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SOME REMARKS ON A CERTAIN CLASS OF
FINITE p-GROUPS

IAN KIMING

Abstract.

First we extend the main result of our previous article [3] concerning finite p-groups possessing an
automorphism of p-power order and with exactly p fixed points, to the case p = 2. Secondly, we use
our techniques to prove a generalisation of certain classical results of Blackburn concerning “excep-
tionality” in finite p-groups of maximal class.

1. Introduction.

In this article the symbol p always denotes a prime number and “p-group” means
“finite p-group”.
The following theorem is the main result in [3].

THEOREM A (Corollary 3 in [3]). There exist functions of two variables, u(x, y)
and v(x, y), such that whenever p is an odd prime number, k is a natural number and
G is a finite p-group possessing an automorphism of order p* having exactly p fixed
points, then G possesses a normal subgroup of index less than u(p, k) having class less
than v(p, k).

Theorem A can be seen as a generalisation of the fact proved in [4] that the
derived length of a p-group of maximal class is bounded above by a function
depending only on p. For the theory of finite p-groups of maximal class the reader
is referred to [1] or [2], III, § 14.

In section 2 below we prove that the prime number p = 2 does not have to be
excluded in theorem A.

In section 3 we use our techniques to prove a theorem which can be viewed as
a generalisation of a theorem of Blackburn concerning “exceptional” p-groups of
maximal class: Blackburn proved that if G is an exceptional p-group of maximal
class and order p" then 6 < n < p + 1 and n is even; see for example [2], III,
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Hauptsatz 14.6. Having proved our theorem we shall point out the connection to
this result of Blackburn.
We shall use the following notation: Let G be a p-group. If x, y € G we write

X =y ixy and [x,y]=x"ty ixy.

If xe G and « is an automorphism of G, we write x* for the image of x under a.
The terms of the lower central series of G are written y,(G) for ie N.
If |G/G?| = p*, we write (G) = d.
A central series

G=G,2G,2...2G,>...

is called strongly central if [G;, G;] < G, for all i, j.

The letter e always denotes the neutral element in a given group.

We shall now recall some definitions and results from [3] which will be needed
in the sequel.

DEerFINITION. Let G be a p-group. We say that G is concatenated if G possesses
an automorphism «, a strongly central series

G=G12...ZGH+1=Q=G"+2=...

(for some ne N) and elements g;€ G; for i = 1,...,n + 1 such that the following
holds:
(1) 1Gi/Gisq| =plori=1,...,n,

(2) G;/G;4, is generated by ;G fori=1,....n + 1,
(3) [9»9):=9g; 'gf = gir1mod Gy fori=1,...,n.

In this situation we shall also say that G is a-concatenated. Thus, when we say
that G is a-concatenated we mean that G possesses an automorphism «, a strong-
ly central series

(+) G,>2G,>...2G, > ...

and elements g; € G; such that the conditions of the above definitions are fullfilled.
Obviously then, o have p-power order and (+) is completely determined by
G and o. The symbols G; will then always refer to the terms of this strongly central
series. When G is a-concatenated we shall also assume that the elements g; have
been chosen, and the symbols g; will then always refer to these fixed choices.
The relevance of the above definition for our purposes is the fact that if G is
a p-group and a an automorphism of p-power order of G, then G is a-concat-
enated if and only if « has exactly p fixed points in G; cf. Theorem 2 in (31
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DEerFINITION. Suppose that G is an a-concatenated p-group. Let ¢ be a non-
negative integer. We say that G has degree of commutativity t if
[Gi,G;]1= Gi+js+, forall ijeN.
Thus, G has in any case degree of commutativity 0.

If G has degree of commutativity ¢ and order p", then we introduce certain
invariants associated with this degree of commutativity. The invariants q; ; for
i, je N are integers defined modulo p by the following requirements:

[gi’gj] = g?i}*»t mod Gi+j+:+1 for i +j+t=<n
and
a;;=0 (p) for i+j+t=n+1

Thus, if G has degree of commutativity ¢t and if the associated invariants are all
congruent to 0 modulo p, then G has degree of commutativity ¢t + 1.

