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ISOMETRIES OF BANACH ALGEBRAS SATISFYING
THE VON NEUMANN INEQUALITY

JONATHAN ARAZY

Introduction.

A famous classical result of R. Kadison [K] says that every isometry of one
C*-algebra onto another is given by a Jordan isomorphism followed by a unitary
multiplication. This result is generalized in the recent works [AS], [MT1] and
[MT2] on isometries of certain non self-adjoint algebras of operators on Hilbert
space. In the context of these works it is even possible to describe explicitly the
Jordan isomorphisms. In this paper we generalize Kadison’s theorem even
further to the context of Banach algebras satisfying the von Neumann inequality.

In what follows Z denotes a complex, unital Banach algebra (i.e. Z has a unit
eand |le[| = 1) with an open unit ball D. The term “Banach algebra” will always
mean “complex, unital Banach algebra”. We say that the von Neumann inequality
hold in Z if

1/ @I = 1Sl : = max{|f(A)}; 2] = 1}

for every z e D and every polynomial f. It is well known that the von Neumann
inequality holds in B(H), the algebra of all bounded operators on the Hilbert
space H, see [N], [FSN, Chapter 1.8]. Therefore, it holds in every subalgebra of
a C*-algebra. The following generalization of Kadison’s theorem is our main
result.

THEOREM. Let Z be a Banach algebra satisfying the von Neumann inequality,
and let ¢ be a surjective isometry of Z. Then there exists a Jordan automorphism
Y of Z and a unitary element u of Z so that ¢(z) = uy(z) for all ze Z.

The notions of Jordan automorphisms and unitary elements in general Banach
algebras will be explained latter.

Our approach is similar to that of [AS] and uses the notion of the partial
Jordan triple product and its connection to the holomorphic structure. We show
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that under the validity of the von Neumann inequality, the symmetric part Z; of
Z (in the sense of holomorphy) is the space H + iH of decomposable elements
(where H is the space of the Hermitean elements of Z), and that it is a C*-algebra.
Moreover, the abstract partial Jordan triple product (defined in terms of the
holomorphy) coincides with the algebraic one: {x, y, z} = (xy*z + zy*x)/2for all
x,z€Z and y€ Z,. A key result (Proposition 2.2) is the fact that the validity of the
von Neumann inequality in Z is equivalent to the complete integrability of the
vector field h(z) = e — z% in D. We also use the well-known fact that isometries
preserve the partial Jordan triple product in general complex Banach spaces.
The paper is organized as follows. Section 1 below contains the background
material on Hermitean elements of Banach algebras and on the partial Jordan
triple product in Banach spaces and its connection to the holomorphic structure.
Section 2 contains the connection between the von Neumann inequality and the
vector field h(z) = e — z2, as well as the proof that Z, = H + iH. Section 3 con-
tains the result on isometries generalizing Kadison’s theorem mentioned above,
as well as its Lie algebraic counterpart which describe the bounded Hermitean
operators. Finally, in section 4 we collect some known facts and raise some
questions on Banach algebras satisfying the von Neumann inequality.

1. Background.

Hermitean elements of a Banach algebra.

We begin with a quick review of some basic facts concerning Hermitean
elements in Banach algebras which will be needed later. See [BD3], [BD1],
[BD2] and [Do] for more details.

Let Z be a Banach algebra with a dual space Z*. Let S:= {peZ*; p(e) =
lloll = 1} be the set of states. The numerical range of ze Z is V(z):= {¢(z); p € S}.
An element z € Z is Hermitean if V(z) < R. It is known that z is Hermitean if and
only if |lexp(itz)| = 1 for every te R. Let H denote the set of all Hermitean
elements in Z. H is a real-linear, closed subspace of Z containing e, with the
property that a,be H implies i(ab — ba)e H. The subspace H + iH of decompos-
able elements is also closed, and H niH = {0}. The involution on H + iH is
defined by (a + ib)* := a — ib,a,b € H. It is continuous, but need not be isomet-
ric. In general not much more can be said about H and H + iH; there are many
examples where H = Re (this hold for instance in the disk algebra and in H®),
and in general, H and H + iH are not algebras. A fundamental result concerning
H + iH is the Vidav-Palmer Theorem,see [BD1, Chap. 2, Th. 9, p. 65],[BD3] and
the references therein.

1.1 THEOREM. Let Z be a Banach algebra so that Z = H + iH, namely every
element in Z is decomposable. Then Z is a C*-algebra with respect to the involution
# and the given algebraic operations and norm.
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The partial Jordan triple product and the symmetric part of Banach space.

