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QUASICONFORMAL ANALOGUES OF
A THEOREM OF SMIRNOV

BRUCE H. HANSON

1. Introduction.

Let f be a conformal mapping of the unit disc B> = {|x| < 1} onto the domain
D < C. Then there are a number of classical results which relate the size of | f*(x)|
to the boundary behaviour of f. For example, we have the following well-known
results due to Koebe and Smirnov respectively:

THEOREM 1. Assume f is conformal on B2. Then for any x € B2
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(Here d(y, A) is the distance from y to A.)

THEOREM 2. Assume that f is conformal on B* and that D is a Jordan domain.
Then f'e H'(B?) if and only if 0D is rectifiable. Moreover, f' € H'(B?) implies that
f is absolutely continuous on 0B2.

Astala and Gehring have shown that Koebe’s Theorem (as well as a classical
result of Hardy and Littlewood) has a rather direct analogue for quasiconformal
mappings which remains true even in higher dimensions [AG1]. The main
purpose of this paper is to show that there are quasiconformal analogues of
Smirnov’s Theorem as well.

2. Notation.

We use the expression 4 ~ B to signify that the ratio A/B is bounded away from
0 and co. The bounds on 4/B may depend on variables X, y, ... In this case we
write “~” depends on x,y,... We use the expression f: D — E to signify that
f maps D onto E. Let B" denote the unit ball in R". We assume for the remainder
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of the paper that f is a K-quasiconformal mapping of B" onto the domain D = R"
with Jacobian J,.

A direct analogue of Theorem 1 would involve replacing | f'(x)| by (J/(x))* in
(1.1). This, of course, is not possible since J, need not be defined everywhere. In
order to circumvent this difficulty, Astala and Gehring defined the following
generalized version of f’(x) which has the advantage of being defined at every
point in B" [AG1]:

1
(1.2) ag(x) = eXp(nm(B ) L log(Jy) dm,,)

where B, = B(x,(1 — |x])) is the open ball with center x and radius 1 — |x|. Note
thatin the case where n = 2and fis conformal, a(x) = | f'(x)|. We also define the
non-tangential maximal function of a, as follows:

af(x) = sup a;(y)
yel'x

where xe dB" and I', = the interior of the closed convex hull of {x} U B(0,3).

For S = R" let #,(S) denote the a-dimensional Hausdorff measure of S.
Abusing notation, we write aheH'(B") (abbreviated dafeH') if
sup [ a¥(x)d#,_(x) < oo, where S, = {|x| = r}. We say that D < R" is rectifi-
r<i

able if #,_ (0D) < 0.

We next define John domains. Given an arc y = R" with endpoints x, and x4,
for each x ey let y(x, x,) denote the subarc of y with endpoints x and x;. Forb = 1
we define the b-carrot joining x, to x4 by

car <'Y, b) = Uxey {B <x1 "ll; d(y(x9 xl)))} P

where d(S) = diameter of S. A domain G = R" is called a b-John domain (with
center x,) if there exists x,€ G such that each x; € G can be joined to x, by
a b-carrot in G. G is a John domain if G is b-John for some b < o0.

Closely related to John domains are uniform domains, which we next define.
We say that a domain G = R" is uniform if there exist positive constants a and
b such that each pair of points x,, x, € G can be joined by a rectifiable arcy < G
for which

I(y) £ alx; — x,|
and

min [(y;) £ bd(x, 0G)

j=1,2

for each x € y; here I(y) denotes the length of y and y,7, the components of y\{x}.
Note that bounded uniform domains are John domains.
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3. Statement of Results.

We are now ready to state our results. We begin with two rather direct analogues
of Theorem 2:

THEOREM A. Let f: B> —» D be K-quasiconformal, D a Jordan domain. Then
ayeH' if and only if 0D is rectifiable.

THEOREM B. Let n = 3. Suppose that D is a Jordan John domain in R" and that
f: B*—> D is K-quasiconformal. Then a;e H"™' implies that oD is rectifiable.
Moreover, if we assume that D is a uniform domain, then the converse holds, namely:
if dD is rectifiable, then a;e H" ™ *.

These two theorems are proved in essentially the same way, but in higher
dimensions the concept of rectifiability becomes more difficult to work with. This
is the reason for the added restrictions on D in Theorem B. Most likely the
theorem remains true with less restrictive conditions placed on D. In fact, it is
quite possible that no extra restrictions on D are required in Theorem B so that
a direct generalization of Theorem A holds in higher dimensions. In any case, the
hypotheses on D are always satisfied if D is a quasiball, i.e. D is the image of the
unit ball under a mapping which is quasiconformal on all of R".