THEOREM B (Theorem 9in [3]). Let G be an a-concatenated p-group of order p".
Suppose that G has degree of commutativity t and let a; ; for i, j € N be the associated
invariants. Then the following holds:

M aij=—a;; (p) for i+j+t=n

(2) ai i+ jee + GG e + GiGie+ive =0 (p) for i+j+k+2t<n
(3) ai_an,»+1,j+ai,j+1 (p) for l+j+t+1§n

(4) For reN we have:

[£51]
Gier= Y (—1)5—‘(5’ f)a () for 2i+rtisn
s=1 -

DEFINITION. Suppose that G is a (¢)-concatenated p-group with w(G) = d. We
say that G is straight if the following conditions are fulfilled.
(1) G? = G;4, forall ieN.

(2) xeG, and c e G, implies
X P(xc)’ =c?mod G, 44, forall r,seN.

(3) If gG,;,, is a generator of G;/G;.,; then g¢g°G;,4., is a generator of
Gi+a/Gitva+y-

THEOREM C (Theorem 10 in [3]). Let G be a concatenated p-group of order p".
Suppose that G is straight with w(G) = d. Suppose further that G has degree of
commutativity t and let a; ; be the associated invariants. Then we have for all i, j
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l+]+d+t§n :(ai‘anHd’j(p)).

THEOREM D (Corollary 2 in [3]). Let G be an a-concatenated p-group with o of
order p*. Put

s=1+0+p+...+p.
Then G is a straight, a-concatenated p-group.

Finally we shall need the following technical lemma, which is a refinement of
the Hall-Petrescu formula (cf. [2], I1, Satz 9.4, Hilfsatz 9.5).

Lemma E (Lemma 2 in [3]). Let F be the free group on free generators x and y.
Let p be a prime number and n a natural number. Then we have

xPyP" = (xylP cc,. .. Cpns
with certain elements
cey,(FY" and cpey(Fy" ™
fori=1,...,n, where each cp has the form

Cpr = [1, %, x]00" T [ ol
——— "
-1

modulo
Por+ 1t (F)" s FYP" 1 ppu(F),
for certain integers a; and b,, and where each v, has the form
U, = [V,S15.0 0, 8pi1]
with s € {x, y} and s, = y for at least one k in each v,. Furthermore,

a;=—1(p) for i=1,...,n

2.

In this section we shall prove the extension of theorem A to the case p = 2. First
we need a result which will also be usefull in the next section.

PROPOSITION 1. Let G be an a-concatenated straight p-group of order p" with a of
order p*. Let d = w(G), and let a; ; for i, je N denote G’s invariants with respect to
degree of commutativity 0. Then the following holds.

(1) Ifn = 1 + p* then d has the form

d=p(p—1) forsome re{0,....k—1}.

(2) Suppose that s is a non-negative integer such that d > p*(p — 1). Define
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a) = Qipo, jpr
forv=1,...,s + landi,jeN. Then
a’ = a®, ;+ a%., ()
forv=1,...,s + 1 and all i,je N such that p°(i +j + 1) < n.

ProoOF. LetieN. Using Lemma E for computation in the semi-direct product
G{a), we see that

(++) o [0, gi] = (afa, g1 = o[, g:17°c,ut ... e, e,

for given ve N, where putting U = {a,[a, g;]) we have
(291 €Gis1+var
c€y2(UY" < Gitzvoas
o€ Ypu(UY" " < Gyt put (o a

for u=1,...,v, and where c,,..., ¢, have the forms given in Lemma E.
Proof of (1): Suppose that n = 1 + p* and let

m =min{p* + (k — wd|p=0,...,k}.
Let ve {0,...,k} be such that
m=p" + (k — Vd,

and suppose that v is unique with this property in {0,...,k}. Using (+ +) for
v = k we see that

e=[0"g,]1=g;" mod G,,, if v=0,
and
e=cpmod Gyyp if v>0.
In the first case we deduce 2 + kd = n + 1 =2 + p* and so
m=1+kdz1+p‘>p

which is impossible. In the case v > 0 we note that c,. according to Lemma
E satisfies

_ —pk=v _ _—pk-v
cpr=[g91,0..,0] 7 "T=g,f, mod Gy
B N

¥
From this we deduce that 1 + p* +(k —v)d =2 n+ 122 + p*, and so

m=p'+k-—-vd=1+p>p,



40 IAN KIMING
which is impossible. Consequently, there exist two different numbers y, v in
{0,...,k} such that

m=p*+(k—wd=p" + k — v

Since m is minimal, we then easily see that |u — v| = 1, and so d has the form
p'(p — DY withre{0,....k — 1}.