We survey here the notions of the partial Jordan triple product and the
symmetric part of a general complex Banach space. For more details see the
survey article [A] or the original papers [Vi] and [U1]. The books [L] and [U2]
are general references to Jordan triples and the associated bounded symmetric
domains.

Let Z be a complex Banach space with an open unit ball D. Aut(D) denotes the
real Banach Lie group of all biholomorphic automorphisms of D. Its Lie algebra,
aut(D), is a real Banach Lie algebra, and it is identified with the completely
integrable holomorphic vector fields on D. Namely, a holomorphic function
h:= D — Z belongs to aut(D) if and only if there exists a one-parameter sub-

group {@, },cr of Aut(D) so that _667 @(z) = h(e,(2)) for every ze D and te R. One

denotes ¢, = exp(th). The Lie brackets in aut(D) are given by [h,k](z) =
H(2)k(z) — K'(2)h(z), z € D. The symmetric part of Z is

Z,:= aut(D)(0) = {h(0); heaut(D)}.

Itis known that Zis closed complex linear subspace of Z whose open unit ball is
D,:= Aut(D)(0) = D n Z,, the symmetric part of D. Aut(D) admits a Cartan
decomposition aut(D) = k @ p, where

k = aut(D) n B(Z) = {heaut(D); h(0) = 0}
is the subspace of skew-Hermitean bounded operators on Z, and
p = {heaut(D); H(0) = 0}

is a subspace of even polynomials of degree <2. Precisely, p = {h,;a€ Z,}, where
h.(z):= a — q,(z), and ¢, is a continuous, homogeneous polynomial of degree 2.
g, extends to a continuous, symmetric bilinear form by polarization:
q4(z, W) = (qa(z + W) — qu(2) — q.(W))/2. The partial Jordan triple product is the
map {...}: Z x Z; x Z - Z, defined by {z,a,w}:= q,(z,w). Z is a JB*-triple if
Z, = Z, i.e. the Jordan triple product is defined everywhere. This is the case
precisely when D, = D, i.e. when Aut(D)acts transitively on D, and D is a bounded
symmetric domain. For example, every C*-algebra is a JB*-triple with respect to
the triple product {z,a, w} := (za*w + wa*z)/2.

Let so(z) : = — z be the symmetry at 0. The corresponding Cartan involution on
aut(D), O(h): = sohs,, is a Lie-automorphism and 9% = I. It is easy to check that
k = {heaut(D);%(h) = h} and p = {heaut(D);(h) = —h}. From these facts it
follows that [p, p] < k, [k, p] = p,and [k, k] < k. Explicitly,fora,be Z;and u ek,

[ha, By 1(2) = 2{a,b,z} — 2{b, a,z},[u, h,] = hyq).
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In particular, for any a € Z; the operator D(a,a):= {a,a,} is Hermitean. Notice
also that the previous formula implies that D(a, a)b = {a, a,b} € Z,. It follows that
Z, is closed under the triple product and it is therefore a JB*-triple. Basic facts in
JB*-triples yield that for every ae€ Z,, the restriction of D(a, a) to Z, has a positive
spectrum and the following identity (called the “C*-axiom”) holds:
I D(a, )|l Bz, = llall?.

The group of linear isometries of Z is identified naturally with

K := {peAut(D); (0) = 0} = Aut(D) n GL(2).

The Lie algebra of K is clearly k. The Isometries are automorphisms and the
skew-Hermitean operators are derivations of the partial Jordan triple product.
Precisely,

1.2. PROPOSITION. (i) Let Z,, Z, be complex Banach spaces with open unit
balls Dy, D, respectively, and let ¢ be an isometry of Z, onto Z,. Let
aut(D;) = k; ® pj, (j = 1,2), be the Cartan decompositions. Then ¢k ¢~ ' = k,,
op1¢ ' =p,, and o@h,9 ' =h,, for every ae(Z,,. In particular
(P((Zl)s) = (22)19 and

(p{Z,a,W}={(p(Z),(p(a),(p(W)}, ae(Zl)s’ Z’WEZI'

(ii) Let Z be a complex Banach space with an open unit ball D and let he k. Then
WZ,) < Z,, and for every ac Z; and z,we Z,

h{z,a,w} = {h(z),a,w} + {z,h(a), w} + {z,a, h(w)}.

PRrOOF. (i) The fact that p(aut(D,))¢ ! = aut(D,) is obvious. ¢k, ! =k,
follows from this and from ¢(0) = 0. Let ae(Z,),, and let h:= @h,@ " !. Then
heaut(D,), H'(0) = 0 and h(0) = ¢(a). Thus, p(a)e(Z,), and h = h,, € p,. This
completes the proof of the first three identities as well as the inclusion
o(Z,)s) < (Z,),. The reverse inclusion follows by using ¢ ~! instead of @; this
yields the fourth identity. Applying both sides of the third identity on the element
o(z), we get {z,a,z} = {@(2), (a), p(z)}. By polarization, ¢ preserves the partial
triple product.

