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MEASURES ON LOCALLY COMPACT GROUPS WHOSE
FOURIER-STIELTJES TRANSFORMS VANISH AT
INFINITY AND GROUP C*-ALGEBRAS

EBERHARD KANIUTH

Introduction.

Let G be a locally compact group and M(G) the convolution algebra of finite
regular Borel measures on G. In this paper we shall be concerned with two
subalgebras of M(G). One of these is R(G), the set of all ue M(G) whose
Fourier-Stieltjes transforms 7 — n() vanish at infinity on the unitary dual space
G of G. Measures in R(G) are sometimes referred to as Rajchman measures. The
second one is M,(G), the subset of M(G) consisting of all measures that are limits
of L'-functions in the group C*-norm on M(G). My(G) can also be defined by
My(G) = M(G) n C*(G). Subalgebras of M(G), in particular M,(G), have long
been a matter of interest [3, 5, 8, 9, 16, 20, 21].

Clearly, My(G) < R(G), and equality holds (equivalently, R(G) = C*(G))if G is
either abelian or compact. On the other hand it has been shown in [3] that for
G the ax + b-group, R(G) is not contained in C*(G). Our main problem is the
extent to which the inclusion R(G) & C*(G) remains true for arbitrary locally
compact groups. It turns out to hold for so-called SIN-groups (Theorem 2.6),
groups with small invariant neighbourhoods of the identity, a very natural class
of groups containing all abelian, all compact and all discrete groups. Most likely,
R(G) < C*(G) fails to hold for any non SIN-group G. In its full generality,
however, the problem seems intractable so far. This is, for instance, due to that we
know of only a few inheritance properties of the condition R(G) & C*(G) (com-
pare Section 2).

In Section 3 we prove for various classes of locally compact groups G, such as
simply connected nilpotent Lie groups with one-dimensional center (Theorem
3.3), extensions of compact groups by vector groups (Theorem 3.1) and
semi-direct products G = R < N with N abelian (Theorem 3.4), that for many
neG, n(R(G)) is not contained in n(C*(G)). The proofs strongly depend on
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a discontinuity result for translations of certain measures under induced repre-
sentations (Theorem 1.2).

1. Discontinuity of Translation.

Let G be a locally compact group with left Haar measure and M(G) the convol-
ution algebra of finite regular Borel measures on G. M(G) can be identified with
the dual of Cy(G), the space of continuous functions on G that vanish at infinity,
with the supremum norm. For ue M(G), | || will denote the total variation norm
of u. For each x € G, the left translation operator L, acts on functions on G by
L.f(y) = f(x~'y)and on M(G) by L u(¢) = u(L,-19), ¢ € Co(G). We remind the
reader that ue M(G) is absolutely continuous, that is, pe L'(G), if and only if
x — L, u is continuous from G into (M(G), ||-||) [8, Corollary 6; 21].

If 7 is a unitary representation of G on the Hilbert space #(r), then the same
letter 7 stands for the corresponding s-representation of C*(G), the enveloping
C*-algebra of L!(G), and of M(G). The resulting maximal C*-norm is denoted
(Il Thatis, for ue M(G), n(n) = fn(x) du(x) and

G

1l = sup{ln(w)||: 7 a unitary representation of G}.

M,(G) is defined to be the closure of L'(G) in M(G) with respect to ||| .. As
observed in [3, Theorem 1] and [9, Proposition 3], |||, can be replaced by the
left regular representation norm. Since the representations of M(G), whose
restrictions to L!(G) are non-degenerate, are in one-to-one correspondence with
the non-degenerate representations of L}(G), M (G) embeds canonically into the
multiplier algebra M(C*(G)) of C*(G) and will therefore always be regarded as
a subalgebra of M(C*(G)). My(G) can then equivalently be defined by
My(G) = M(G) n C*G). It has been shown in [8, Theorem 10] that ue M(G)
belongs to My (G) if and only if x — L u is continuous from G into (M(G), || |1,)-

Although My(G) is not our main concern, we mention for completeness that
LYG) is strictly contained in My(G) unless G is discrete [5, Theorem 5.8].
Moreover, My(G) = M,(G), the continuous measures [9, Theorem 1], and this
inclusion is strict at least for connected Lie groups [3, Theorem 3]. On the other
hand, if G is a compact connected simple Lie group, then every continuous
central measure is in My(G) [20].

Although M,(G) is not our main concern, we mention for completeness that
L!(G) is strictly contained in My(G) unless G is discrete [5, Theorem 5.8].
Moreover, My(G) = M(G), the continuous measures [9, Theorem 1], and this
inclusion is strict at least for connected Lie groups [3, Theorem 3]. On the other
hand, if G is a compact connected simple Lie group, then every continuous
central measure is in My(G) [20].
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For our purposes it will be appropriate to consider, for an arbitrary represen-
tation 7 of G, continuity of the mapping x — n(L,u) from G into £(#(n)), the
algebra of bounded operators in #(n). The following lemma is nothing but
a slight generalization of [8, Theorem 10]. The proof, though being similar, is
included for the readers convenience.