Proof of (2): Suppose that s is a non-negative integer withd > p(p — 1), and let
veNbesuchthat ]l £v <s+ 1. Then

P r+w—pu+)d>pP+@—wd for pu=1,...,0,
and from (+ +) we conclude that
[0, 9] = c,.' mod G4 q4,0 for ieN,

sice
N "' 1

According to Lemma E we have
cpt = gl o mal = [gn-.a]™" = gii mod Givyype,
ey -
and so
(+++) [gi@”] = gispomod Gy poyy for ieN.
Now suppose that i, je N are such that p“(i + j + 1) < n, and put
m=pi+j+1)+ 1L

Consider Witt’s identity

[A,B™ L, CI[B,C ', A][C,A",B]*" =¢
modulo G,, with

A=y, B=a and C=gj,..
Using (+ + +) and noting that g,,_; = e, it then follows that:
a(v) = aﬂx gt a(")+ 1(p)
THEOREM 1. Let G be a concatenated, straight 2-group of order 2" and with

o(G) = 2% Put d = 2,
Then G is metabelian, and if n = 2d then G has degree of commutativity n — 2d.
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PrOOF. Ifd = 1 then |G/G?| = 2, and so G is cyclic. But then the statements of
the theorem are clear. So, we assume that k > 0.

We now suppose that n = 2d and will show that G has degree of commutativity
n — 2d. If n = 2d this is obviously the case, so we assume that n > 2d and that
G has degree of commutativity t with t < n — 2d — 1. Let a; ; be the associated
invariants.

For s=1,...,4d we have 2s+d +t + 1 < n, and using Theorem B and
Theorem C we then find modulo 2

$di1 d+1—h
(2 As,s+1 = s 54441 = Z (“l)h—l< h—1 )as+h—1,s+h
h=1

d—nh

3d
= Z(“l)h< h >as+h,s+h+1
h=0

and

id _fd—h—1
(2) As+1,s = As+1,5+1+d-1) = z (_l)h 1( h—1 )as+h,s+h+1-
h=1 -

Now, for h = 1,...,3d we have
d—h\ _(d—h—1\d—h
h )]\ h—1 h

—h d—h-—1
andsincedisapoweronandhg%d,weseethat<d h )and( b1 )have

the same parity. Using Theorem B (1) we then conclude that

Ml —h d—h-—1
c0=a, 54 F a4 = a5540 + Z h + h—1 Asvh,s+h+1
h=1 -

=a,.; Q)
for s = 1,...,4d. Then Theorem B (4) shows that
ai1+,=0 (2) for r=0,...,d
Hence Theorem C gives
a;;=0 (2) forall j.
Using this and Theorem B (3) we easily see by induction on i that
a;,;=0 (2) foralli,j.

Consequently, G has degree of commutativity ¢ + 1.
So, G has degree of commutativity n — 2d.
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The group G/G, ., has exponent 2, hence is abelian. If n < 2d the same holds
for the group G, +4. If n = 2d then G ., is abelian since G has then degree of
commutativity n — 2d. Thus, G is metabelian in any case.

THEOREM 2. Let G be an a-concatenated, straight 2-group of order 2" with a of
order 2*. Then the following holds.
(1) If n = 1 + 2* then G has class at the most 2* 1.
(2) If n =2 2¥*Y — 3 then G has class at the most 2.
(3) G has class at the most 2¥ — 1.

ProoF. Letd = w(G).If n = 1 + 2* then according to Proposition 1, d has the
formd = 2" for somere{0,...,k — 1}. Hence, if k = 1 and n = 3 then G is cyclic.
If n £ 2 then G is abelian. We may consequently assume that k = 2.