Note that neither of these results makes any mention of the absolute continuity
of f on dB" as was done in Theorem 2. In this regard the quasiconformal case is
more complicated than the classical conformal case. In fact, when n = 2 it is not
true that a, e H' implies that f is absolutely continuous on 0B as the following
result shows:

COROLLARY C. For each K > 1 there exists a K-quasiconformal f B* — B?
such that a;e H' but f is singular on 0B>.

Corollary C is a simple consequence of Theorem A and the result of Beurling
and Ahlfors [BA] that even in the disk a quasiconformal mapping can have
singular boundary values.

Note that Corollary C is definitely not true in higher dimensions. In fact, if
n = 3 and f: B" — B"is quasiconformal, then f is absolutely continuous on JB"
without any assumptions on a; [G1, Theorem 1]. One could conjecture that for
n 2 3 a,e H"" ! implies that f is absolutely continuous on dB". However, Juha
Heinonen has recently constructed an example (for n = 3) in which 0D is rectifi-
able, but f is not absolutely continuous on ¢ B" [H3]. His example shows that this
conjecture and the previous conjecture that Theorem B holds without any extra
hypotheses on D cannot both be true.

In another related result [H1], Heinonen has shown (in the case n = 3 and
n % 4)thatif 0D has tangents #, _, — a.e., then f is absolutely continuous on 0B.
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In order to get f absolutely continuous on B2 we need to assume more about
af:

THEOREM D. Let D be a Jordan domain in R? with f: B> — D K-quasiconfor-
mal. Then a¥ € L'(0B?) implies that f is absolutely continuous on 0B

Corollary C and Theorem D demonstrate a difference between the conformal
theory and the quasiconformal theory in two dimensions. If f is conformal, then
aye H' if and only if a¥ € L'. On the other hand, if f is quasiconformal, we only
have the trivial implication a} € L' implies a, € H'. One might conjecture that
just as in the conformal case, afe L' is equivalent with f being absolutely
continuous on dB2, for quasiconformal f’s. However, this is not true as the
following result demonstrates:

THEOREM E. There existsf: B> — B2, K-quasiconformal such that f is absolute-
ly continuous on 0B but a} ¢ L'(0B?).

Our final result is similar to Theorem D. Note that Corollary C shows that this
result is in some sense sharp.

THEEOREM F. Let f: B> - D be K-quasiconformal, D a Jordan domain, and p > 1.
Then a; e H” implies that f is absolutely continuous on 0B>.

It is interesting to compare theorems D and F to the results in [C].

One should note that if f is conformal, then a, € H? for some p > 1implies that
a¥ e L',soin this case Therem F is an easy corollary of Theorem D. I do not know
whether the implication remains true in the quasiconformal case. It would be
interesting to know if it does or not.

Theorem F is actually true with even weaker hypotheses on a,. Let
¢: [0, 00) = [0, 00) be a homeomorphism satisfying

3.1 B(x + y) < C(P(x) + D).
We say that a,e H(B?) if

sup | ¢lay)d#; < oo.

r<1Js,
Then a slight modification of the proof of Theorem F shows that we can replace
the hypotheses that a,e H?(B*) for some p > 1 with the hypotheses that
a;€ H%(B?) where ¢ satisfies (3.1) and
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4. Tools.

In this section we gather some of the results which we will need to prove the
theorems stated in section 3.

Our main tool will be the following analogue of Theorem 1 due to Astala and
Gehring [AG1]:

THEOREM 3. Suppose f: B" — D is K-quasiconformal. Then for any x € B" we
have

1 d(f(x),0D)
C 1-—|x|

d(f(x),0D)

Safx)sC x|

where C is a positive, finite constant which depends only on K and n.