LeMMA 1.1. Let © be a representation of the locally compact group G. For
we M(G) the following conditions are equivalent:

(i) m(u) € n(C*(G)).

(i) The mapping x — n(L.p) from G into L(H#(n)) is continuous.

Proor. The proof of (i) = (ii) is straightforward taking into account that
(C*G)) = (LYG)), |n(L,v)l = |n(v)| for veM(G) and yeG, and that
y = n(L,f), G » ZL(#(n)) is continuous for every f e L'(G).

To show (ii) = (i), let ¢ > 0 be given. There exists an open neighbourhood U of
e in G such that ||n(L,u) — n(p)| < ¢ for all xe U. If f e L}(G) is chosen so that
f20,f(y) =0foryeG\Uand | f(y)dy = 1, then | n(f * ) — n(w)|| < &.Indeed,

G

for any coordinate function

o(y) = n&, ny, neH(n), €] = lInll =1,

associated to m, we have

Kn(f «u — & m| = Ufcp(xy)f (x)dxdu(y) — J o) du(y)’
G G G

= Uf (x) f[(p(x) — @(y)]du(y) dx
G G

dx

= J f(x) J(p(y) dL.u(y) — Jw(y) du(y)
G

U G

S sup [|n(Lep — p)l S e

xeU

Let H be a closed subgroup of G. For feL'(H), the measure u,eM(G) is
defined by

pe(o) = J(P(h)f (R dh, 9 € Co(G).

H

If o is a unitary representation of H, we let ind§ o denote the representation of
G induced by o, explicitly realized in the form due to Blattner [2]. A readable
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account of the theory of induced representations can be found in [12, Chapter
X1].

THEOREM 1.2. Let G be a locally compact group, N a closed normal subgroup of
G and o a unitary representation of N. Let f e L'(N) be such that o(f) % 0, and
suppose that N is non-open in G. Then the mapping

x = ind§ o(L,p,), G > L(H#(ind$ o))
fails to be continuous at e. In particular, ind§ o(u,) ¢ind§ 6(C*(G)).

PrOOF. We first introduce some more notation. Let n = ind§ o, and for
@€ C,(G), the space of continuous functions with compact support on G, and
ve H#(o) define &(¢, v): G —» H# (o) by

e(p,v)(y) = f(p(yn)a(n)vdn.
N

&(p, v) is continuous, and &(¢, v) € #(n) [2]. Moreover, for S € G, x5 will denote
the characteristic function of S.
We claim that f can be assumed to have compact support. For, notice first

that, given ¢ > 0 and any compact subset C of N satisfying | |f(n)dn < ¢, we
N\C
have

ILxpp(@) — Lapipy (@) = ! f S(n)o(xn)dn — j f(m)@(xn)dn
N c

= ol Jlf(n)ldn Zelolle

N\C

for all xe G and ¢ € C.(G), so that

”n(Lx”f) - n(Lxﬂsz)“ § "Lxl“f - Lx“fxc ” é €.

Therefore, for all xe G,

ILatty) — )] 2 I(Lettyy) — g )l — 2.

It follows that x — m(L.pu,) is discontinuous at e once we have seen that
x = n(L.p flc) fails to be continuous at e for all sufficiently large compact subsets
C of the support of f. On the other hand, o( fxc) # 0 for all such C.

Thus suppose that f has compact support. Then u,* @ eC.(G) for every
¢ € C(G), since ¢ is uniformly continuous. Hence e(i * ¢, v) is continuous for all
@€ C,G) and ve 5#(g). Now
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(1.1) Ly pis)e(@, 0)(y) = j J fmyen™'x™ ym)a(m)v dm dn

NN

= f iy x @™ ym)a(m)v dm = ey + ¢, 0)(x ')

N

for all x, y e G. In particular, denoting by ¢|N the restriction of ¢ to N,

n(us)e(, v)(e) = e(uy * @,v)(e) = o f * | N)v.

C.(G)| N contains an approximate identity for L'(N). In fact, for every neighbour-
hood V of e in G choose a symmetric function /, € C.f (G) such that y/,(e) > 0 and
Yy|G\V =0, and set @y = |[Yy|N|; ky¥y. Then gx(@y|N)—g for each
ge LY(N). Therefore, since o(f) % 0, we find ¢ e C(G) and ve #(c) such that
a(f+*@|N)v £ 0. Set

c=3llo(f x@IN)oll = 3 lle(us * @, v) ().