(ii) Let ¢, = exp(th), te R. Then ¢, € K and by (i) ¢,(Z,)s) = (Z,),. Differenti-
ating with respect to t at 0, we get h((Z,),) S (Z,),. Letae(Z,),,and let z,we Z,.
Then by the last formula in (i) ¢,{z,a,w} = {@.(2), ¢,(a), p.(w)}. Differentiating
this at t = 0, we get the desired result.

Linear operators h on Z which satisfy the identity in (ii) are called derivations
of the partial Jordan triple product, or triple derivations for short. Notice that
Proposition 1.2 implies that for any aeZ; the operator iD(a,a) is a triple
derivation.
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The completely integrable holomorphic vector fields are characterized by
tangency to the unit sphere.

1.3. PROPOSITION. Let Z be a complex Banach space with an open unit ball D.
Let h: Z - Z be a holomorphic polynomial. Then the following conditions are
equivalent:

(@) hypeaut(D);
(i) h is tangent to the unit sphere 0D. Namely, if zeZ, feZ* are so that
Izl = Il = f(z) = 1 then Re(f(h(z))) = 0.

See [Ka] and [U2, Lemma 4.4] for a proof.

2. The symmetric part of Banach algebras which satisfy the von Neumann inequality.

Let Z be a Banach algebra with a unit e, an open unit ball D and a symmetric part
Z, = aut(D)(0). Let H denote the space of all Hermitean elements in Z.

2.1. ProposITION. (i) Z, < H +iH. (i) If aeZ,, thena® = {e,a,e}.

PrOOF. Let aeZ,, and let h,:= a — q,ep < aut(D) be the corresponding
vector field on D. Set b: = g,(e) = {e, a, e}. By Proposition 1.3 we have for every
state @ € S,0 = Re(p(h,(e)) = Re(p(a — b)). It follows that a — beiH. Since Z; is
C-linear, we get iaeZ;, and gq,(e) =ib. Thus by the same arguments,
ia — qi(e) = i(a + b)eiH. Set ay:=(a+ b)2 and a,:=(a— b)/2i. Then
a,a,€H and a = a, + ia,e H + iH. Also, b = a* = a; — ia,, and so the re-
striction of the involution of H + iH to Z is given by a* = {e,a,¢}.

2.2. PROPOSITION. (i) The integral curves of the vector field h(z) = h(z):=
e — z? on D are given by

0z) = exp(th)(z):= (r(t) + z)(e + r(t)2) ™", teR, r(t):= tanh(t),

(i1) h is completely integrable in D if and only if Z satisfies the von Neumann
inequality.

Proor. For any z e Z let J, be the maximal open interval containing 0 in which
the initial value problem: d¢,(z)/0t = h(p,(2)), t€J,; @o(z) = z; has a solution
¢.(z) € D. Let I, be the maximal open interval containing 0 of those t € R for which
(e + r(t)z) ! exists and g,: = (r(t) + z)(e + r(t)z) " * belongs to D. The meaning of
(i) is that J,=1I, and ¢z) = g,(2), teJ,. Indeed, since (9/0t)r(t) =
1/cosh? () = 1 — r(t)?, and (9/0r)(e + rz)"! = —(e + rz)”*z, we get by a direct
differentiation (6/0t)a,(z) = e — o,(z)>. This establishes (i). To prove (ii), we ob-
serve first that the completeness of h is equivalent to the fact that the Mobius
transformations
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U (2):=0+ze+r)t, —1<r<l, zeD,

map D into itself. Let D:= {4€C;|A| < 1}. Since D is circular and Aut(D) is
generated by the y,, — 1 < r < 1, and the rotations p,(z) : = €"z, we get that every
¥ € Aut(D) maps D into itself. The submultiplicativity of the norm of Z implies
that D is a multiplicative semigroup. Thus, the finite products of members of
Aut(D) (namely, the finite Blaschke products) map D into itself. By [F], the
convex combinations of finite Blaschke products are norm-dense in the closed
unit ball of the disk algebra A. It follows that for every fe A with | f||, < 1 and
ze D we have || f(z)|| < 1. This is equivalent to the validity of the von Neumann
inequality in Z. Conversely, if the von Neumann inequality holds in Z then y,
maps D into itself for all —1 < r < 1. Since y, = exp(th), r = tanh(t), we see that
h is completely integrable in D.