Before stating the next lemma, we need a definition. We say that
{x1,%2,...,Xm} © F = S, = {|x| = r} = B"isa d-hyperbolic partition of F if there
exists 0 < & < oo such that the following two conditions are satisfied:

4.1) min {d(x;,x;)} 2 (1 —r)
i+j
4.2) sup min d(x,x;) < %(1 —r).

xeF 15ism

We say that {x,xs,...,X,} is a hyperbolic partition of F if {x;,x3,..., X} is
a d-hyperbolic partition for some é < co. If {x;,X,,...,x,} is a hyperbolic
partition of S,, we define

P, ={xeS,d(x,x;) <d(x,x;))j*i} i=12..m

Then clearly the collection {P;} satisfies the following:

4.3) {P;} is pairwise disjoint
4.4 H- 1SNV P =0
4.5) K (P)~( =t i=1,2....m,

where ~ depends on 6 and n. Note that for fixed ¢ small enough there will exist
a d-hyperbolic partition of S, for each r: 0 < r < 1. For n = 2 a natural choice is

2mji
xj=rem j=1,...,m

where m ~ .
—r

We are now ready to state
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LemMA 1. Let f: B* — D be K-quasiconformal and {xi,...,x,} a -hyperbolic
partition of S,,0 <r < 1. Thenfori=1,...,m

(4.6) J a;"tdA#, ~ d(f(x;), oDy !
P;
and hence
4.7 f ay tdst,  ~ Z d(f(x;),oD)" 1,
S, i=1

(in both (4.6) and (4.7), ~ depends only on K, n and 6.)

PRrOOF. (4.6) follows directly from (4.5), the following Lemma, and Theorem 3.
(4.7) follows directly from (4.6) and (4.3)—(4.5).

Let p be the standard hyperbolic metric on B".

Lemma 2 ([AG2]). Let f: B"—D be K-quasiconformal. Then as(x) is
quasihyperbolically constant on B", i.e., if x, y € B" with p(x,y) £ M, then

af(x) <
ag(y) =
where C depends only on M, K, and n.

We will also need the following result:

LEMMA 3. Suppose that f: B" — D is K-quasiconformal. For each x € B" define
I, = B(x,2(1 — |x|)) n 0B". Then for all xe B"

d(f(x),0D) = Cyd(f (L))

Moreover, if D is a b-John domain, then

(4.8) d(f(I,)) = C.d(f(x),0D).
(C, depends only on K and n, C, depends only on K,n, and b.)

The first half of Lemma 3 can be proved using a standard modulus argument
[H2, p. 109]. The second half can also be found in [H2]. Actually (4.8) character-
izes John domains which are images of quasiconformal maps, i.e. if f: B* —» D is
K-quasiconformal and (4.8) is satisfied, then D is a John domain. (See Theorem
3.1in [H2].)

Our final lemma is due to Gehring [G2, p. 383]:

LEMMA 4. Suppose that f: B — D is K-quasiconformal. Let x,ye B" with
p(x,y) £ M < oo. Then|f(x) — f(y)| £ Cd(f(x),0D), where C depends only on K,
M, and n.
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5. Proofs.

Proof of Theorem A.

Assume that D is a Jordan domain. We first prove that a, € H' implies that /D
isrectifiable. Assume that a, € H' and let {yo, y1,-.., y» = yo} be an ordered set of
points on B2, It suffices to show that

5.1) T 100~ SO S C.

An elementary argument shows that for fixed 4, 0 < d <1 we can choose
r arbitrarily close to 1 and a d-hyperbolic partition {x,,X,,..., X, } of {|x| = r} so
that

(5.2) {ry 1,12y ostyn} < {X1, X250 0oy X}

Since |x;4 1 — x;| ~ 1 — r, it follows from Lemma 4 that

[f(xj41) = f(x))| < Cd(f(x)),0D).
Combining this inequality with (5.2) and Lemma 1, we get

2r

n—1

'Zo lf@ryivd) — flry)l = Cy ,[o af(rew) do < C,.
(5.1) now follows by taking r — 1 and using the continuity of f on B?, (which
follows from the fact that D is a Jordan domain [VI, Theorem 17.20]).

We next show that rectifiability of dD implies that a,e H'. Assume that
L = #,(0D) < . Let 0 < r < 1 and choose {)o, y1,--., Vs = Yo} an ordered set
of points on dB? so that {ry,,ry,,...,ry,} forms a hyperbolic partition of S,. Let
I =[yj-1,y] = {€® arg(y;—,) £ 0 < arg(y;)} for j=12,...,n  Since
lvj-1 — yjl ~ 1 —r, it follows from Lemmas 3 and 4 that

(53) d(f(ry;),0D) < Cd(f(1))),
where C depends only on K and n. Now using Lemma 1 and (5.3), we get

j e do = ¢, 3. difry,).0D)

J

<G, Y, d(f(1)

ji=1

<G Y W)

=C2L
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and the proof of Theorem A is complete.

