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ON THE LOCATION OF ZEROS OF SOLUTIONS OF
f"+ A(z)f = 0 WHERE A(z) IS ENTIRE

SHENGIJIAN WU

Abstract.

We investigate the distribution of zero-sequence of solutions of f” + Af = 0, where A4 is polynomial
or transcendental entire, near some rays. Results are obtained concerning the rays near which the
exponent of convergence of zeros of the solutions attains its maximal value.

1. Introduction and main results.

Since 1982 there have been many papers on the oscillation theory of the solutions
of the differential equation

(1.1) f"+A@)f =0,

where A(z) is an entire function. In this paper we shall investigate the distribution

of zeros of solutions of (1.1). We first consider the case where A(z) in (1.1) is

apolynomial of degree n > 1. It follows from the Wiman-Valiron theory that any
2

" er [2, Th. 1]. The first

general reslt on the exponent of convergence of the zero-sequence of the solutions

is the following theorem which was due to Bank and Laine.

nontrivial solution of (1.1) is an entire function of order

THEOREM A [2, Th. 1). Let A(2) be a polynomial of degree n = 1. If f, and f, are
two linearly independent solutions of (1.1), then at least one of f\,f has the property
n+2

7

that the exponent of convergence of its zero-sequence is

By generalizing a result of Hellerstein, Shen and Williamson [10], Gundersen
[5, Th. 1] proved a stronger result that the conclusion of Theorem A still holds if
the zero-sequence is replaced by the nonreal one.

In order to state our results, we need give some definitions.
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Let g(z) be an entire function in the plane and let argz = R be a ray. We
denote, for each ¢ > 0, the exponent of convergence of zero-sequence of g(z) in the
angular region Q0 —¢,0+¢) ={z|0 —¢ < argz < 0 + ¢,|z| > 0} by 44.(9),
and by A4(g) = lim 4, .(g9). We also denote the order of growth of g(z) by o(g). We

e—~0

are interested in the distribution of those rays for which 44(g) = a(g). Our first
result that concerns the case where A in (1.1) is a polynomial is the following:

THEOREM 1. Let A(z) be a polynomial of degree n = 1 and let f, and f, be two
linearly independent solutions of (1.1). If for some real number 6,
—— loglog|E(re®)] n+2

(1.2) ,lin; logr 2’

where E = f,f,, then there exist 6, and 0, with 6, <0, < 0, such that

2n n+2
02 - 01 = nt2 and AQX(E) = AOZ(E) = 7

n+2

Since E is of order [2, Le., A], a routine application of the Phrag-

men-Lindelof principle implies that there certainly exists 8 such that (1.2) holds.
Thus we have the following:

COROLLARY 1. Let A(z) be a polynomial of degree n = 1, and let f, and f, be two
linearly independent solutions of (1.1). Then there exist tworaysargz = 0,0, with
2n n+2

0, -0, = ) such that max (4, (f1), 4e,(f2)) = max(4e,(f1), 26,(f2)) = 3
Since n?f 5 < nforn = 1, Corollary 1 implies Gundersen’s result (Theorem
1in [5]).

We next turn to the case where A in (1.1) is a transcendental entire function of
finite order. It is well known that any non-trivial solution of (1.1) is an entire
function of infinite order. Let f; and f, be two linearly independent solutions of
(1.1)and let E = f, f,. Then A(E) = + oo is equivalent to ¢(E) = + oo [2, Le. B],
where A(E) denotes the exponent of convergence of zero-sequence of E. Unlike
the case of polynomial, when A is transcendental, the distribution of the rays
argz = 0 for which A¢(E) = + oo largely depends on the growth of E itself along
the rays. If we denote for any a < f,

Qo p) = {z|la < argz < B, 2| > Of;
Q(a’ ﬂ’ r) = {Z I ZEQ(&, B)’ Izl < r};

and for an entire function g(z) in the plane,
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M(r, (o, B).g) = sup lg(re®),
as0=<p

we may state our next result in the following form.

THEOREM 2. Let A(z) be a transcendental entire function of finite order in the
plane and let f,, f, be two linearly independent solutions of (1.1). Set E = f, f,. Then
Ag(E) = + o0, if and only if

— 1 — E
oglog M(r,Q(0 — ¢,6 + ¢), )= tw

S
for any ¢ > 0.
Especially, if
—_ E(ré*
(1.4) i loglog | ECe) _

ro logr
then we have A¢(E) = + o0.