2.3. REMARK. Proposition 2.2 yields the von Neumann inequality in C*-alge-
bras. Indeed, it is well known that if Z is a C*-algebra, then for every ae D the
Potapov-Mobius transformation

D,(2):= (e — aa*)”"*(a + z)(e + a*z)" (e — a*a)'/?

belongs to Aut(D), see [IS]. Applying this with a =re, —1 < r < 1, we see that
Y, € Aut(D) becomes a member of Aut(D) in the natural way. By the proof of
Proposition 2.2, this implies the validity of the von Neumann inequality in Z. The
original proof of the von Neumann inequality (see [N] and [RSN, Section 135])
uses also similar analytic tools. Another proofis given in [FSN], and is based on
much heavier tools (unitary dilations of contractions and the spectral theorem
for unitary operators).

2.4. PROPOSITION. (i) If aeH + iH and be Z, then ab, ba€ Z,. In particular,
Zis an algebra, H + iH is amodule over Z,,and (H + iH)Z, = Z(H + iH) = Z,.
(i) H+iH = Zifand only if ec Z,.

PRrOOF. For aeZ consider the multiplication operators L,(z):= az and
R,(2):= za. Then

CXp(itLa) = Lexp(ita) and exp(itRa) = Rexp(ira), teR.

Since | L,| = ||R.|l = |z||, it follows that ae H <> L,€ H(B(Z)) < R, € H(B(Z)).
Here H(B(Z)) denotes the space of Hermitean elements of the Banach algebra
B(Z) of all bounded operators on Z. Let ae H and be Z,. Then, by Proposition
1.3, exp(itL,)(b) = exp(ita)- b, and exp(itR,)(b) = b-exp(ita) belong to Z, for all
t € R. Differentiating with respect to t at 0, we get iab, iba € Z,. Since Z,is C-linear,
this implies (i). Next, if H + iH = Z,then ee H < iH = Z,. Conversely, assume
thatee Z;and let ae H. By (i) with b = ¢, we get ae Z,. Thus H < Z,. Since Z; is
C-linear, this implies H + iH < Z,. Using Proposition 2.1 we get H + iH = Z,.
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2.5. REMARK. If ee Z,, and in particular — if the von Neumann inequality
holds in Z (Proposition 2.2), then Z; = H + iH is a Banach algebra (Proposition
2.3)in which every element is decomposable. By Theorem 1.1, Z; is a C*-algebra
with respect to the involution # and the given algebraic operations and norm.
We do not know whether e € Z; by itself implies the von Neumann inequality in Z.

The following theorem generalizes the result discussed in Remark 2.5. We
prefer to avoid Theorem 1.1 and to give an almost self contained proof, in order
to illustrate the power of the Jordan theoretic techniques.

2.6. THEOREM. Let Z be a Banach algebra with a unit e, satisfying the von
Neumann inequality. Then Z, = H + iH is a C*-algebra with respect to the given
multiplication, norm, and the involution (a, + ia,)* = a, — ia,, ay, a, € H. More-
over, the partial Jordan triple product {...}: Z x Z, x Z — Z constructed via the
holomorphy coincides with the algebraic partial triple product, namely:

{x,y,2} = (xy*z + zy*x)/2, x,z€Z, yeZ,.

Proor. By Proposition 2.4, Z, = H + iH is a closed subalgebra of Z with
a unit e and involution # (which at the moment is known only to be an
anti-linear homeomorphism of Z,). By Proposition 2.2 we have {z,e,z} = z* for
all ze Z. Polarizing, we get {z,e,w} = (zw + wz)/2,z,we Z. Let ae H, then as in
the proof of Proposition 2.3, exp(itL,) = Lexpiia), t€ R, belong to the group
K = Aut(D) n GL(Z) of linear isometries of Z. By Proposition 1.2 the members
of K are automorphisms of the partial triple product. Hence, for any ze Z and
teR,

exp(ita)z> = exp(itL,){z, e,z}
= {exp(itL,)(2), exp(itL,)(e), exp(itL,)(z)}
= {exp(ita)z, exp(ita), exp(ita)z}.
Differentiating with respect to t at 0, we get
az? = 2{az,e,z} — {z,a,z} = (a2)z + z(az) — {z,a,z} = az* + zaz — {z,a,z}.
Thus, {z,a,z} = zaz.Itfollows thatfora = a, + ia,e Z;witha,,a,e Handze Z,
{z,a,2} = {z,a,,2} — i{z,a5,2} = za,z — izayz = za”z.

Polarizing, we get {z,a,w} = (za*w + wa*z)/2 for every z,we Z and ae Z,.