Suppose that n = 1 + 2*. According to Theorem 1, G has then degree of
commutativityt = n — 2d. Now, it is easily seen by induction on i thatifie N and
i = 2 then

YdG) = Git 4oty
So, 7(G) = {e} if
2n — 2d
. _eh—2d
(+) Sy P

Using n = 1 + 2* and d = 2" with re€{0,...,k — 1}, an easy calculation shows
ithat (+) is satisfied if i = 1 + 2* 7. (+) is also satisfied if i = 3, provided that
n>2*' _3 (note that then n>2**' —3 >2¥ 4 1, since k=2, whence
d £ 2¥71). This proves (1) and (2).

Finally, (3) follows from (1) because G obviously has class a the most 2¥ — 1 if
n <2k

Our extension of Theorem A to the case p = 2 now follows immediately from
Theorem D and Theorem 2: If G is an a-concatenated 2-group with a of order 2*,
then the normal subgroup

Gl+(1+2+...+2"‘1)

has index at the most

1+2+...+2k-1
2 )

and has class at the most 2 — 1.

3.

We now turn our attention to our second objective described in the introduction.
In what follows, p will denote an odd prime number. The content of the main
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result of this section, which is Theorem 3 below, is roughly speaking that if G is an
a-concatenated, straight p-group of order p" with « of order p*, if a; ; are the
invariants associated with degree of commutativity 0, and if a; ; is congruent to
0 modulo p whenever i + j is less that a certain number, which is “small”
compared with p, then g; ;can be incongruent to 0 modulo p only if i + j is “big”
compared with min {n, »(G)}. Furthermore, G has degree of commutativity 1, if
n is sufficiently large compared with p*.
This result will be a consequence of the following two propositions.

PROPOSITION 2. Let p be an odd prime number and let n, r and ry be natural
numbers. Assume that 3 < r < n — 1. Suppose that we are given integers a; ; for
i,je N with i + j < n. Suppose further that the following conditions are satisfied.
(1) aij=—a;; (p) for i+j=n

2 aije1+ a1 j=a;; (p) for i+j+1=n

(3) i jak,i+j+ AjxGi jax + G i0jx+: =0 (p) for i+j+k=n
4 a;,;=0 (p) for i+j=r

() aip; =0 (p) for pli+j) =ro.

©) ai, 0 (p)

Then the following assertions hold.
(I) Let mbe aninteger suchthat0 <m < min{n —r — 1,r — 2,p — 1}. Let i be
an integer such that 1 £i <m+ r. Then

Qi r_itms1 = bimar,, (D),
where
bim=0 for 15i<m,

and
. i1
bi,m=(—1)'+"'“<lm ) for m+1<ism+r.

(For m = 0, this also holds without the assumption (6)).
(I1) The number r is even.
Ifr<n—2thenr=0 (p).
Ifp+1<r<n—pthenr>ro—p+ 1.

Proor. Proof of (I): We prove the statement by induction on m.

Since
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Groivr + Gy ,i=a, ;=0 (»

fori=1,...,r — 1, because of (2) and (4), we deduce the statement for m = 0.

Let ube a natural number such that y < min{n —r — 1,r — 2,p — 1}. Assume
that the statement in (I) has been proved forO < m <y — 1.Sincepy <n —r — 1,
we may consider the congruence (3) for (i, j, k) = (1, u + 1,7 — 1). This gives
(+) Aur1,r-191,,+, =0 (p),

sincea,_; ; =0 (p)according to (4), and since

a1,+1=0 (p)

according to (4) because u < r — 2. From the induction hypothesis we get

au+l,r—1 = —H‘h,r (P),

and since we have 1 < u < p — 1, we then deduce from (6) and (+) that

(++) al.r+uEO (p)
For 2 £i < u + r, the induction hypothesis and (2) show that

(=) A yr—itp+2 T Aty el T Ui pmirpyr1 = bi—l,,ﬁlal,r (p);

from this and (+ +) we find successively

al.r+u50 (), az,r+u—150 (p)""’au.r+IEO (),
because

b =0 (p) for i

i-1l,u—
Again, (—) and the induction hypothesis show that
i—2

°— 1)“1,r =Gy ,-ivu+2 (D),

Qip—itp+1 = (_1)i+"+l(
for i=p+1,...,u +r, which together with a,,,, =0 (p) gives us succes-
sively