Proof of Theorem B.

Assume first that D is a Jordan John domain and that a,e H"~'. Let ¢ > 0. By
the uniform continuity of f on B"* ([ VI, Theorem 17.20]) we can choose 0 < r < 1
and a hyperbolic partition {x,,x,,...,X,} of S, so that

(5.4) 0B" < U Ix,-
and
(5.5) maxd(f(L,,) < %

Now for each i choose a ball B; o f(I,,) satisfying:
(5.6) d(B;) = 2d(f ()
It then follows from (5.4) that

0D < u; B;

and from (5.6), Lemma 1, and Lemma 3 we get

3 @S2 3 dsu )
< Cy ¥ d(f(x), oDy

= CzJ (@) A, ()
S,

r

< C;.

Since d(B;) < ¢ by (5.5) and (5.6), it follows that s, _,(0D) < Cs,.

Assume now that 0D is rectifiable so #,_,(6D) = M < 0. Let0 < r < 1 and
choose {xy, X,,..., X} to be a hyperbolic partition of S,. Then from Lemma 1 we
have

3 d((x), a0y

i=1

(5.7 f as(w)'~dst, - 4(w) £ C,
SV‘

The second half of Theorem B would now follow from (5.7) if we could prove the

following:

CONJECTURE. Let f: B" — D be K-quasiconformal with D a Jordan domain.
Then for every xe B"
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(58) d(f(x), 0D < CH,_1(f (L),
where C is a constant depending only on K and n.

Note that if the Conjecture were true, we would actually have the second half of
Theorem B without any extra restrictions on D. However, so far I have only been
able to prove the Conjecture for certain special cases. One such special case is
when D is a uniform domain. To prove the Conjecture in this case we need some
more notation and a result of Vdisdld which is a generalization of a deep theorem
of Gehring.

Suppose that I' is a family of curves on R”". For each p and g in (0, c0) we define
the p-dimensional g-modulus of I by

(5.9 MIT) = infj

R

hdA,

where the infimum is taken over all Borel functions h: R" — [0, co] such that

J‘hdsgl
v

for all locally rectifiable cures ye I'. Then Véiséld has proved the following [V3,
Theorem 5.6]:

THEOREM 4. Suppose that 2 < p<n, G is an open subset of RP, H > 1,
g: G » P < R"is H-quasisymmetric, and #,(g(E)) < oo for every compact E < G.
Then

(5.10) M(I') < CMZ(g(I)
for every path family T in G, where C depends only on H and n.

We first note that Theorem 4 obviously remains true if we assume that G is an
open subset of S* = {xe R”*1: |x| = 1} rather than of R”. We now wish to apply
Theorem 4 to prove the Conjecture under the added assumption that D is
a uniform domain. Before beginning our proof we note that a simple Moebius
transformation argument shows that in place of (5.8) it suffices to show that

(5.11) d(f(0),0D))" ! < CH,—1(f(57))
where S* is the upper half sphere
{(x1,X2,...,X,) €0B™ x,, 2 O}.

In order to apply Theorem 4 we first note that since D is a uniform John
domain (and hence bounded) and f is K-quasiconformal, it follows that f is
H-quasisymmetric on dB" (where H depends on f and D) [V2, Theorem 5.6]. We



142 BRUCE H. HANSON

then apply Theorem 4 by taking G to be the interior of S*,p = n — 1,and I' to be
the family of curves in S* joining E, to E, where

E; = {(x1,%2...,X,) €8T x, =0, x5 2 |x,]}

E; ={(x1,%2,-.» X)) €S x, =0, x; £ —|x4]}.
Clearly,
(5.12) M!-XI) = C(n) > 0.
Let yeI'. Then d(y) = 1 and we claim that
(5.13) I(f() 2 d(f(y)) 2 Cd(f(0), aD) > 0,

where C depends only on K and n.
We use a standard modulus argument to establish the claim. Let @ be the
family of paths connecting B(0,r) to y in B". Since d(y) = 1, we clearly have

(5.14) M;(©) = C(r,n) > 0.