Next, we show that (ab)* = b*a* for all a,be Z,. Since Z, = H + iH, it is
certainly enough to show that (ab)* = bafor a, be H. By the above arguments we
have for all te R

exp(ita)b = {exp(ita), exp(ita)b, exp(ita)}.
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Differentiating with respect to t at 0, we get iab = i(ab + ba) — i{e, ab,e}. How-
ever, by Proposition 2.1, {e,z,e} = z* for all ze Z,. Applying this with z = ab
(and using the fact that Z; is an algebra), we get (ab)* = ba as desired.

The C*-axiom ||a*a| = ||a||? in Z,, follows from the C*-axiom for JB*-triples,
see Section 1 above. Indeed, in our case D(a, a)z = (aa*z + za* a)/2, z € Z. Hence,

lall? = !ID(a,a)Ilﬁ(z,) < (la*all + laa*))/2 < lal lla* |,

and thus, ||a|| < ||a*|| for all ae Z,. Replacing a by a* we get ||a|| = ||a*||,ae Z,.
It follows that equality holds in the above inequality, and so
la*a| = |laa®|| = ||a||?, a€ Z,. This completes the proof.

2.7. REMARK. We have a direct argument yielding ||z*|| = ||z|| for every

ze Z,. Indeed, let a, € R be so that tanh(t) = Y =, a,t*"*!, teR,and letae Z,. It
is easy to check (from the initial value problem defining exp(th,)) that
exp(th,)(0) = tanh(ta):= Y =, a,t>"* *a(a*a)", teR. It follows from the anti
multiplicativity of # that (exp(th,)(0))* = exp(th,*) = tanh(ta®)e D,. Since
D, = Aut(D)(0) and K(0) = {0}, we get D, = exp(p)(0), where exp(p) is the sub-
group of Aut(D) generated by {exp(h,);ae Z,}. It follows that (D,)* = D,, and
this is equivalent to ||z*|| = ||z|| for all z€ Z,.

2.8. PROBLEM. Does ee Z; imply the von Neumann inequality in Z? In par-
ticular, does e€ Z, imply that h,(z) = e — z?, i.e. that {z,e,z} = z* for all ze Z?
Notice that, by the proof of Theorem 2.6, the last identity is equivalent to the
identity {z,a,z} = za*zfor all ze Z and ae Z,.

3. The isometries and the Hermitean operators.

3.1. THEOREM. Let Z, W be wunital Banach algebras which satisfy the
von-Neumann inequality, and let ¢: Z — W be a surjective isometry. Then,

(i) u:= ¢(e)is a unitary element of W,;

(il) @(2) = uy(2), ze Z, where s is an isometric Jordan isomorphism of Z onto W.
Namely,  is an isometry satisfying Y(e) = e and

Y(ab + ba) = Y (ap(b) + Y (bW (a), for a,be Z;
W(Z,) = W, and Y(2)* = Y(z*) for z€ Z,.

3.2. REMARKS. (i) Theorem 3.1 reduces the study of a geometrical problem
(the description of the isometries of Banach algebras satisfying the von Neumann
inequality) to that of an algebraic one (namely, the description of the Jordan
isomorphisms of these algebras). It is our generalization of Kadison’s theorem
discussed in the introduction.

(ii) The partial Jordan triple product is expressed in terms of the (binary)
Jordan product x o y:= (xy + yx)/2 and the involution # on Z:
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{5, y,2} =x0(y*oz) + zo(y* ox) — (xo2)oy*, x,z€Z, yeZ,

It follows that a linear map which preserves the Jordan product and the partial
involution preserves also the partial Jordan triple product.

(iii) We do not know whether the converse of Theorem 3.1 is true, namely
whether a Jordan isomorphism of Banach algebras satisfying the von Neumann
inequality must be an isometry. This is true in C*-algebras. More generally, an
automorphism of a JB*-triple must be an isometry.

We need the characterization of tripotents as partial isometries.

3.3. PROPOSITION. Let Z be as Theorem 3.1 and let ue Z,.

(i) u is a tripotent (namely, {u,u,u} = u) if and only if it is a partial isometry
(namely, u*u is an idempotent);

(ii) u is a unitary tripotent (namely, {u,u,z} = z for every ze Z) if and only if
u*u = e = uu®,i.e. uis a unitary element of the C*-algebra Z,.

Proor. Part(i)is well known (see, for instance, [H]), If uis a unitary element of
Z,, then for every ze Z, 2{u,u,z} = uu®z + zu*u = 2z. On the other hand, if
{u,u,z} = z for every ze Z, then e = {u,u,e} = (u*u + uu™®)/2 and u is a partial
isometry. Since e is an extreme point of the unit ball of Z; (this holds in any unital
Banach algebra, see [BD1, Chap. 1, Th. 5, p. 38]), we get u*u = uu® = e.