Although Theorem 2 provides no information concerning the distribution of
zeros of solutions of (1.1) in terms of the entire function A(z), it is possible to get
some further results in some cases. We next consider some applications of
Theorem 2. Our starting point is the following theorem due to Bank, Laine and
Langley.

THEOREM B [3, Th. 1]. Let A(z) be a transcendental entire function of finite
order p with the following property: there exists a set H < R of measure zero, such
that for each real number 6 € R\ H, either

1.5 @) r N|A(re®)| - oo as r - + oo, for each N > 0,
or
(16) (i) j rIA(F)® dr < + oo,
0
or

(i) there exist positive real numbers K and b, and a nonnegative real number
n (all possibly depending on ), such that (n + 2)/2 < p, and

1.7 |A(re') < Kr" forall r=b.
Then if f, and f, are linearly independent solutions of
"+ Af =0,
we have

max (A(f1), A(f2)) = + 0.
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By using Theorem 2, we can prove

THEOREM 3. Suppose that A(z) satisfies the conditions of Theorem B. If f| andf,
are linearly independent solutions of " + Af = 0 and Q(«, ) is an angular region

with f — o > —Z— such that there exists a ray arg z = 0 e(a, ) with

—— loglog|A(re®
(1.8) Tim glogldrel)l _
roo logr

b

then there exists at least one ray argz = 0, €(a, f) such that

max (4g,(f1), 4e,(f2)) = + 0.

From the Phragment-Lindelof principle, those 8’s such that (1.8) holds always
form a union of intervals. Thus we have the following:

COROLLARY 2. Under the assumption of Theorem B, if p = 6(A) > } and f, and
f> are two linearly independent solutions of f” + Af = 0, then there exist at least

two rays argz = 0y, 0, with 0 < 0, — 0, < % such that

max {2g,(f1), 46,(f2)} = max{y,(f1), 4,(f2)} = + 0

Especially, if p > 1, then at least one of f; and f, has the property that the
exponent of convergence of its nonreal zero-sequence is infinite.

Recently there have also been some results concerning (1.1) with
A=Y Qjexp(jP)(— o0 < g <m < + o), where Q;and P are polynomials (see
i=q
[1] and [9]). In this direction, we have the following result.

COROLLARY 3. Let J = 1, and let Py, ..., P; be nonconstant polynomials whose
degrees are dy, . ..,d; respectively, and suppose that for i  j,

deg(P,- - PJ) = max(d,-, dj).

Set

J

J
A(z) = Y Bj(z)e"®
=1

where, each j, Bj(z) is an entire function, not identically zero, of order strictly less
thand;. If f, and f, are linearly independent solutions of f” + (A + Q)f = 0, where

2
Q(z) is a polynomial whose degree m satisfies m+ < 0(A) = max(d;), then there
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exists at least one ray argz = 0 in every angular region Q(«, B) of opening larger

than such that

n
o(A)
max (4g(f1), 4¢(f2)) = + 0.
If J = 1 in Corollary 3, we can prove a stronger result. For a polynomial
Pzy=(x+iy)z"+...+ ag
with x, y real, we define, for each real 6,
O(P,0) = xcosnf — ysinnb.
Then we can state our result as follows.

THEOREM 4. Suppose that A(z) = B(z)e"® % 0, where B(z) is an entire function
of order strictly less than the degree of the polynomial P(2). If f; and f, are two
linearly independent solutions of f" + (A + Q)f = 0, where Q(z) is a polynomial

2
with degree m satisfies m < o(A), then for any 0 satisfying 6(P, 6) = 0 we have

max(4e( f1), Ae(f2)) = + 00.