Since g(i, * ¢, v)is continuous and y — ||&(u; * @, v)(y)|| is constant on cosets of N,
there exists a relatively compact open neighbourhood V of e in G such that

(1.2) le(us * @, )W) 2 ¢
for all ye VN. Let

(1.3) d = sup |le(e, v)(Y)|| = sup [l&(e, V)(V)| < oo.

yeV yeVN

Now, N being non-open in G, there is a net in ¥\ N converging to e. Therefore the
theorem will be proved as soon as, for every xe V\N, we have constructed
a e #(n) (depending on x) satisfying

1€l =d and |[#(Leps)E — mlpg)lll 2 c

To that end, fix xe V\N and choose an open neighbourhood W of e in G such
that

x IWuWwWcecV and x 'WNnWN =§.

Let Haar measure on G/N be chosen so that Weil’s formula holds. Denote by
y — y the quotient homomorphism and by |[M| the Haar measure of a Borel set
M in G = G/N. We define & e #(n) by

&) = IWI™ P rwn(0)e(@, 0)(0)-
Using formula (1.1), we obtain for ye WN
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(14) n(Loup)EQ) = W)~ ffon(n“lx_’)f(nkP(n_‘X“lym)a(m)v dmdn = 0,
NN

since x 'WN nWN =@ and, by the normality of N, n"'x 'yex !'yN <
x YWN for all ne N. Similarly, again using that N is normal, we get for ye WN

(1.5) w(up)E() = W72 f SO xwn(n™ y)e(p, v)(n~"y)dn

N

=W~ jf(n)a(fp, o)(n " y)dn = |W|™ ey % @, 0)().
N

A combination of (1.2), (1.4) and (1.5) yields

(1.6) I17(Lptr)E() ~ mlp)EO Z W] ™12

for all ye WN. Next recall from [2] that if 5 € 5#(r) has compact support modulo
N and ¢ € C}(G) satisfies j Y(zn)dn = 1 for all z in the support of , then
N

Inll? = J!//(Z) In(@)I|* dz.

G

Now choose ¥ € C}(G) such that j Y(zn)dn = 1 forall ze VN. Then by (1.3) and
N

the definition of &,

Ien? = 1w J Y0 lelp, )()II* dy
WN

yeWN

<|W™! sup |le(e, v)(y)I? Jt//(y) dy
WN

=d?|W|! Jf://(yn)dndy =d>
W N

Finally, it is easily verified that, for all y¢ WN U x " 'WN < VN,

T(Lypis)E(y) = 0 = n(uf)E(y),

so that  can also be used to calculate the norm of n(L,u,)¢ — m(u,)E. Using (1.6)
we obtain
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Im(Lens)é — nlup)ll* 2 j V) 1L ) — mlp)EG)I2 dy
WN

> [W|~c? J v(y)dy = 2.
WN

This completes the proof of the theorem.

In Section 3 the preceding theorem will be frequently used to conclude that for
some measure u,, f € L'(N), and some induced representation , 7(u ) does not
belong to n(C*(G)). With a mild abuse of notation Theorem 1.2 can be rephrased
as follows.

COROLLARY 1.3. Let G and N be as in Theorem 1.2. Then
LYN)n C*G) = {0}.

PRrOOF. Let0 # f e L'(N)and take for o the left regular representation Ay of N.
Then Ay(f) # 0 and by the theorem, x — A6(L, ;) fails to be continuous. Hence
so does

x = Lopyp, G— (M(G), [ 114)-

Theorem 1.2 can also be viewed as a generalization of the well-known fact that
the reduced group C*-algebra A5(L'(G)) does not have a unit unless G is discrete.
This follows immediately by taking N = {e} and 0 = 1. We do not know whether
Theorem 1.2 remains true if we drop the assumption that N be normal in G. This
would be interesting from the point of view of dealing with locally compact
groups whose irreducible representations are induced from non-normal sub-
groups, such as semi-simple Lie groups and motion groups.

2. SIN-Groups and Property R(G) = C*(G).

In this section we study the fundamental question of when the measure algebras
R(G) and My(G) = M(G) n C*(G) coincide for a locally compact group G. We
remind the reader that R(G) is the subalgebra of M(G) consisting of all those
measures whose Fourier-Stieltjes transforms vanish at infinity. More precisely,
e M(G) belongs to R(G) if and only if the function n — ||z(u)|| on the dual space
G vanishes at infinity; that is, given & > 0, there exists a compact subset C of
G such that ||n(u)| < ¢ for all me G\C. Here, as usual, G denotes the set of
equivalence classes of irreducible unitary representations of G endowed with the
natural topology. Of course, in the non-abelian case, there is a slight inaccuracy
in defining the Fourier-Stieltjes transform by
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i) = n(u) = Jn(x) dpu(x)
G

on G, rather than on the set of all irreducible representations, without selecting
one representation from each equivalence class.

