(G)$ be a continuous affine map with $f(\partial_e \Delta) = \partial_e S(G)$. Then (G, Δ, f) is the Elliott triple of some simple unital AI algebra.

PROOF. Let (Z^{n_i}, s_i) , X, $(\rho_i)_{i=1}^{\infty}$, $(\delta_i)_{i=1}^{\infty}$, $(\theta_h)_{h \in X - \{1\}}$ and mult (s_i) be as in Proposition 7. Let (a^i_{pq}) , (λ^i_{hq}) , (μ^i_{pq}) and (v^i_{ph}) be the matrices for s_i , δ_i , $s^\#_i$ and ρ_i respectively and put $Z_i = \{(p,q): 1 \leq p \leq n_{i+1}, 1 \leq q \leq n_i, \sum_{h \in L^{i+1}} v^{i+1}_{ph} \lambda^i_{hq} = 0\}$ – the zero entries of the matrix for $\rho_{i+1} \circ \delta_i$ for $i \in \mathbb{N}$.

It follows from Lemma 8 that for $(p,q) \notin Z_i$ there are $(k_{pq}^h)_{h \in L^{i+1}}$ in N_0 such that

$$\begin{split} a_{pq}^{i} - N_{i} < N_{i} \sum_{h \in L^{i+1}} k_{pq}^{h} \leq a_{pq}^{i}, \\ \sum_{h \in L^{i+1}} \left| \frac{N_{i} k_{pq}^{h}}{a_{pq}^{i}} - \frac{v_{ph}^{i+1} \lambda_{hq}^{i}}{\mu_{pq}^{i}} \right| < \frac{2N_{i} \# L^{i+1}}{a_{pq}^{i}} + \left| 1 - \sum_{h \in L^{i+1}} \frac{v_{ph}^{i+1} \lambda_{hq}^{i}}{\mu_{pq}^{i}} \right|. \end{split}$$

For $(p,q) \in Z_i$ choose $(k_{pq}^h)_{h \in L^{i+1}} \subseteq \mathbb{N}_0$ such that $a_{pq}^i - N_i < N_i \sum_{h \in L^{i+1}} k_{pq}^h \le a_{pq}^i$. Let $r_{pq}^i = a_{pq}^i - N_i \sum_{h \in L^{i+1}} k_{pq}^h$ for $1 \le p \le n_{i+1}, 1 \le q \le n_i$ and $i \in \mathbb{N}$. Let $m_i = n_i$

 $(m_1^i,\ldots,m_{n_i}^i)$ denote the order-unit in \mathbf{Z}^{n_i} . Then $A_i=\bigoplus_{p=1}^{n_i}M_{m_p^i}\otimes C([0,1])$ is the interval algebra with $K_0(A_i)=\mathbf{Z}^{n_i}$. For all $h\in L^{i+1}$, $1\leq r\leq N_i$ and $i\in \mathbb{N}$ there is a continuous function $\omega_h^r:[0,1]\to[0,1]$ such that $\theta_h^r(x)=x\circ\omega_h^r$ for all $x\in C([0,1])$. Let $\psi_i:A_i\to A_{i+1}$ be the *-homomorphism with characteristic functions ω_h^r repeated k_{pq}^h times, $h\in L^{i+1}$, $1\leq r\leq N_i$ and $\mathrm{id}_{[0,1]}$ repeated r_{pq}^i times from the qth summand of A_i to the pth summand of A_{i+1} for $1\leq p\leq n_{i+1}$, $1\leq q\leq n_i$ and $i\in \mathbb{N}$. Let $B=\lim_{t\to\infty}(A_i,\psi_i)$ and note that $K_0(B)=\lim_{t\to\infty}(\mathbf{Z}^{n_i},s_i)=G$. Let $i_i:W_i\subset W_{i+1}$ be inclusion and let $\theta_i:W_{i+1}\otimes C_R([0,1])\to W_{i+1}\otimes C_R([0,1])$ be the homomorphism given by

$$\vartheta_i \left(\sum_{h \in L^{i+1}} h \otimes x_h \right) = \sum_{h \in L^{i+1}} h \otimes \theta_h(x_h).$$