2. Preliminaries.

We shall assume that the reader is familiar with the standard notation of
Nevenlinna theory (see [4] or [6]). Our proofs require the Nevanlinna character-
n

p—a

istic for an angle (see [4], [14]): f 0 < B —a < 2m and k = and ¢g(z) is

meromorphic on the angular domain Q(«, ), we denote
k (7/1 t , g | dt
Agp(r,g) = “J <—k - Tk) {10g+ lg(te™)| + log™ g(te"’)l}—;
T ), \t5 r t

B
0.0 = 2% [ log” e Nsink(0 — .

k
Cylrg) =2 Y ( L _ ll:'z’l )sin k(B, — w);

1<|byl<r Ibvlk
Duﬁ(r’g) = Aaﬁ(r’g) + Baﬁ(ra g)»
Saﬂ(r9g) = Aaﬂ(r9f) + Baﬂ(r,g) + Caﬂ(r’g)a

where |b,| = |b,|e* (v = 1,2,...,) are the poles of g(z) in Q(, f), counting multi-
plicities. If we only consider the distinct poles of g, we denote the corresponding
angular counting function by C-al,(r, 9)-
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For a positive function ¢(r), r €(0, o), the order of ¢(r) is defined by

Tm log o(r) )
oo lOgT

Especially the order of S,4(r, g) is denoted by a,4(g).

3. Lemmas required for the proof of Theorem 1.

LEMMA 1. Suppose that g(z) (s const) is meromorphic in the plane and that Q(a, )
is an angular domain, where 0 < 8 — o £ 2m. Then
(i) [4, Chap. 1] for any complex number a = oo

1
3.1 Sap (r, - a) = S,p(r, g) + &(r, a),

where &(r,a) = O(1) (r - o0);
(i) [4, P. 138] foranyr <R

g R} [Rlog* T(t,g) . r R
< —_ e D -
3.2) Aa,,(r,g>=K{( )L e dt + log R—r+10gr +1p,

r

and

g\ 4k (9
(3.3) By (r, g) < % m(r, g)’

where k =

and K is a positive constant not depending on r and R.
Lemma 2 [13, 7, P. 193]. Suppose that Q(a, B) and Q(o/, B’) are two angular

domains such that o < o/ < ' < B and that g(z) is analytic on Q(a, f). If
— loglog M(r, (', B), g)

(3.4) rlin; ogr = p(Q(«', §),9) > -

)

then we have for every a with at most one exception

""‘l Q sl ) =
63 Tim EHECLDIZ9 2 i, ),

where n(Q(a, B,7), g = a) denotes the roots of the equation g(z) = a, counting
multiplicities, in the sector Q(a, B, 7).

LemMA 3 [11, Chap. 74]. Let A(z) = a,2" + ... + ao be a polynomial with

a, = |a,| € % 0(0 < a, < 2n). Define 0, = %g—zlﬂfor k=0,1,...,n+1,and
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Sixe > 0.1If f is a solution to f" + Af = 0, only finitely many of the zeros of f lie
n+1

outside | ) Q(0, — &,0, + ¢). If for some k, f has infinitely many zeros in
k=0

Q0 — &,0, + ¢), then

(36 n(@0— 5,0 +en, £ = 0) = (1 +o(D)/lad T / S

4. Proof of Theorem 1.

Let f; and f, be two linearly independent solutions of f” + Af = 0, where A4 is
a polynomial of degree n = 1. Suppose that
—— loglog|E(re’™) n+2

(1) ,lirz logr 2’

where 0o e Rand E = f f,. It follows from the Phragmen-Lindel6f principle that
there exists an interval [0, 6,] containing 6, such that for all 0 e [0, 6, ] we have

— 1 i6 2
.2) = oglog|E(re*)| _n+ .
rooo logr 2
By using Lemma 3, we need only to prove that there exist two rays argz = 0,
n+2 2n
do, -6, <
anc %2 'S h42
this is not true, then there must exist an angular domain (6, §,) satisfying the
following properties:
2n
n+2’
(b) there exists a ray argz = 65 €(6,, 6,) such that (4.2) holds for 63;
2
(©) Ag(E) <2 er for all 0 [6,,0,].
From (c), the definition of 4¢(E) and the fact that finitely many zeros of f only
lie outside of the critical sectors described in Lemma 3, we deduce that
—— - E=0 2
3) o logn(2(0, + ¢,0, — &,71), ) < + ,
logr 2

r—o

0, with 6,€(6,, 0,) such that g (E) = ,,(E) = If

(@) 0, — 0, >

for every ¢ > 0.
In order to obtain a contradiction, we choose a fixed g, > 0 such that
21