Proor oF THEOREM 3.1. By Proposition 1.2, ¢(Z,) = W, and ¢ preserves the
partial triple product. Using Theorem 2.6 we get

e(xy*z + zy*x) = e(x)0()* 9(2) + (2)0(»)* P(x)

for all x,zeZ and yeZ, Set u= ¢(e) and notice that for every zeZ,
o(2) = p({e,e,2}) = {p(e), p(e), p(2)} = {u,u, p(2)}. It follows from Proposition
3.3 that u is a unitary element of W,. Let y/(z): = u” ¢(z). Then ¥ is an isometry of
Z onto W and y/(e) = e. By proposition 1.2,y preserves the partial triple product.
Hence, for every ze Z,

Y(z*) = ¥({e.z,¢}) = (Y(0),¥(2),¥(e)} = {e.¥(2) e} = ¥(2)*.
Thus  is self adjoint. Finally, for every ze Z,

¥(2?) = ¥({z,e,2}) = (¥, Y.V} = ¥(2)*

Polarizing this identity we see that i preserves the Jordan product. This com-
pletes the proof since ¢(z) = uy(z).

The next result deals with Hermitean operators on Z and it is the Lie-algebraic
analog of Theorem 3.1. By Proposition 1.2 we know that every Hermitean
operator T: Z — Z satisfies T(Z,) < Z,. Moreover, iT is a derivation of the
partial triple product, namely the identity in Proposition 1.2 (ii) holds with
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h =iT An operator A: Z — Z is a derivation of the (binary) Jordan product
xoy:=(xy + yx)/2if A(xoy) = Axoy + xo Ay for all x, y € Z. It is obvious that
in this case A(e) = 0. An operator T: Z — Z is self-adjoint if T(H) = H. This is
equivalent to T(H + iH) < H + iH and (T(2))* = (T(z*) for every ze H + iH.
T is skew-adjoint if iT 1is self-adjoint, and this is equivalent to
T(H + iH) < H + iH and (T(2))* = — T(z*) for every ze Z,.

3.4. PROPOSITION. Let Z be a unital Banach algebra satisfying the von
Neumann inequality. Then every Hermitean operator T: Z — Z has a unique
decomposition T = A + L,, where a:= T(e)€ H and A is a skew-adjoint derivation
of the Jordan product.

PROOF. Set a:= T(e). Then ae Z, = H + iH and
a=T(e) = T{e,e,e} = 2{a,e,e} — {e,a,e} = 2a — a*.

Thusa = a*,andsoaeH.Set A:= T — L,. Then A is Hermitean and A(e) = 0.
Since Z, = H + iH, we get A(H + iH) < H + iH and for ze Z,,

Az*) = Ale,z,e} = 2{A(e), z,¢} — {e, Az,e} = —(A2)*.
Thus A is skew adjoint. Next, for any ze Z
A(Z%) = A{z,e,z} = 2{Az,e,z} — {z, A(e),z} = (Az)z + z(Az).

Polarizing, we get A(zow) = (4z)ow + zo(Aw) for every z,we Z. Thus A is also
a derivation of the Jordan product. The uniqueness of the decomposition
T = A + L, is obvious.

3.5. REMARKS. (i) Proposition 3.4 reduces a geometrical problem (the de-
scription of the Hermitean operators) to an algebraic one (the description of the
skew-adjoint derivations of the Jordan product).

(ii) Inthesituation described in Proposition 3.3, T admits also the decomposi-
tion T = B + R,, where a = T(e)e H and B is a skew-adjoint derivation of the
Jordan product. Of course, B=A4 + L, — R,.

(iii) Let T: Z — Z be of one of the forms T= A + L, or T = B + R,, where
ae H and A, B are skew-adjoint derivations of the (binary) Jordan product. Then
iT is a derivation of the partial Jordan triple product. This follows from Remark
3.2 (ii).

(iv) We do not know whether a bounded operator T: Z — Z for which iT is
a derivation of the partial Jordan triple product must be Hermitean. It is easy to
see that in this case exp(iAT) is an automorphism of the triple product for all
AeR. But we do not know whether exp(iAT) is in fact an isometry. See Remark
3.2 (iii).
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4. Banach algebras which satisfy the von Neumann inequality.

The results obtained above lead naturally to the problem of the description of the
class of Banach algebras satisfying the von Neumann inequality. This problem is
interesting from many point of views, but it is difficult and far from being solved.
We collect bellow some known facts relevant to this problem, and raise some
questions.