Observe that $\theta_i \circ (\iota_i \otimes id_{C_{\mathbb{P}}([0,1])})$. Define

$$\zeta_i = \vartheta_i \circ (\delta_i \otimes \mathrm{id}_{C_{\mathsf{R}}([0,1])}) : \mathrm{AffT}(A_i) \to W_{i+1} \otimes C_{\mathsf{R}}([0,1]),$$

$$\eta_i = \rho_i \otimes \mathrm{id}_{C_{\mathsf{P}}([0,1])} \colon W_i \otimes C_{\mathsf{R}}([0,1]) \to \mathrm{AffT}(A_i)$$

for $i \in \mathbb{N}$.

We show that the triangles of the following diagram commutes up to an error which is summable.

$$W_{i} \otimes C_{\mathsf{R}}(\llbracket 0,1 \rrbracket) \xrightarrow{\theta_{i}} W_{i+1} \otimes C_{\mathsf{R}}(\llbracket 0,1 \rrbracket)$$

$$\downarrow^{\eta_{i}} \downarrow \qquad \qquad \downarrow^{\eta_{i+1}}$$

$$\mathsf{AffT}(A_{i}) \xrightarrow{\mathsf{AffT}(\psi_{i})} \mathsf{AffT}(A_{i+1})$$

As for the upper triangle we have

$$\begin{split} \|\theta_i - \zeta_i \circ \eta_i\| &= \|\vartheta_i \circ (\iota_i \otimes \operatorname{id}_{C_{\mathsf{R}([0,1])}}) - \vartheta_i \circ (\delta_i \otimes \operatorname{id}_{C_{\mathsf{R}([0,1])}}) \circ (\rho_i \otimes \operatorname{id}_{C_{\mathsf{R}([0,1])}})\| \\ &\leq \|\iota_i - \delta_i \circ \rho_i\| \\ &< 2^{-i}. \end{split}$$

Let $x = (x_1, ..., x_{n_i}) \in \text{AffT}(A_i)$ and $1 \le p \le n_{i+1}$. The pth coordinate of AffT $(\psi_i)(x)$ is

$$\sum_{q=1}^{n_i} \frac{m_q^i}{m_p^{i+1}} \left(\sum_{h \in L^{i+1}} k_{pq}^h \sum_{r=1}^{N_i} x_q \circ \omega_h^r + r_{pq}^i x_q \right)$$

and the pth coordinate of $\eta_{i+1} \circ \zeta_i(x)$ is

$$\sum_{q=1}^{n_i} \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^i \theta_h(x_q).$$

Assume that $||x|| \le 1$. Then

$$\begin{split} \| \text{AffT}(\psi_{i})(x) - \eta_{i+1} \circ \zeta_{i}(x) \| \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{q=1}^{n_{i}} \sum_{h \in L^{i+1}} \left| \frac{m_{q}^{i} k_{pq}^{h}}{m_{p}^{i+1}} - v_{ph}^{i+1} \lambda_{hq}^{i} \frac{1}{N_{i}} \right| \left\| \sum_{r=1}^{N_{i}} x_{q} \circ \omega_{h}^{r} \right\| + \sum_{q=1}^{n_{i}} \frac{m_{q}^{i} r_{pq}^{i}}{m_{p}^{i+1}} \| x_{q} \| \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{q=1}^{n_{i}} \sum_{h \in L^{i+1}} \left| \frac{m_{q}^{i} k_{pq}^{h} N_{i}}{m_{p}^{i+1}} - v_{ph}^{i+1} \lambda_{hq}^{i} \right| + \sum_{q=1}^{n_{i}} \frac{m_{q}^{i} a_{pq}^{i} 2^{-i}}{m_{p}^{i+1}} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{q=1}^{n_{i}} \mu_{pq}^{i} \sum_{h \in L^{i+1}} \left| \frac{k_{pq}^{h} N_{i}}{a_{pq}^{i}} - \frac{v_{ph}^{i+1} \lambda_{hq}^{i}}{\mu_{pq}^{i}} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} \sum_{h \in L^{i+1}} \frac{k_{pq}^{h} N_{i}}{a_{pq}^{i}} + \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} \right. \\ &\times \left(\frac{2N_{i} \# L^{i+1}}{a_{pq}^{i}} + \left| 1 - \sum_{h \in L^{i+1}} \frac{v_{ph}^{i+1} \lambda_{hq}^{i}}{\mu_{pq}^{i}} \right| \right) + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i+1} \lambda_{hq}^{i} \right| + 2^{-i} \right\} \\ &\leq \max_{1 \leq p \leq n_{i+1}} \left\{ \sum_{1 \leq q \leq n_{i}} \mu_{pq}^{i} + 2^{1-i} + \sum_{1 \leq q \leq n_{i}} \left| \mu_{pq}^{i} - \sum_{h \in L^{i+1}} v_{ph}^{i} \lambda_{hq}^{i} \right| + 2^{-i} \right\}$$