6, — —
2 01 680>n+2

and 65 €(0, + 3go,0, — 3¢o). From this choice of ¢, we

have
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_ log lOg M(r, Q(@l + 380, 02 - 380), E)

4.4 I
(“4) ,1.12 logr
+ + i03)
> Tim log™ log™ |E(re**?|
rveo logr
n+2 n

> .
2 02 - 61 - 480
By using Lemma 2, we have for all ae C with at most one exception

Tm logn(Q(6, + 2¢0,0, — 2¢0,7), E=0a) n+2

4.
(4.5) logr 2

Taking a fixed a € C such that (4.5) holds, we deduce from (4.5) that there exists
a sequence (r,) of real numbers with r, - + co(n — o0) such that for every ¢ > 0
we have

n+2

n(g(el + 280’ 02 - 280’ rn),E = a) g Fy2

—&

for all sufficiently large n.
Suppose that a, = |a,|€**(v = 1,2,...) are the roots of E = a, counting multi-
plicities, in (0, + &o,0, — &o). To compute 6y, ., ¢, -, (E), we first observe that
T

m the inequalities

0y + 2¢9 < a, < 6, — 2¢, implies for k =

keg < k(a, — 0y — &) < 1 — ke,
hence
4.6) sin k(a, — 0, — &o) = sin(key).
Moreover, we write a sum below as a Stieltjes-integral:

1 o\ o 1 la, "
Z( B (W") =X la z(2rn>2"

la, |

(a1 [
= f T ——_—(Zr,,)z" L t* dn(t),

where a short-hand notation n(t) = n(Q(0; + 2¢0,0, — 2¢0,t), E = a) will be
used. Application of Lemma 1 (i), the formula (4.6) and the partial integration of
the above Stieltjes-integrals now results in
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1
(47) Sel+so.02—£o(2rm E) = SO, +20,02 — &9 2rn’E—_a— + 0(1)

1
2 C91+eo,02—50<2rm E— a) + 0(1)

1 et ) .
=2 — sink(a, — 0, —&o) + O(1
e (Ia.,l" @r,) K = 01 —20) +0(1)

2 y Lo el ke ) + 0(1)
1<|ay|<rn Iavlk (zrn)Zk 0

01 +2e0<a,<02—2g

= 2sin(keg) {kjrn tr:(?k dt + _n(’:“_,,)
1

I

nk n k " -1
_ ((rzzn()'2 k) t G f 1 £+ n(t)dt} +0(1)

1\ sink
(1 - ﬁ> S‘“if") n(r,) + O(1)

v

n

n+2
r.2

n

IV

—k—2¢
Therefore we have

—— 108 8¢, 14,0, E) St 2

li > —k — 2e.
,g: logr =2 ¢
. . n+2
As ¢ can be arbitrary small, g, 4, 9,-.,(E) is at least T k> 0.

On the other hand, in [2, P. 354], Bank and Laine proved that

2 2 E’ 2 E” o

where ¢ # 0 is the Wronskian of f; and f.
By using Lemma 1 (ii) in which we set R = 2r and the fact that E is of finite
order, we deduce that

E’
DO, +0,0,—¢g (ra —E_> = 0(1)’

E// El E/I
D0,+£o,02—ao (n‘i) =< D01+ao,02—£o (r’f> + D0.+ao,92—so <r’—E_/—> + 0(1)

=0(1)
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and

SO, +20,02— &0 (ra A) = 0(1)

Thus we have

- 1
(49) S0‘+50,92_80(r, E) = 0<C01+50v92‘30 (r,g) + 0(1)).

n+2

(4.7) and (4.9) show that the order of C—,,,“o,oz_so (r, %) is at least

k>o0.

Therefore, by Lemma 3, there must be a critical ray argz=
0,e(0, + 9,0, — &) with infinitely many zeros around that ray. Hence, by
Lemma 3 again, we know that the order of n(Q(f, + &,0, — ¢,1), E =0) is
n+2

. This contradicts (4.3), proving theorem 1.

5. Discussion of Theorem 1.

REMARK 1. Theorem 1 is sharp. In fact, consider the equation

(5.1 f" —zf=0.