The first point we would like to make is that the von Neumann inequality is an
inequality in the category of Jordan Banach algebras. A Jordan algebra is a com-
mutative algebra with a product x o y (called a Jordan product), in which the
associative law is replaced by the weaker law (the Jordan algebra identity):
x%o(xoy) = xo(x?oy), where x?:= xox.

It is easy to see that for every element x the powers x" (which are defined
inductively via x" = xox""!) satisfy x"ox™ = x*o x' whenever n + m =k + L.
Thus the subalgebra generated by x is associative. A Jordan Banach algebra is
a Jordan algebra which is also a Banach space, so that || xo y|| < ||x| ||yl for all
x and y. We will assume that the field of scalars is C. Clearly, it is possible to
consider the von Neumann inequality in the category of Jordan Banach algebras,
and it is interesting to characterize those Jordan Banach algebras in which this
inequality holds. Notice that the von Neumann inequality has a local nature,
namely it is a statement on all the singly generated subalgebras of Z.

For any Banach algebra Z, let Z':= (Z, +,0, |-||> denote the associated
Jordan Banach algebra with the Jordan product xoy:= (xy + yx)/2 and the
same addition and norm. Notice that for every z € Z, the powers z" are the same in
Z and in Z’, thus the singly generated subalgebras are the same for Z and Z’.
Therefore we get,

4.1. CorROLLARY. The von Neumann inequality holds in Z if and only if it holds
inZ’.

We remark that not all Jordan Banch algebras hae the form Z’ for some
Banach algebra Z.

A JB*-glgebra is a unital, complex Jordan Banach algebra Z with an involu-
tion z~»z* (i.e. an anti-linear, multiplicative map of period 2), so that
{z,2*,z}|| = ||z||® for every ze Z, where the triple product is defined via the
binary product and the involution by

(X3 2= x0 (0 2) + 20 (y* o) — Y*o(x o)),

In this case, X := {xe€ Z; x* = x} is a real JB-algebra (i.e. a real Banach Jordan
algebra satisfying || x||? < ||x? + y?| forall xand y)and Z = X ® C. Conversely,
the complexification of every real, unital JB-algebra has a unique norm with
respect to which it is a JB*-algebra. An equivalent description is that
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aJB*-algebraisa JB*-triple having a unitary tripotent e, with the binary product
zow:= {z,e,w} and the involution z*:= {e, z,e}. Clearly, every C*-algebra is
a JB*-algebra.

4.2. PROPOSITION. The von Neumann inequality holds in any JB*-algebra Z.

Indeed, the vector field h(z):= e — {z,e,z} = e — z* is completely integrable
since Z is a JB*-triple. The rest follows from Proposition 2.2 and the fact that the
singly generated subalgebras of Z are associative.

It is obvious that if the von Neumann inequality holds in the Jordan Banach
algebra Z then it holds in any subalgebra. The same is true for quotient algebras,
but this require some explanation. A quotient map in the category of Banach
spaces is a linear operator T: X — Y which maps the open unit ball of X onto the
open unit bal of Y. A multiplicative quotient map in the category of Banach
algebras (or, Jordan Banach algebras) is a quotient map which preserves the
product (respectively, the Jordan product). Notice that a multiplicative quotient
map must preserve the unit element. Also, a multiplicative quotient map
Q: Z - W in the category of Banach algebras is also a multiplicative quotient
map Q: Z’ — W’ in the category of Jordan Banach algebras. The converse is
false.

4.3. PROPOSITION. Assume that the von Neumann inequality holds in the Jordan
Banach algebra Z and let Q be a multiplicative quotient map of Z onto a JB-algebra
W. Then the von Neumann inequality holds in W. The same is true in the category of
Banach algebras.

Proor. The first statement implies the second via Proposition 4.1. To prove
the first, let f be a polynomial and letwe W, |w| < 1.LetzeZ besothatQz = w
and | z|| < 1. Since Q(z") = (Q(2))" for all n = 0, we get Q(f(2)) = f(Q(z)). Thus,

IFWI = 1£@2)N = 12U = If@I = 1/ -

4.4, COROLLARY. The von Neumann inequality holds in every subalgebra and in
very quotient algebra of a JB*-algebra.