$$\begin{split} &\|\theta_{i+1} \circ \zeta_{i} - \zeta_{i+1} \circ \operatorname{AffT}(\psi_{i})\| \\ &\leq \|\theta_{i+1} \circ \zeta_{i} - \zeta_{i+1} \circ \eta_{i+1} \circ \zeta_{i}\| + \|\zeta_{i+1} \circ \eta_{i+1} \circ \zeta_{i} - \zeta_{i+1} \circ \operatorname{AffT}(\psi_{i})\| \\ &\leq \|\theta_{i+1} - \zeta_{i+1} \circ \eta_{i+1}\| + \|\eta_{i+1} \circ \zeta_{i} - \operatorname{AffT}(\psi_{i})\| \\ &\leq 5 \cdot 2^{-i} \end{split}$$

the sequence $(\theta_{\infty k+1} \circ \zeta_k \circ \operatorname{AffT}(\psi_{ki})(x))_{k=i}^{\infty}$ is Cauchy for all $x \in \operatorname{AffT}(A_i)$ - let $\alpha_i(x)$ denote the limit. Then $\alpha_i : \operatorname{AffT}(A_i) \to \operatorname{Aff}(\Delta)$ is a homomorphism with $\alpha_{i+1} \circ \operatorname{AffT}(\psi_i) = \alpha_i$. Thus there is a homomorphism $\alpha : \operatorname{AffT}(B) \to \operatorname{Aff}(\Delta)$ with $\alpha \circ \operatorname{AffT}(\psi_{\infty i}) = \alpha_i$. Using that $(\|\operatorname{AffT}(\psi_i) - \eta_{i+1} \circ \zeta_i\|)_{i=1}^{\infty}$ and $(\|\zeta_i \circ \eta_i - \theta_i\|)_{i=1}^{\infty}$ are summable one shows that α is an isomorphism.

Note that $T(B) \cong \Delta$ via $S(\alpha): \Delta \to T(B)$. We now show that $r_B \circ S(\alpha) = f$. Let κ_i and γ_i be the inclusions

$$\kappa_i : W_i \longrightarrow W_i \otimes C_{\mathsf{R}}([0,1]), g \mapsto g \otimes 1,$$

$$\chi_i : \operatorname{AffS}(\mathsf{Z}^{n_i}) \longrightarrow \operatorname{AffS}(\mathsf{Z}^{n_i}) \otimes C_{\mathsf{R}}([0,1]) = \operatorname{AffT}(A_i), g \mapsto g \otimes 1.$$

With these definitions we have that

$$\theta_{\infty i} \circ \kappa_i = \mathrm{Aff}(f)|_{W_i},$$

$$\zeta_i \circ \gamma_i = \kappa_{i+1} \circ \delta_i$$

and $p = \chi_i[p]$ for every projection $p \in A_i \subset \text{AffT}(A_i)$. Let $w \in \Delta$ and $p \in A_i$ be a projection.