Next recall that the analogue of the classical Riemann-Lebesgue lemma holds
for general locally compact groups (C*-algebras, as a matter of fact): For every
feC*G)and § > 0, the set {me G: ||n(f)|| = &} is a compact subset of G (see [7,
Proposition 3.3.7] or [12, Chapter VII]). Thus

M,(G) = M(G) n C*G) < R(G)

for any locally compact group G, and R(G)= My(G) is equivalent to
R(G) = CX(G). If G is abelian, then C*(G) = C,(G) and hence R(G) = C*(G). This
also holds for compact groups K. Indeed, if we choose a representative p, from
each ne K and denote by %,(K) the algebra of all operator fields 7 — T, e
Z(#(p,)) on K that vanish at infinity, with the supremum norm, then the
canonical embedding from C*(K) into %,(K) is known to be an isomorphism
onto. This shows R(K) & C*(K). On the other hand, for G the ax + b-group, in
[3] there has been constructed a measure in R(G)\C*(G). It was this example
which partially motivated our interest in the problem. We begin by combining
the abelian and compact cases.

LemMa 2.1. If G is a direct product of a compact group and an abelian group,
then R(G) < C*(G).

Proor. Let G=A x K where A is abelian and K is compact. Then
G = A x K, and it is well known that

C¥(G) = C*(A) ® C*(K) = Co(A) ® 6o(K) = Co(4, G,(K)).

where Cy(X, B), for any locally compact Hausdorff space X and C*-algebra B,
denotes the C*-algebra of all continuous mappings from X into B vanishing at
infinity. At this point we remind the reader that since C*(A) iscommutative, there
is a unique C*-norm on the algebraic tensor product of C*(4) and C*(K).

Let peR(G), and for ae 4 and ne K put

T,(m) = i, m) = j a(@)px(k) du(a, k)€ L(H ().
G

Given ¢ > 0, there exist a compact subset C of A and a finite subset F of K such
that ||fi(e, 7)|| < ¢ for all (o, m)¢ C x F. This shows T, %,(K) and that a — T,
vanishes at infinity on A. It remains to prove that « — T, is continuous at ag € A.



MEASURES ON LOCALLY COMPACT GROUPS ... 123
Since p is regular, there is a compact subset M of G with |u| (G\M) < ¢. Denoting
by ¢ the projection of G onto A4, let
U = {0e A: [u(a) — ap(a)l < & forall aeq(M)}.

Then, for each a e U,

IT: — Tg,ll = sup

ne

J[fx(a) — ao(@)]n(k) du(a, k)”

= 2{|ul(G\M) + |ul (M) Sug() lo(a) — oo(a)l < &2 + |ul).
aeq
Our next goal is to show that the property R(G) < C*(G)is inherited by certain
quotients and by open subgroups. We should remark at this point that if N is
a closed normal subgroup of G, then G//7V will always be regarded as a closed
subset of G in the obvious manner. Also, for any open subgroup H of G, C*(H) is
just the closure of L'(H) < LY(G) in C*(G).

LEMMA 2.2. Let K be a compact normal subgroup of G, and suppose that
R(G) € C*(G). Then R(G/K) = C*G/K).

ProoF. Let Ty: C,(G) —» C(G/K) denote the canonical surjective homomor-
phism defined by Tx(¢)(xK) = [ ¢(xk) dk, where dk is normalized Haar measure
K

on K. Ty is continuous with respect to C*-norms and extends to a homomor-
phism of C*(G) onto C*(G/K). Now, let ue M(G/K) and cgrlsider ve M(G) given
by v(¢) = w(Txp), @ € C(G). Then n(v) = n(y) for e G/K and n(v) =0 for

-

ne G\G/K. Indeed, for & n e #(n),

)y = J ( f (m(k)E, mlx ™) dk) du(xK)
G/K K

and, by decomposing = | K into irreducible representations of K, the above claim
follows from the orthogonality relations for elements in K [12, Chapter IX,
Theorem 4.2]. In particular, if u e R(G/K), then ve R(G) = C*(G) so that

x = Lyv, G~ (M(G), I 1l4)

is continuous. Easy calculations show that L, v(¢) = L,xu(Tx¢) for all xe G and
@€ C,(G), and this formula in turn implies that n(L,v) = n(L.xp) for every
representation 7 of G/K. It follows that

xK — Lgp, G/IK = (M(G/K), [I14)

is continuous. This proves pe C*(G/K).
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As we will see later (Corollary 3.2) it is not true in general that, conversely,
R(G/K) € C*(G/K) implies R(G) < C*(G), for a compact normal subgroup K of
G. Although the next lemma will only be needed in the case of group C*-algebras,
we present it for arbitrary C*-algebras. However, we introduce some more
notation before to facilitate further discussion.

For any unitary representation n of the locally compact group G, let ker
n denote the kernel of = viewed as a s-representation of C*(G). If S and T are two
sets of representations of G, then § is weakly contained in T(S<T) if
(eeskero 2 (.crker r,and S and T are weakly equivalent (S ~ T)if S < T and
T < S. Also recall that the support of a representation = is the closed subset

suppn = {peG: p <}

of G, and notice that = ~ supp 7. The analogous notions exist for s-representa-
tions of general C*-algebras A and their dual spaces A (for all this, compare [7,
Chap. 3], [11] and [12])).