According to a result of Hille [11, chap. 7.4], there exist three pairwise indepen-

dent solutions fi(z) (k = 1,2,3) to (5.1) such that for z¢9<“—+32—'ﬁ

“‘8,

n + 2kn

3 + s) and |z| sufficiently large

2 = (1 + o()(—2)~*exp(Gef(— 1)+ tizH(1 + o(1))
n+2k+ D w42k +2n

Itis seen that f;(z) > Oin Q( - 8) as |z| tends

e
3 ’ 3

infinity and A(f,) =3 Thus, as Hille observed, Ao(fy) =3 only when

0=fi32k—n. Therefore  Ag(fifi+1) =3 only for 0=fi32ﬁf_ and

7+ 2k + Dx

—s

REMARK 2. Let 6, be as defined in Lemma 3 and let f; and f, be two linearly
independent solutions of (1.1). It follows from Lemma 3 that we have in fact
n+2

2

proved that there exists an integer k such that Ao (f1 /2) = 4o, , ,(f1/2) =
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It is also easily seen from the proof of Theorem 1 that if 44, (f1 f3) = ! ; 2 for
n+ 2
some 6, €R, then we can find 6,eR such that 1o (f;f;) = and the
magnitude of (8, 6,) or @0, 0,) is —"
g o 1,02 2,01) 18 —
P(z) . . . .
ReMARK 3. When A(z) = % is rational with n = di(A4) = degree P — de-

gree Q = 1in(1.1), using our methods with obvious modifications we can prove
that the conclusion of Theorem 1 remains true provided that E = f] f, is tran-
scendental [8, Th. 1].

6. Lemmas required for the proofs of Theorem 2—4.

To prove Theorem 2 and Theorem 3, we need some estimates, restricted in an
angle, for the logarithmic derivative of an entire function. The first lemma in this
section is due to A. Mokhon’ko.

LeMMA 4 [12]. Let z=rexp(ip), ro+1<r and a< @ <p, where
0 < B < a < 2n. If g(z) is meromorphic in the angular region Q(a, f) and 0,4(g) is
finite, then there exist K, > 0 and M, > 0 depending only on g and (a, f), and not
depending on z, such that

(2 . _
6.1) % < K,™Mi(sin k(g — a)) 2
forallzé¢ Dy, wherek = ; T 5 and D is an R-set, that is, a countable union of discs

whose radii have finite sum.

"

As an application we may estimate the growth of % where g is regular in an
angle.

LEMMA 5. Letz = rexp(ip),ro + 1 <randa < ¢ < f,where0 <  — o < 2m.
If g(z) is regular in Q(o, )N (2| = ro) and o,4(g) is finite, then for every

—_— a . .
€€ (0, B 3 > except for a set of ¢ with linear measure zero, there exist K > 0 and

M > 0 depending only on g, € and Q(a, f), and not depending on z such that

9'(2)

(6.2) 0

< KrM(sink(p — o) sink, (¢ — o — €))72
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n

for all zeQ(a+ ¢ B —¢) outside an R-set D, where k= 5 s and
T

ky=—"7.

O Bp—a—2e

PROOF. Since 6,4(g)is finite, it follows from Lemma 2 that for every ¢ > Othere
exists K,(0 < K, < + oo) such that

I loglog M(r, Q( + &, — ¢),9) <K

6.3) lim Togr

£

From (6.3) we have

loglg(re®* )| < e+,

log lg(re'®~9)| < rKe+!
and
log lg(re”)l < ™

for all large r and all Oe[a + ¢, § — £]. Noting that g(z) is regular in Q(a, §), we
deduce from the definition of the Nevanlinna angular characteristic that
Oq+e,p-c(g) is finite.

Let D, be the R-set in Lemma 4. Then the set of ¢ for which the rays
argz = o + € or § — ¢ meet D, infinitely often (i.e., meet infinitely many discs in
p—a

2
argz = a + ¢and f — e meet D, at most finitely many times. For such ¢, we have

(64) Sa+2,ﬂ—e(r9g’) = Da+e,ﬂ—£(r’ g,)

D) has measure zero. Suppose that ¢ is a number such that 0 < ¢ < and

é Da+a,B—e<r,%> + Da+e,ﬂ'—c(rag) + 0(1)

= Da+£’ﬂ_e<r,“gg"> + Sa,,.e,ﬂ_e(r,g) + O(l).