There is an extensive literature on the generalizations of von Neumann
inequality in the context of commutative Banach algebras. These generalizations
deal mainly with the multi-variable (isometric and isomorphic) analogs of the
von Neumann inequality. See, for instance, [Da], [MT], [DD] and the refer-
ences therein. Nevertheless, to our knowledge, there is no complete characteriz-
ation of the commutative Banach algebras which satisfy the von Neumann
inequality. However, there is a characterization, due to I. G. Craw (see [Da,
Lemma 3.1]), of the commutative Banach algebras satisfying a multi variable
generalized version of the von Neumann inequality.
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4.5. THEOREM. Let Z be a commutative Banach algebra. Then

“f(zlazly'”azn)" § "f"oo= Sup{'f(Cl?CZ"“an)I; CjeCs |Cll = 1}

for every finite sequence zy,z,,...,2,€Z with |z;|| < 1 and every polynomial
fC1,82,...,8,), ifand only if Z is isometrically isomorphic to a quotient of a uniform
algebra.

We would like to mention also the result of T. Ando, saying that if T;, T, are
commuting contractions on Hilbert space and f({,,{,) is a polynomial, then
1f(Ty, )| £ 11 fllw- N. Th. Varopoulos [Val], [Va2] showed that this result
cannot be extended to three or more commuting contractions.

Let & be the algebra of all polynomials in the non-commuting variables x, x,,

., Xn, .... For every Banach algebra Z consider the norm

"f".?Z:': Sup{"f(ala Azy...50p,.. ')”a ajEZ, "a_," é I’j = 19 2a . '}
on 2. Notice that | - || 2 is submultiplicative.

4.6. DerFINITION. ([Dil]). A class € of Banach algebras is called a variety if
there exists a submultiplicative norm || - || on £ so that € is the class of all Banach
algebras Z for which || sz < || f |l¢ for every f e, namely the inclusion map
(2P, |'lle> = <P, ||l #z) is contractive for all Ze .

4.7. THEOREM ([Dil]). A class € of Banach algebras is a variety if and only if it is
closed under taking closed subalgebras, quotient algebras, | -direct products and
isometric isomorphisms.

4.8. COROLLARY. The class ¥A" of all Banach algebras satisfying the von
Neumann inequality is a variety.

Indeed, it is easy to see that ¥.4" is closed under [ -direct products. Thus,
Corollary 4.8 follows from Proposition 4.3 and Theorem 4.7.

4.9. ProBLEM. Compute the norm | ||y on 2.

Itisplainthat || | := || fllgc < | flyv4 for every f € 2, but the two norms are
inequivalent. Notice that it f depends on one variable then the above inequality
becomes an equality.

The following characterization of subalgebras of B(H) is due to Bernard (see
[Be], [Di2]).

4.10. THEOREM. A Banach algebra Z is isometrically isomorphic to a subal-
gebra of B(H) for some Hilbert space H ifand only if || f |3z < || f |l 8, for every
f€P, where l, is the separable, infinite dimensional Hilbert space.

Thus, the Banach subalgebras of C*-algebras form a variety, which is clearly
contained in ¥4, and so || f|l#pq, = || f llys for every feP.
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Algebras of the form B(X), the bounded operators on a Banach space X, do not
satisfy the von Neumann inequality in general:

4.11. THEOREM. ([Fo0]). Let X be a complex Banach space. Then B(X) satisfies
the von Neumann inequality if and only if X is isometric to a Hilbert space.

Let D be the open unit ball of the Banach algebra Z. We denote by A(D, Z) the
Banach algebra of all bounded continuous functions on the closure of D which
are analytic in D, with the pointwise multiplication and norm | f|l 4p,z:=
sup{|| f(2)|l; ze D}. Let A be the disk algebra, namely A = A(D,C). For every
feAletJf e #(D, Z)(= the space of all holomorphic functions from D into Z) be
defined by the Cauchy integral

1
Jf2) = f(2) = %Jm:lf(C)(C —2)7dl.

In general, Jf need not be bounded on D.

4.12. PROPOSITION. The following conditions are equivalent:
(i) Z satisfies the von Neumann inequality;

(i) J maps A isometrically into A(D, Z).

(ii)) J maps A into A(D,Z), and J. A — A(D, Z) is a contraction.

PrOOF. By definition, (i) « (iii). Let R: A(D, Z) — A be the restriction map,
defined by (Rf)(Q)e:= f(le), (e D. Then |Rfll, < || fllawp,2 and RJf = f for
every f € A. It follows that for every fe A4, | fllo = IRIf |l < IJf | 4w, z)- Thus
(ii) «> (iii).

4.13. PrOPOSITION. (i) The map C: Z — A(D,Z) defined by C,(w) =z is an
isometric homomorphism;

(ii) The map Qo: A(D,Z) — Z defined by Qo f = f(0) is a multiplicative quotient
map.

(i) CQq is a projection of norm 1;

(iv) The von Neumann inequality holds in Z if and only if it holds in A(D, Z).

Proor. Clearly, (iv) follows from (i) and (ii) via Proposition 4.3. Parts (i), (ii)
and (iii) are easily checked.
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