By the distortion theorem for quasiconformal mappings [ VI, Theorem 18.1]
there exists r = r(K, n) < 1 such that

(5.15) f(B(0,) = B(f(0), 3d(f(0), D).
Fix 0 < r < 1 satisfying (5.15). Then standard modulus estimates show that
(/)

M;(f(©)) -0 as - 0.

d(f(0),0D)

1
Since M(f(@)) = X M}(0), the claim now follows from (5.14).
Now define

1
(5.16) h(x) = ¢ Cd(f(0),0D)
0 otherwise.

if xef(S*)

Then by (5.13) we have
J hds=1 forall yerl
f®)

and hence by (5.9) and (5.16),
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(5.17) MI=H(f(D) < j o ldpn !
S(*)

1 n—1 -
=<_Cd(f(0),aD)> Hu-1(f(S7T))

Combining (5.17), (5.10) with p = n — 1, and (5.12) now gives us the Conjecture
(with the added assumption that D is a uniform domain and with C dependent on
f, D and n). This completes the proof of the converse part of Theorem B.

Proof of Theorem D.
Assume that D = R? is a Jordan domain and that a¥ € L'. Define

h(t) = f(e") for 0<t<2m

Let[a; b],[as,b,],...,[a., b,] be a pairwise disjoint collection of subintervals of
[0,27]. Fixj, 1 <j<nandlet 0 <r < 1. Let {x,x5,...,X,} be a hyperbolic

. X . . .
partition of {xeS,: a; £ arg <—|—|—> =< bj} with x; = re’ and x,, = re'®”. Then
X

applying Lemma 1 and Lemma 4, we get

5.19) ) = Tl £ 8 106) — Sy

m—1

<Cy Y, d(f(x;,0D))

i=1

b,
< Czj‘ af(rew) do

a,

b,
£C, J a¥(e”)do.

a;

Now letting r — 1, summing over j, and using the continuity of f on B?, we get

n n b;
PUOELOELSS f e do,

j=1dJa,

Since af e L', it follows that f is absolutely continuous on 0B? as desired.

Before beginning the proof of Theorem E we define the maximal function and
recall some basic facts aboutit. Letg: R — R be a locally integrable function. The
maximal function of g is defined by

(5.19) Mol = sup |;| j \g(0) dt
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where the sup is taken over all intervals I which contain x. We next define

geLlog L([0,1]) = Llog L if

L 1]|g(><)| log(2 + [g(x))) < co.

We will need the following fundamental result about the maximal function for the
proof of Theorem E[S]: '

PROPOSITION 1. Let g = 0 be integrable on [0, 1]. Then Mge L![0,1] if and only
ifgeLlogL.

Proof of Theorem E.

We start with a definition. We say that x € B? is hyperbolically related to the
interval I if |x|=1—|I| and arg (ﬁ) = midpoint(/). Let f: B> - B? be
K-quasiconformal with f(1) = 1 and define g: [0,2n) —» B? by g(t) = €. Let
h =g !0 fogsohisahomeomorphism of [0, 27) onto itself. We extend h recur-
sively by h(t + 2n) = h(t) + 2% so h is a homeomorphism of R onto R. Let
0 £ a < b £ 2% Then by Theorem 3, Lemma 3, the definition of h, and the fact
that B2 is a John domain, it follows that

h(b) — h(a)
T

—a

(5.20) ag(x) ,
whenever x is hyperbolically related to [a, b]. Here ~ depends only on K. If we
assume that h is absolutely continuous, it follows from (5.20) and Lemma 2 that

(5.21) af(t) ~ Mh'(t) a.e. in [0, 2n]

where ~ again depends only on K. Since h’ = 0 a.e., it follows from (5.21) and
Proposition 1 that afeL‘[O, 2n] if and only if 4" e Llog L([0,2x]). Hence, to
prove Theorem F it suffices to construct an f such that for the corresponding h we
have h' ¢ Llog L([0,2x]). By Beurling-Ahlfors’ result [BA, Theorem 1], this is
equivalent to constructing a homeomorphism h: [0,1] — [0,1] which is
quasisymmetric and absolutely continuous but such that h' ¢ Llog L.

We construct h by modifying an example of Tukia [T1]. The functions h,
which we will define were used by him in a limiting procedure to construct
a quasisymmetric homeomorphism from R to R which does not preserve Haus-
dorff dimension. We borrow his notation and approach in defining h,,.