LEMMA 2.3. Let A be a C*-algebra and B a C*-subalgebra of A. If Cis a compact
subset of B, then

C = {neA:supp(n|B)n C + 0}
is contained in some compact subset of A.

Proor. For be B, the norm function t — ||7(b)| is lower semicontinuous on
B[7, Proposition 3.3.2]. Therefore, for any ¢ € C, there exist b,e B* and 5, > 0
such that ||z(b,)| > J, for all T in some neighbourhood of ¢. Since C is compact,
wefind by,...,b,e B* and d,,...,d,, > Osuch thatforeach te C, ||z(b;)|| > J;for
at least one j, 1 <j < m. Setting

b= Y bjeB* and &=min(Sy,...,d,)
j=1

it follows that ||z(b)| > ¢ for every 7€ C. Now, for ne C,
In®)| = || B®)l = supp{llz(b)|: t€supp(n|B)} >4,

since C N supp(n|B) % 0. On the other hand, {n e 4: ||n(b)|| = &} is compact by
[7, Proposition 3.3.7].

LEMMA 2.4. For any open subgroup H of G, R(G) < C*(G) implies R(H) =
C*(H).

ProoF. Let ue R(H) < M(G) be given. We claim that ue R(G). If ¢ > 0, then
for some compact subset C of H, |o(p)|| < ¢ for all o€ H\C. We apply the
preceding lemma to A = C*(G) and B = C*(H). Thus C, as defined above, is
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contained in some compact subset K of G. Now, if meG\K, then
C nsupp(rn|H) = @ and hence

In(wl = supp {llo@)l: o esupp(n|H)} < e.
Since R(G) € C*(G), the mapping
x = Ly, G- (M(G), [I-1l4)
is continuous. As ue M(H) < C*(G), we obtain that
h— Lyp, H—> (M(H), |I-||,.)
is continuous, and this implies ue C*(H).

We are now going to establish the equality R(G) = My(G), that is, R(G) <
C*(G), for the most natural class of locally compact groups which on the one
hand contains all compact, all abelian and all discrete groups, on the other hand
still preserves some of the pleasant features of these three subclasses. This is the
class of SIN-groups. Recall that a locally compact group G is called an
SIN-group (group with small invariant neighbourhoods) if every neighbourhood
of ein G contains a neighbourhood V of e such that x !Vx = Vforall xe G. The
announced result will be an immediate consequence of Lemma 2.1, the following
lemma and some structure theory and representation theory of SIN-groups.

Before proceeding we need a little more notation. If N is a normal subgroup of
G, then G acts on N by inner automorphisms and hence on N by (x, 1) — 7%, where
©™(n) = t(x~ 'nx), ne N. G(t) will denote the orbit of t under this action.

LEMMA 2.5, Let N be an open normal subgroup of the locally compact group
G and suppose that the following conditions are satisfied:

(i) For each teN, G(7) is a minimal closed G-invariant subset of N.

(ii) For every compact subset C of N, G(C) = U,Ec G(1) is relatively compact in
N.

Then R(N) < C*(N) implies R(G) < C*(G).

PROOF. In what follows, for a subset M of G and a function i on M,/ and y~
will stand for the extension of y to G given by J(x) = 0for all xe G\M. Moreover,
we fix a representative system A for the cosets of N in G with ee A. Let pe M(G),
and for ae A define y, € M(G) by pa(9) = u(@]aN)~, ¢ € C(G). Since p is regular,
for every & > 0 there exists a finite subset F of 4 such that [u — Y || < e To

aeF

prove the lemma it therefore suffices to show that if u e R(G), then u, e C*(G) for
all a.

To that end notice first that pe R(G) and ve C*(G) implies L,ue R(G) and
L.ve C*(G), respectively, for all xe G. On the other hand, L,(L,-:¢|N)~ =
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(¢|aN)~ for any function ¢ on G, and hence u, = L,[(L,-14),]. Thus it remains
to verify that u e R(G) implies u, € C*(G).

Next, to ue M(G) we associate u'e M(N) defined by p'(¢) = u(®), for all
@€ C,(N). Then, for any representation = of G, n(u,) = jn(n) du(n) = | N().