If |z| = r does not meet D,, by using Lemma 4 and from the definition of

’

D,,,H‘,,_s(r,-gg—), we have

6.5) Da”,,,_e(r,—gg;) = 0(1).

Combining (6.4) and (6.5), we deduce that
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(66) Sa+e.ﬂ—s(r, g,) é Sa+e,;‘i—a(r’ g) + 0(1)

for all r except for a set of r with finite linear measure. This implies that
Oq+e p-:(g) is finite.

Applying Lemm 4 to g'(z) and Qo + &8 —¢), if z=re'®, ro + 1 <r and
o+ & < @ < f — ¢ then there exists K, > 0 and M, > 0 depending only on g'(z)
and Q(a + ¢ f — &) such that

g9'(2)
g'(2)
for all z¢ D,, where D, is an R-set. Thus if z¢ D, U D,, we have
lg”(Z)I 9'@)||g@)|
resrelE
< K(K,rMitMa(sin k(o — a)sink, (¢ — a — €)™ 2

S KMy (sink, (¢ — a — )2

Using K, M, D instead of K,K,, M, + M,, D, U D,, we obtain (6.2).

7. Proof of Theorem 2.
Suppose that f(z) is a nontrivial solution to f” + Af = 0. Then

f
7.1 -4
(7.1) 7 A

We apply Wiman-Valiron theory to (7.1). Hence there exists a set D < [1, o0) of
finite logarithmic measure such that if r¢ D and z is a point on |z| = r at which

Lf(2) = M(r, /), then

S@)_
/@

where #(z) — 0 (as |z| — 00) and v(r) denotes the central index of f. Thus we have
[4, pp. 360-361]

(7.3) u(r) < 4r(M(2r, A))*

(1.2)

= (M) 1+ n = 1401 5 M)

for all sufficiently large r. (7.3) implies that the order of log T'(r, f) is at most o(A).
Let f; and f, be two linearly independent solutions of f” + Af =0 and
E = f, f,. The above argument implies that a(log T(r, E)) < a(A), since

T(r, E') = m(r, E')

< 2m(r, f1) + 2m(r, f2) + m( f‘) + m( f2> + 0(1),
S " fa
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we deduce that o(log T(r, E')) < 6(A). Thus if ¢ is sufficiently small, we deduce
from Lemma 1 (ii) in which we set R = 2r that

E 2 log* T(t, E
AHM(,,_> _ 0( J _og__(__>)
E 1 1T
r o) +1
_ o( J’ dt)
1 4 +5"E

= 0(1).

Since [6, P. 36]
E .
m\r—4|= O(log™ T(2r, E) + logr)

— O(ra(A) + l),

we deduce from (3.3) that

BO—8,0+5 <ra%> =0 (r_%m (ra %))

- O(ra(A)+ 1 —7"5)
= 0(1).
Therefore we have

El
(74) D0—3,9+e<rs_E‘> = 0(1)

Similarily we have

El/ El EII
(75) D0—8,0+e(ra”’E'_> é D0—5,0+e<r,f) + Do—e,0+e<r37;,~) + 0(1)

=0(1)
and
(7.6) Dy, 0+:(r; A) = O(1),
for any feR.

From the Nevanlinna theory it follows from (7.4), (7.5), (7.6) and (4.8) that

(.7 So-sorirB) = 0( oo (1 ) + 000
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for all sufficiently small ¢ > 0.
Now suppose that 6, € R such that for any sufficiently small ¢ > 0
€ £
log log M(r, 9(00 -3 0, + 3) ,E)
Tim
rew logr

=+w’

by using Lemma 2, we can find a complex number a such that

m lOg "(9(00 - %‘8, 00 + %8, r)’E = a) -

+ 00
reo logr

As we did in the proof of (4.7), we deduce that o4, _, g, +.(r, E) is infinite. It follows
from (7.7) that 44 (E) = + co.
On the other hand, if there exists g, > 0 such that
— loglog M(r, 2(0y — &5, 60 + &), E)

lim <K< 400,
oo logr

as we did in the proof of Lemma 5, we know that a4 _, 4, +,(E) must be finite. As
in the proof of (4.7) we deduce that the order of n(Q(0y — &, 60 + &o,7), E = 0)is
finite. Since 44, (E) < Ay, .,(E)for any g(0 < ¢ < &), therefore 49 (E) < + 00. The
proof of Theorem 2 is completed.