$$r_{B} \circ S(\alpha)(w)[\psi_{\infty i}(p)]$$

$$= S(\alpha)(w)(\psi_{\infty i}(p))$$

$$= w \circ \alpha \circ \psi_{\infty i}(p)$$

$$= w \circ \alpha_{i}(p)$$

$$= \lim_{k \to \infty} w \circ \theta_{\infty k+1} \circ \zeta_{k} \circ \psi_{ki}(p)$$

$$= \lim_{k \to \infty} w \circ \theta_{\infty k+1} \circ \zeta_{k} \circ \chi_{k}[\psi_{ki}(p)]$$

$$= \lim_{k \to \infty} w \circ \theta_{\infty k+1} \circ \kappa_{k+1} \circ \delta_{k}[\psi_{ki}(p)]$$

$$= f(w) \left(\lim_{k \to \infty} \delta_{k}[\psi_{ki}(p)]\right)$$

$$= f(w)[\psi_{\infty i}(p)].$$

Hence (G, Δ, f) is the Elliott triple of B.

The final step of the proof consists of replacing B by a simple AI algebra with the same Elliott triple. Let ϕ_i be the *-homomorphism obtained from ψ_i by replacing two of the characteristic functions in each entry of ψ_i by h_0 and h_1 where $h_0(t) = \frac{t}{2}$ and $h_1(t) = \frac{t+1}{2}$ for $t \in [0, 1]$ and all $i \in \mathbb{N}$. It follows from [2] that the C^* -algebra $A = \lim (A_i, \phi_i)$ is simple. Note that $K_0(\phi_i) = K_0(\psi_i) = s_i$. Since

$$\|\text{AffT}(\phi_i) - \text{AffT}(\psi_i)\| < 2\text{mult}(s_i)^{-1} \le 2^{1-i}$$

the sequence $(\operatorname{AffT}(\psi_{\infty k} \circ \phi_{ki})(x))_{k=i}^{\infty}$ is Cauchy for every $x \in \operatorname{AffT}(A_i)$, $i \in \mathbb{N}$ – let $\gamma_i(x)$ denote the limit. Then $\gamma_i : \operatorname{AffT}(A_i) \to \operatorname{AffT}(B)$ is a homomorphism with $\gamma_{i+1} \circ \operatorname{AffT}(\phi_i) = \gamma_i$ for all $i \in \mathbb{N}$. There is an isomorphism $\gamma : \operatorname{AffT}(A) \to \operatorname{AffT}(B)$ such that $\gamma \circ \operatorname{AffT}(\phi_{\infty i}) = \gamma_i$ for all $i \in \mathbb{N}$. Let $\tau \in T(B)$ and $p \in A_i$ be a projection.

Then

$$r_{\mathcal{A}} \circ S(\gamma)(\tau)[\phi_{\infty i}(p)] = S(\gamma)(\tau)(\phi_{\infty i}(p))$$

$$= \gamma \circ \text{AffT}(\phi_{\infty i})(p)(\tau)$$

$$= \gamma_{i}(p)(\tau)$$

$$= \lim_{k \to \infty} \text{AffT}(\psi_{\infty k} \circ \phi_{ki})(p)(\tau)$$

$$= \lim_{k \to \infty} \tau(\psi_{\infty k} \circ \phi_{ki}(p))$$

$$= \tau(\psi_{\infty i}(p))$$

$$= r_{\mathcal{B}}(\tau)[\psi_{\infty i}(p)].$$

We conclude that $r_A \circ S(\gamma) \circ S(\alpha) = f$.

REFERENCES

- L. Asimow, A. J. Ellis, Convexity theory and its applications in functional analysis, Academic Press, 1980.
- M. Dadarlat, G. Nagy, A. Nemethi, C. Pasnicu, Reduction of topological stable rank in inductive limits of C*-algebras, Pacific J. Math. 153 (1992), 267-276.
- G. Elliott, A classification of certain simple C*-algebras, in H. Araki et al. (eds.), Quantum and Non-commutative Analysis, Kluwer, 1993, 373-385.
- 4. K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Amer. Math. Soc., 1986.
- 5. K. Thomsen, Inductive limits of interval algebras: the tracial state space, Amer. J. Math. (to appear).
- 6. K. Thomsen, On the range of the Elliott invariant, J. Funct. Anal., (to appear).

MATEMATISK INSTITUT NY MUNKEGADE 8000 AARHUS C DENMARK E-MAIL: JSV@MI.AAU.DK