N
Hence in view of the assumption R(N) & C*(N), it is enough to prove that

1e R(G) entails ' € R(N).
For that, let o be any representation of N and ¢ e #(0) and consider the
positive definite function @(n) = (o(n)¢, ¢ >, ne N. Then

(1 — pe)* * pe(@e) = J J Pe(xy)d(p — pe)*(x) dpe(y) = 0,
GG

and similarly, u¥ x (4, — p)(@¢) = 0. Hence

¥ # (Pe) = pF w uo(Be) + (1 — pe)*® % (1 — p)(Be) 2 1™ » (@)

Note that @, is a positive definite function associated to the induced representa-
tion ind§ o. It follows that

lo@)II* = sup{u™* » (@) € H (o), €] = 1}
< sup {p* * w(@e): e H(0), €]l = 1} < lindF a(w)]|*.
Now, if ue R(G)and ¢ > Qis given, then there exists a compact subset K of G such
that |n(u)| < eforall me G\K.By [15, Lemma 1.3] there exists a compact subset
C of N such that C N supp(n|N) # 0 for all e K (In [15] it is neither required
that N be open nor that it be normal. However, we leave it to the reader to check
that in the situation at hand, the proof can be simplified). By assumption (ii) the

set G(C) < N is compact. We claim that |lo(u)|| < & for every o € N\G(C). For
that, by the above estimate, it is sufficient to verify that

K nsupp(ind§ o) = 0.
Suppose there exists 7 e K N supp(ind§ ). Then
n|N <ind$o|N ~ G(o)

and hence supp(n|N) < G(g). On the other hand, supp(n|N) n C + . For any
7€ C N supp(n| N) we conclude G(r) = G(C) n G(o). Since o ¢ G(C) this contra-
dicts property (i).

THEOREM 2.6. For any SIN-group G, R(G) is contained in C*(G).

ProoF. By [14, Theorem 2.13] G contains an open normal subgroup N of the
form N = V x K, where V is a vector group and K a compact group and, in
addition, the group I(N,G) of inner automorphisms a,: N = N, n— x~!nx,
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xe€G, has compact closure in Aut (N), the topological group of topological
automorphisms of N. In the terminology of [19], N e[FIA];y g, Since N is
a HausdorfT space, every compact subset of N is contained in a G-invariant
compact closed subset. Moreover, each orbit closure G(7), 1€ N, is a minimal
closed G-invariant subset of N [19, Proposition 5.9]. Thus conditions (i) and (ii)
in Lemma 2.5 are fulfilled, and the theorem follows since R(N) = C*(N) by
Lemma 2.1.

REMARK 2.7. It seems reasonable to conjecture that for, say, Lie groups G the
condition R(G) € C*(G)forces G to be an SIN-group. In fact, such a conjecture is
supported by the results presented in Section 3. Likely Lemma 2.4 above could
help to reduce to the connected component of G. However, concerning our
problem, nothing is known so far for connected semi-simple Lie groups. Also, in
the statement of Lemma 2.2 it would be necessary to replace the compact normal
subgroup K by an arbitrary closed normal subgroup.

3. Some Special Classes of Locally Compact Groups.

This final section is devoted to proving, for some classes of solvable groups and
for extensions of compact groups by vector groups, that for many 7 € G, n(R(G)) is
not contained in 7(C*(G)), provided that G fails to be an SIN-group. The proofs
exploit fairly extensive knowledge of the representation theory and structure of
the groups involved.

THEOREM 3.1. Suppose G contains a compact normal subgroup K such that G/K
is a vector group, and let e G be infinite dimensional. Then, given any neighbour-
hood U of t in G, there exists p € M(G) such that n(u) ¢ n(C*(G)) and p(11) = 0 for all
peG\U.

Proor. Choose y e K occurring as a subrepresentation in n| K. y is G-invari-
ant since K is discrete and G/K is connected. We have to employ Mackey’s
unitary representation theory of group extensions. By [18, Theorems 8.2 and 8.3]
there are a multiplier w on V = G/K, an irreducible @-representation o in J#(y)
extending y and an irreducible w-representation y of ¥V so thatn = y ® 6. We do
not distinguish in notation between w (resp. y) on G/K and the multiplier (resp.
multiplier representation)on G obtained by lifting w (resp. y) to G, and concerning
multiplier representations we refer the reader to [1] and [18].

The classification of the irreducible multiplier representations of the vector
group V is well-known and is a consequence of the Stone-von Neumann theorem
(see [1, p. 314] or [18, Section 9]). There is a vector subgroup W of V such that,
after replacing w by a similar multiplier if necessary, | W x W = 1,and y is the
w-representation of ¥ which is w-induced from the trivial character 1y of W,
y = —ind), 1. Let N = {xe G: xK € W}, then



128 EBERHARD KANIUTH

T=0®7y=0® o —ind§ 1y = ind§ (c|N).

Since dim n = oo and dim(¢|N) = dim y < 00, G/N is a non-trivial vector group.
Moreover, let

G,={peG:p|K~y and N,={teN:7|K~y}.
Since K is compact, G, and 1\71 are open in G and N, respectively, and
={n®B:BeG//7(} and Nl={a|N®a:aeN//7<}.

In addition, the mapping t — ind§ 7 is a homeomorphism between N, and G,.
Next we choose an open neighbourhood V of ¢| N in N such that V < Nl and
ind§teU forall te V.