8. Proof of Theorem 3.

Observe first that if p < 1, then f — a > 2. Since A(E) = + oo [15], we see easily
from the definition of A4(E) that there exists at least one ray arg z = 6, such that
Ag,(E) = + oo. In the following we assume that p > 1

. T
Suppose that Q(a, f) is an arbitrary angular domain with § — a > ; and that

there exists a ray arg z = 6, such that o < 6, < § and (1.8) holds. It follows from
the Phragmen-Lindelof principle that there exists an interval [6,, 8,] containing
0, such that (1.8) holds for all #e[6,,6,]. So we may suppose [04,0,] < (o, B).
Let f; and f, be two linearly independent solutions of f” + Af = 0. If there is no
ray arg z = 0 with a < 8 < f such that A4(E) = + oo, where E = f, f,, we shall
derive a contradiction.

We choose a fixed ¢, > Osuch that f — o — 4¢q > —Z—and 4gy < 6, — 0,. From

Theorem 2 we have

— loglog M(r, Q(a + &o, f — €0), E) <+

oy TRl
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Consequently we deduce from (8.1) that g, 1 5 -, (E) is finite. Now we claim that
there exists 0, 0, with a + 34 < 0] < a + 2¢¢and B — 2¢, < 6, < f — 3¢o such

that oy ,(E) is at least p — 7 z R
2 Y1

In fact, by using Lemma 4 and 5, we may choose a fixed ¢ € (g, 3¢,) such that

E .
8.2 —E—(re"”) < KrM(sink(p — a — &) 2
E" M ; -2
(8.3) I3 (re'?)| < Kr'(sink, (¢ — a — g)sink(p — a — &)
for all z = re’?eQ(x + ¢, B — ¢) outside an R-set D, where k = —L—,
B —a—2¢
k, = Fi—g—_—zg, and K and M are constants depending only on

Qo + &9, B — &), E and &, and not depending on r and ¢. Since the set of 0 for
which the ray arg z = 6 meets D infinitely often (i.e., meets infinitely many discs of
D) has measure zero, we can find two rays argz =460, with
o+ 360 <0, <o+ 2 and f — 2&5 < 0, < B — 3¢, such that they only meet
finitely many discs in D. So if r is sufficiently large,

(8.4) {z=re’|0 =0, 0r0,} "D = ¢.

E\? E" c?
“A=<'E‘) *Z(E)‘F’

where ¢ = W(f,, f2) + 0, we have

From

1
(8.5) Segi65(r, E) = Sg16; (hf) +0(1)

2
2 $S0.0; <7','E‘7> + 0(1)

2
2 3Dg0, (",—é?) + 0(1)

E” E

2 (Doloz(r A) — 2D0102< ) D9191( )) + 0(1)
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El E//
= 384.65(r, A) — Dyq; <r, F) — 4Dy, (r, F) + 0(1).
From the choice of 8] and #),, as we did in the proof of (4.6), we deduce that
k )
sin k(g — a — &) = sin—:—o for all pe[0,0,]. If pe[0),0,] and z = re lie
outside D, we deduce from (8.2) and (8.3) that

E . . kﬁo -2
i io) < 0 M
(8.6) 3 (re’?) < K[sm( 7 )] r
and
E" . . k80 . k &g -2
ip)\l < £ M
(8.7) '—E (re'?)| < K[sm( 2 )sm( 1 )] r.

From (8.4), (8.6), (8.7) and definition of Dy, 4,, we have

E' E" " logt logr
(8.8) Dy, <r,f> + Dyq, (r,?> = 0<J1 t1+—1‘—,dt + r”‘"—> = 0(1)

016> 016>

for all r except for a set of r with finite linear measure. It follows from (8.5) and
(8.8) that

(8.9) Se.03(2r, E) = §S4,4,(r, A),

for all larger r.