For n = 0 and 0 <j < 2" we define intervals I, ; inductively as follows: Let
Iy, o = [0, 1]. In general, given the interval I, ;, we divide it into a left subinterval
I, +1,,;and a right subinterval I, ., ,;+ in the following proportions:
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Hat1, 24 2 if j is even
|1, 3 if j is odd
ILis1.2j+1l _ [5if j is even
L, 3 if j is odd.

Now for n = 0and 0 £ j < 2" we define

j j+1
== .
n,J [2n s 2n ]
For fixed n = 0 we now define h, to be the homeomorphism of [0, 1] which is

linear on each J, ; and such that

5.22 ho(J ) = I,

j for 0=j<2n

Making use of the following proposition [T1], it then follows that there exists
K < oo such that

(5.23) h, is K-quasisymmetric for all n.

PROPOSITION 2. Let h be an increasing homeomorphism of [0, 1] and define

j+1 J
() (%)
K, j= n>0 0<j<2"

M j—1
(5) -5

Then his quasisymmetric if and only if the K, ;s are bounded away from 0 and
0.
We next define homeomorphisms

e  0SxSa
2 4
Ly <
pax) = Pnoal) XSG
2n—1 2n
hy(x) — =X S
2
hi(x) 0Sx<3
h,(x) % =x §%
gulx) = : :
-2 2"
hy(x) g
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We then extend h, to a homeomorphism i} of [ —2, 3] by defining

x —-2<x< -1
[—pn(—X) -1=x=0
h¥(x) = 1 hy(x) 0=x=1
2 —q,(2 — x) 1£x=2
x 2<x<3.

Finally, we renormalize so that we again have a homeomorphism of [0, 1] by
defining

kn(x) = 5(h¥(5x — 2) + 2).
Using Proposition 2, it is an easy, but tedious, task to verify that
(5.24) k,is K’ — quasisymmetric on [0, 1],

where K’ depends only on K. This s, in fact, why the auxiliary mappings p, and g,
were introduced. Note also that

(5.25) kx)=x for xe[0,}]1U[%,1].

Now let [aq,b,], [a,,b,],... be a sequence of pairwise disjoint subintervals of
[0,1] and m,, m,,... a sequence of positive integers. Define k on [0, 1] as follows:

x if xe[0,1\{u [a,,b,]1}

(5.26) k(x) = b, — a,,)k,,,"( X — a,

>+a,, if a, <x =<0,
bn — ay
Then k is clearly an absolutely continuous homeomorphism of [0, 1] and again
a simple, but tedious, argument using (5.24), (5.25) and Proposition 2 shows that
k is K”-quasisymmetric, where K” depends only on K.

It remains to show that we can choose [a,, b,] and m, so that k' ¢ Llog L. First
of all a simple calculation using (5.22) shows that

(5.27) f 1 h(x)log (2 + hy(x))dx =

0

AYSIORE R GION

We now estimate the right hand side of (5.27). Note that $°3' “=1 if
a = log,(3) < %. Choose b: a < b < . Then
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Since b < %, it follows that for n large enough

JOG)E =

Hence the righthand side of (5.27) approaches oo as n — co. Hence, it follows from
the definition of k, that

v

v

1
J k,log(2 + k;) =I,— oo as n — oo.
Then from (5.26) we get
1
J k'(x)log (2 + K(x)) Z Y. (by — @),
0

Hence we only need to choose a,, b, and m, so that

Z(bn - an)lm,l = ©
and we are done with the proof.

Proof of Theorem F.

Assume that
2n .
sup (J a(re'y? d9> =L< o
r 0
for some p > 1. Define

h(t) = f(re*™) for 0<t<1 and 0=Srsl.
Let ¢ > 0. Suppose M, N are positive integers and
0§m1<m2<...<mM§N—l.

.M
Then it suffices to show that we can choose 6 > 0 such that if N < J, then
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m () ()

1 2nm;
Letr=1 —TV—and 0;= 7;”’ forj=1,2,... M. Then Lemma 4, Lemma 1 and

3 |

Jj=1

<eé&.

the definition of h yield
M| e
3| ( +'”) h( > <cy " agtretya.
j= ji=1J0;
Now applying Jensen’s inequality twice we get
ngj+ﬂ

M
><CMP12

(%)

(52)462)

p
as(re’) d9>

( r.2n!r)|v+1[

@

2nn

N

as(re') d0>p

27[ p—1N-1 27:!7;\,4-1) .
< CIMP_1<—]\T> Z 2mm af(re"’)”d(?

N

Taking the limit as r — 1 completes the proof.
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