Now, groups with relatively compact commutator subgroups are of poly-
nomial growth and hence their L!-algebras are «-regular [4, Satz 2]. That is, the
canonical mapping between the primitive ideal spaces of their C*- and L'
-algebras is a homeomorphism. Therefore there exists feL!(N) such that
o|N(f) + 0 and ©(f) = 0 for all te N\V. Since 7 = ind$(c|N), Theorem 1.2
yields n(u ) ¢ n(C*(G)). Finally, we also have p(u,) = Oforevery pe G\U. To that
end, let p = ind$ © with reNl\V. Then 7(f) = 0, and this implies

plus) = (PIN)S) =

Indeed, p|N is weakly equxva]ent to the G-orbit of z, but 7, being of the form
d|N ® o for some o eN/K is G-invariant. If pe G\GI, then p|N < N\N and the
same argument as before gives ind§ (p|N)(1;) = 0. As p < ind§ p| N, this shows

plus) =

COROLLARY 3.2. Let G contain a compact normal subgroup K such that G/K is
a vector group. If R(G) = C*(G), then G = K x V where V is a vector group.

Proor. The previous theorem implies that every irreducible representation of
G is finite dimensional. In particular, G can be continuously embedded into
a compact group. In addition, G is almost connected. In fact, G/GyK is totally
disconnected and at the same time a quotient of the vector group G/K, so that
G = GyK. The Freudenthal-Weil theorem for almost connected groups [7,
(16.5.3)] shows G = C < V where V is a vector group and C is compact. It is
obvious that C coincides with the normal subgroup K, and hence G = K x V.

THEOREM 3.3. Let G be a connected and szmply connected nilpotent Lie group
with one-dimensional center Z. Then, givenn € G\G/Z and any neighbourhood U of
nin G, there exists € M(G) such that n(y) ¢ 1(C*(G)) and p(1) = 0 for all pe G\U.

Proor. Let g denote the Lie algebra of G. Since the center 3 of g is
one-dimensional, by Kirillov’s lemma [6, Lemma 1.1.12] there exist A, B, Ceg
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and an ideal n of codimension one with the following properties: 3 = RC,
[A4,B] = C, g = R4 + 1, and n equals the centralizer of Bin g. Let N = expn
and M = exp(RB + RC), a central subgroup of N.

Theneveryne G\G7\Z is induced from some irreducible representation of N [6,
Proposition 2.3.4], necessarily from one i in N \N//\Z Conversely, it follows from
Mackey’s theory that for every te N\N, /Z the induced representation ind§ 7 is
irreducible. Indeed, for such 7, the stability group G, of t equals M because
otherwise G, = G and hence (ind$ t) |M ~ 1| M, amultiple of a character, which is
impossible since 7 is non-trivial on Z and M is not contained in the center of G.

Fix aeN//\Z so that ind§ ¢ = n. Inducing being continuous, we find an open
neighbourhood V of ¢in N \N//\Z such thatind$ € U for all 7 € V. Since nilpotent
groups are of polynomial growth their L'-algebras are x-regular [4, Satz 2]. Thus
there exists f € L'(N) such that a(f) % 0 and 7(f) = 0 for all te N\ V.

Theorem 1.2 now yields n(u,)¢ n(C*(G)). Finally, consider peG\U. Then
pps) = pIN(f)=0 prov1ded that supp(pIN) AV = @. This latter condition is
certainly fulfilled if p € G/Z Letpe G\(G/Z v U)and pick te N with ind§t =
Then G(t) N V = @, since for 7' € G(r) N V,ind§ 7' € U and ind§ ¢’ = ind§ t = p. It
follows that

supp(p|N) = supp(indy t| N) = G(v) = N\V.

The next theorem considerably extends [3, Theorem 4], where R(G) 3+ My(G)
has been shown for G the ax + b-group.

THEOREM 3.4. Suppose that G is a semi-direct product G = R < N, where N is
abelian and second countable. Then for each infinite dimensional me G, there exists
we M(G) such that n(u) & n(C*(G)) and fi vanishes outside some compact subset of G.

ProOOF. We denote the action of R on N by (t,4) = A. For AeN, set
S,={teR:¥=1},G,=S;p< Nand N; = {xe N: A(x) = 1}.

The unitary dual of such a semi-direct product of abelian groups is not in
general accessible by the Mackey machinery. However, as a consequence of [13],
the irreducible representations can be obtained up to weak equivalence as
outlined below.

Recall first that if A is a separable C*-algebra, then the kernel of a homogene-
ous representation of A is a prime ideal [7, (5.7.6)], and an ideal in A is prime if
and only if it is primitive [7, (3.9.1)]. Notice also that for a second countable
group H, C*(H) is separable.