We next show that the order of Sy;4,(r, A) is at least p — . In fact, since

T
0, — 0,
there exists a ray argz = 0e[a + 3¢y, B — 3g0] < (8}, 0) such that (1.8) holds,
we have

—— loglog M(r, Q(a + 3o, B — 3&p), A) n

8.10 li =p> .
(.10 ,1'2 logr p B — o —de

By using Lemma 2, we deduce that there exists a complex number a such that the
order of n{Q(x + 2¢, B — 2¢o,7), A = a} is p. As in the proof of (4.7), we deduce

that g4,¢,(A) is at least p — . From (8.9) we know that g4,¢;(E) is at least

_r
0, — 6,

p . The claim is proved.

_ T
0, — 0,

From the claim we must have
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8.11) Tim J08log M(, 20,05, F)

oo logr

=M

otherwise by direct calculation we deduce that a46,(r, E) is less than

T
P, 0,

On the other hand, since A(z) satisfies the condition (i), (ii) and (iii) of the
Theorem B and 0,4, 5-.,(E) is finite, by using Lemma 4 and 5 and in the
similarity to the proof of Theorem 1 in [3], we deduce that for every
Oelo + 3¢9, B — 3€0] except for a set of O with linear measure zero there exists

r(0) > 0 such that
log* |E(re®®)] < 0(r* %) r > r(f),e = &) > 0.

It is from (8.1) that the Phragmen-Lindel6f principle is applicable in
Q(a + &9, B — &). Therefore we have

= loglog M(r, (0, + 3¢0,0, — 3¢), E) <,
rro logr

—¢
for some & > 0. This contradicts (8.11). Theorem 3 is completely proved.

9. Proof of Corollary 3.

It was shownin [3, Le. 5] that A(z) satisfies the assumption of Theorem 3 and that
forsomej, A(re’) = Bj(re®)e®**(1 + o(1)) asr — oo with z = re® outside a fixed

R-set. Thus every angular domain Q(e, ) with f — o > %where p = a(A) = de-

gree P;, must contain a ray argz = 6 €(a, f) such that (1.8) holds. The corollary
follows.

10. Proof of Theorem 4.
Suppose that degree P = n and that §(6y, P) = 0 for 6,€ R. Then 6(6, P) < O for
all 95(00 — %,00) or (00,90 + %) We assume 6(0,P)<0 for

05(00 — %,Oo> (the case 6(6,P) <0 for 06(00, 0o + %) can be similarly

treated). When z = ree Q (90, 0, + l;—) and lies outside an R-set D, we have [ 3,

Le. 3]
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(10.1) |4(2)| Z exp(35(P, O)r").
Thus for any ¢ > 0, there exists 96(00 — —:— + —;—, 0y + 8) such that

i0 i@
= loglog(4(re) + Q(re) _
o logr

It follows from Theorem 3 that /lgl(E) = + o0 for some 91€<90 ——:— + %,

0o + 3), where E = f, f>.
Since the order of B(z) is strictly less than n, there exists ¢ < n such that

M(r,B) = max |B(re’®)| < exp(r°).

056s52n

IfOe(@o —%+—§—,00 —e),

|A(re’®) + Q(re'®)| < M(r, B)exp(o(P, O)r") + r™
< M(r,B)exp(—Kr") +r"
Zexp(—Kr)+r"

where K > 0 is a constant depending only on &.
It follows from [3, Lemma 2] that there exists b > 0 such that every solution
fof f" + (A4 + Q)f = 0 satisfies

log* | f(re) < Krzt!

forallfe [00 _z + —;—, 0o — s] and for all r > b, where K is a constant depend-
n

ing only on &.
Thus we have

log* |E(re)) < 2Kr2*' <77,
T & N
for all ¢ [00 ——+ 5 0o — s:l . This implies that
n

loglogM(r,Q(Bo _r + —8—,00 — 8>,E)
—_— n 2 &
lim -

oo logr 2

IA
B
l
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It follows from Theorem 2 that thereis norayargz = f¢ (00 — % + %, 0o — s)

such that A4(E) = +00. So we must have Ag,_, g,+.(E) = + oo for any & > 0.
Therefore 44 (E) = + 0o. The proof of Theorem 4 is completed.
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