. i—1
ai,r~i+u+lE(_l)l+u+l< u )al,r (p)

fori=u+1,..,u+r.
Thus the statement in (I) holds for m = u.
This proves (I).
1
Proof of (IT): Suppose that r is odd and put i = r_—%_

Using (I) for m = 0 we see that
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Air—1+1 = (—1)i+1a1,r =0 (p
Since i = r — i + 1, this contradicts (1) because p is odd. So, r is even.
Suppose that r < n — 2. Then we may use (I) for (m = 1,i = 1) and for (m = 1,
i =r + 1) (recall that r = 3). Using (1) this gives
0= —a;,41 =04, =(— 1)’“"‘1“ (2]

andsor =0 (p) because of (6).
Suppose that p + 1 < r < n — p. From the above it follows that r =0 (p).
We may use (I) for m = p — 1 and i = p. This gives

ap,r = al,r E‘E 0 (p)'
Since r =0 (p), we then deduce from (S)thatp +r=ro + 1.

DEerFINITION. We define the function f(n) for natural numbers n = 2 as follows.
If v is a non-negative integer such that:

2pv g n § 2pv+l’

fln) = 2p* [ 2'1’, }

PROPOSITION 3. Let G be a concatenated, straight p-group (p odd) of order p".
Let d =w(G) and let s be the largest non-negative integer such that
d>p* '(p — 1). Let a; j for i, je N be the invariants of G associated with degree of
commutativity 0. Assume that

a;,;=0 (p) fpr i+j=3p

Then the following statements hold.
O Ifnsd+pt' + p°— 1then

a,; =0 (p) for i+j< fn)
(I) Ifd = p(p — 1) and n = p*** + p° then G has degree of commutativity 1.

we put

Proor. Proof of (I): For u =0,...,s we put
nu = [np‘u]’
and
al) = apu; pu; for i jeN.

Then for u =0,...,s we have
(1) a¥) = —a¥) (p) for i+j<n,
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2 as‘,‘}-*-l + 05‘21,,' = af“} (p) for i+j+1=n,
() a¥lal),; + a¥ia) i + alalh ;=0 (p) for i+j+k<n,

(1) and (3) follow for arbitrary u from the fact that (1) and (3) hold for u = 0, cf.
Theorem B(1) and B(2). (2) follows from Proposition 1.
We see from the definition of f(n) that we may assume that n has form

n=2mp' with 1<m<p.
We may also assume that n = 3p*, which gives [ = s. Furthermore,
2 —1=pp-D+pP" +pP—12d+p" +p — 12 n=2mp' 2 2P,
whence s = [. Thus we assume that
n=2mp* with 1<mZp.
Then
n,=2mp*"* for u=0,...,s.
Now we show by induction on s — u that if ue{0,...,s} then
a=0 (p) for i+j=f(n,)

For p = 0 this is precisely the statement in (I).
Suppose first that 4 = s. By assumption we have

a® =0 (p) for i+j=<3.

We also have ny = 2m < 2p and so f(n,) = n,. Now assume that not all of the
numbers

al; with i+j<n,
are congruent to 0 modulo p. Let r;e N be largest possible such that
a®% =0 (p) for i+j=<r,

Then 3 < r;, £ ny, — 1. Now we see that we may use proposition 2 with r = r;and
ro = ng (note that ng < 2p, and that we must have

a®,, £0 (p),
because of (2)). So, r, is even. If ry < ng, — 2 then r, is divisible by p and so
rs22p 2n,

Consequently, we have r, = n; — 1, and since r, and n, are both even, we get
rs = ng, contradiction.
Suppose then that 4 < s and that
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@t =0 (p) for i+j= S,y
Assume that not all of the numbers
a¥) with i+j<n,
are congruent to 0 modulo p, and let r, € N be largest possible such that
ab=0 (p) for i+j=r,