If ie N and a € S, then a(t, x) = a(t)A(x),t€S;, x € N, defines a character of G,
and p = de o is irreducible by Mackey’s theory. Conversely, glven peG, by
Theorem 4.3 of [13] and by the preceding paragraph there exist Ae N and 6 € G,
such that ¢|N ~ 4 and p ~ ind§ 0.We will need that p|N is then weakly
equivalent to R(4), the R-orbit of A. This follows from [10, Theorem 4.5] in case
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S, = {0}, and from [11, Theorem 5.3] in the general case since N is abelian and
G, and N are clearly regularly related in the sense of Mackey [17, p. 127]. N, is
normal in G, and G,/N; = §, < N/N, is abelian. Hence

a(t,x) = a(t)A(x), xe N, teS,,

for some character a of S;. Obviously, p is infinite dimensional if and only if
S, ¥ R, that is, S is discrete.
Now, let 7€ G be infinite dimensional, and let Aoe N and ap e §, with
T~ indgl (aolo).

Choose f € LY(N) such that f(4,) & 0 and C, the support of f, is contained in the
open set {AeN: S, # R}. Since Nisopenin G, , f € L'(G, ) and F(aoro) = f(ho).
Therefore, Theorem 1.2 applies and yields
indg, (xolo)(ks)¢indg, (oAe)(C*(G)).
This means that n(u,) ¢ ©(C*(G)). Set
C={peGp~ ind§, (4) for some Ae C and xeS;}.
Then, for pe G\C, p(s) = (p| N)(f) = 0. Indeed, if p ~ ind§, (a4) as above, then
on the one hand p|N ~ R(4) and on the other hand R(4) n C = @ since
ind§, (24) = ind§ (ad) = ind§, (xd)

forall teR.

Therefore, it remains to prove that Cis compact. Since G is second countable,
C*(G) is separable, and hence G is second countable [7, (3.3.4)]. Hence Cis
compact if (and only if) it is sequentially compact. Thus, let p, € € and 4, € C with
okl N ~ R(4), ke N. Passing to a subsequence if necessary, we can assume that
M — AeC.

Suppose first that S, = {0} for infinitely many k;, j € N. Then, by continuity of
inducing [11, Section 4],

Pr, ~ ind§ A, > ind§ A.
If, moreover, S, = {0} then p = ind§ 4 is irreducible and p|N ~ R(2), so that
peC. If S; # {0}, then
p= indgﬁ(lsl'/l)ec~ and p,, - p.

Thus we are left with the case S; = Zt, t, > 0, for each k. Then
P ~ indglk (on), ox € §Ak.

Again, by passing to a subsequence if necessary, we can assume that
(i) oy(ty) — z for some zell,
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(i) S;, — S in F(R), the set of all closed subgroups of R endowed with Fell’s
compact-open topology which makes #(R) a compact space (see [11, p. 427]).

We claim that (ii) and 4, — A implies S = S;. To verify this, let se S and notice
that since S;,_— S there are s,€ S, such that s; — 5. As the mapping

RxN-N,(@ty)-x

is continuous, we conclude 4, = 4} — 4°. On the other hand, A, —» 4. Thus 4° = 4,
so that seS;. We now distinguish according to whether the ¢, are bounded or
not.

In the first case we can assume t, — t in R. If t = 0, then Zt,, — R. Indeed, given
seR and 6 > 0, for each k choose n,€Z minimal so that n,t, > s — 6. Then
mty (s — d,s + d) for all k with t;, < 26. But Z¢, — R implies S; = R, contradic-
ting Ae C. Thus ¢t > 0 and

Slk =Ztk—>Zt s Sl'

Now, define a character « on Zt by a(t) = z. Then, in Fell’s so-called subgroup
representation topology [11, Section 3],

(Slk D< N, ak/lk) - (Zt < N, Otl).

Employing once more that inducing is continuous even when varying the
subgroups continuously, we obtain with H = Zt o< N

pi ~ indg, (wcAe) — indf (ad).

Thus p, — p for every p = ind$ . (BA), where fe S, is such that #|Zt = «. On the
other hand, p € € for any such p.

Finally, suppose the ¢, are unbounded. Then Zt, — {0} (compare [11, pp.
427-428]), and as before it follows that (S; < N, ad) = (N, 4) and therefore
o — ind§ A. Taking p = indgl(lsll)eé, we conclude p; — p and peC. This
proves that C is compact and finishes the proof of the theorem.

We conclude the paper by determining M(G) n C*(G) for Fell’s well-known
example of a non-discrete group G whose dual space is nevertheless compact.

ExaMPLE 3.5. G is the semi-direct product G = Z < R where the action of
Zon R is given by (n, x) — €"x. G is compact, so that R(G) = M(G). We adopt the
notations from the proof of Lemma 2.5 and for ve M(G) denote by v its
restriction to R. That is, v(¢) = v(¢) for ¢ € Co(R). It is clear that

Vol = lve gl

for every ¢ € L*(R), and this implies
VIl = 14O £ 1AeW = V]l 4.
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If

ue C*G) N M(G), then all left translates L, o,u, n€Z, belong to C*(G), and the
(#,0)

above estimate shows L, ou) € C*R) = Co(R) for all neZ. Conversely, if
ueM(G) and (L, o)u) € C¥*(R) for all neZ, then ye C*(G) (compare the proof of
Lemma 2.5).
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