Then we have r, < n, — 1, and because of the assumptions of the theorem, we
have r, = 3p°™* = p + 1. Furthermore,

aﬁ,‘ifpj = agf‘jﬂ) =0 (p) for p(i+))= Pf("u+1) =phye =Ny

Thus, we see that we may use Proposition 2 withr = r, and ry = n,; note that we
must have

al,ru E.E 0 (p)

So,ifr, <n,—pthenr,=2n, —p+ l;s0r, 2 n, —p + 1. Since u < s, we have
n,=0 (p),andsor, < n, — 2isimpossible since r, would then be divisible by
pandsor, = n,. Hence,r, = n, — 1,andsincer, and n, are both even, we deduce
r, = n,, contradiction.

This proves (I).

Proof of (I1): We use induction on n. For n = p**! + p° the statement follows
from (I) since we have f(n) = n in this case.

Thus we assume that n > p**! + p*. Considering G/G, we deduce from the
induction hypothesis that

a,;=0 (p) for i,jSn—1.
If not all of the numbers g; ; are divisible by p, we find (considering (2)) that
arn-1 %0 (p)
But since n — 1 > d we find using Theorem C that
A n-1=Aa10-1-a=0 (p);
contradiction.

THEOREM 3. Let G be an a-concatenated, straight p-group (p odd) of order p" and
with o of order p*. Let a; ; for i, jeN be G’s invariants associated with degree of
commutativity 0, and assume that

a,;=0 (p) for i+j<3ph

Put d = w(G) and let s be the largest non-negative integer with
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d>p'p—1).
Then we have
a,;=0 (p) for i+ j< fmin{nd+p*'+p —1}).
Furthermore, if n = p* + p*~! then G has degree of commutativity 1.

Proor. First note thatd < p*: Forifn = 1 + p* thend < p*~'(p — 1) accord-
ing to Proposition 1. And if n < p* thend < n < p*. So,s < k.
If s £ k — 1 then by using Proposition 3 on

G/Gyips+i4p
we obtain
a;,;=0 (p) for i+j< f(min{n,d+p**' +p*—1}).

Suppose then that s = k. According to Proposition 1 we must then have n < p*.
Using Proposition 3 on

G/ka_l(p" 1)+1>
we find
a,;=0 (p) for i+j<p'(p—1)
But since p* "(p — 1) < d < n < p*, we find
Slmin{n,d + p** + P — 1) = () = pp — 1),
Finally, suppose that n > p* + p*~!. Then according to Proposition 1 we have
d=p(p—1) forsome re{0,....k—1}.

Then s =r < k — 1. Then Proposition 3 and the assumption of the theorem
imply that G has degree of commutativity 1.

Suppose that G is a finite p-group of maximal class of order p” where pis an odd
prime number and n = 4. Then for any maximal subgroup of G there exists an
inner automorphism of G which, when restricted to this subgroup, has order
p and exactly p fixed points (see Theorem 3 in [3]). In particular, the group

G1 = C6(y2(G)/74(G)),

which is a maximal subgroup of G, is a-concatenated for some automorphism a of
order p. Further, the concatenated p-group G, is straight (see Satz III, 14.16 in
[2]and Theorem 6 in [3]). If «; ;are the invariants of G, associated with degree of
commutativity 0, then by definition of G, we have

a;,, =0 (p).
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Note that the order of G, is p" " !. We say that G is exceptional if G, does not have
degree of commutativity 1. We conclude from Theorem 3 that if n = p + 2 then
G is not exceptional. Further, if4 < n < p + 1 then

a,;=0 (p) for i+j=< f(n—1).

But f(n—1)=n—1ifnisodd, and f(n — 1) =n — 2if nis even.

Hence we see that if G is exceptional then n < p + 1 and n is even. Further-
more, G/G, _, which is a finite p-group of maximal class, is never exceptional.
These statements are classical results of Blackburn concerning finite p-groups (p
odd) of maximal class. Thus, Theorem 3 may be viewed as a generalisation of
these results.
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