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SYMBOLIC CALCULUS FOR SUBSPACES OF C,(X)

EGGERT BRIEM

Abstract.

If h is a function which operates on a uniformly closed point separating subspace B of continuous
functions vanishing at infinity on a locally compact space X, and if either h is not odd and
differentiable at 0 or, if h is increasing and h'(0) = oo, then B = Cy(X).

The Stone-Weierstrass theorem says that if X is a compact Hausdorff space
and B is a uniformly closed subspace of C(X), containing the constant functions
and separating the points of X, and if the function h(t) = t* operates on B then
B = C(X). (A function h defined on an interval of the real line is said to operate
on B if hobe B for all be B for which the composite function h o b is defined.) In
[4] K. de Leeuw and Y. Katznelson extended this result by showing that the
function h(t) = t2 can be replaced by any function defined and continuous on an
interval which is not affine, i.e. not of the form h(t) = at + S.

It turns out that there is a somewhat similar result for subspaces of Cy(X),
where X is a locally compact Hausdorff space, but that the proof of the result of
de Leeuw and Katznelson can not be applied to this situation, except in a special
case. To see why, we give a brief sketch of the proof.

First we consider the case where the operating function is twice continuously
differentiable. Differentiating the function

t—ho(b + to),
where b, c € B, twice and then putting t = 0 we find that
(1) c¢2-hobeB.

Since h is not affine, it is possible to choose a constant function b e B such that
k"o b # 0 and then we conclude that

c’eB forall ceB.
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This method also works for subspaces of Cy(X). From (1) we deduce that
c-d-hobeB forall c,deB.
Now,
A:={feCy(X): fB< B}

is clearly an algebra containing the functions d-h”ob. If h is not of the form
h(t) = at on any interval containing 0, then there is for any x € X, a funtion be B
such that h”(b(x)) & 0, and hence, since the functions d-h” b belong to A4, it
follows that if these functions separate the points of X then B = Cy(X).

If his not a smooth function we pick a function ¢ € CJ(R) and form the smooth
function hy = h* ¢. Approximating the integral below by Riemann sums, we
find that if b € B and ¢ has support in a sufficiently small neighbourhood of 0 then

hyob = Jho(b + s)d(s)ds e B,

i.e. the function hy operates on B. If k is not affine, then it is possible to choose
¢ such that hy = h*¢” 0, and thus, h, is a smooth non-affine operating
function.

This proof does not carry over to a subspace B of Cy(X), because if s is a real
number the function b, given by b,(x) = h(b(x) + s) where b € B, does not have to
belong to B. It even does not have to belong to Co(X). Thus a different approach
is needed to deal with subspaces of Co(X). As we shall see, we will make use of the
method invented by de Leeuw and Katznelson.

Let us begin by looking at two very simple examples, which indicate that one
has to make some extra assumptions in the locally compact case.

ExampPLE 1. Let X =[—1,1]\{0}andlet B = {f e C(X): f(¢) = atift < Oand
f(@t) = Btif t > 0}. Clearly, the function h(t) = |t| operates on B.

ExaMPLE2. Let X = [—1,1]\{0} and let B be the space of all continuous odd
functions on X. Then the function h(t) = t* operates on B, and also any continu-
ous odd function on an interval centered at 0.

We are now ready to state the main result of this note.

THEOREM. Let X be alocally compact Hausdorff space and let B be a uniformly
closed subspace of Co(X) separating the points of X in the following strong sense:
Firstly, for each pair x,, x, of points in X there is a function be B such that
[b(x,)| F |b(x,)l, and secondly, the functions in B do not all vanish at some point in X.
Let h be a function defined and continuous on an open interval containing zero, with
h(0) = 0, which operates on B. If either



100 EGGERT BRIEM

i) h is differentiable at 0, and not an odd function on any interval containing 0
or
ii) h is increasing and h'(0) = oo, i.e.
. h(t
llm—(~)— = 00

t~>0

s

then B = Cy(X).
ProoF. For a function by e B we let
B(by) = {beB:|b| £ k|b| for some positive number k > 0}.
Further, let
Albo) = {f € Co(X): f - B(bo) < B(bo)}-

(Here, and elsewhere, “bar” means closure in the sup-norm topology). Clearly
A = A(by)is an algebra. If we can show that A separates points that are separated
by b, it will follow that bye A and hence that b2e B(b,) < B. Since b, is an
arbitrary function in B we will then be able to conclude that B = Cy(X).

Let ceB(by). If r, s and t are sufficiently small real numbers then
ho(rby + tc — shy) € B. Approximating the integral below by Riemann sums, we
see that if ¢ € C§(R) has support in a sufficiently small neighbourhood of 0, then
the function

¢ = Ih o(rbo + tc — sby)p(s)ds
belongs to B. Let us put
2 1
45¢, = _57(014-6 +¢-5 — 2¢,).

Then 42c, € B. If bo(x) = 0 then AZc,(x) = 0.If by(x) + O then, changing variables
and using a mean value theorem for the second derivative, we find that

2 cz(x) ”,
dicdx) = —5— | h(rbo(x) + (t + Ad)c(x) — sbo(x))¢"(s)ds
by(x)
where —1 < A < 1. Putting t = 0 and letting 6 — 0 we get
2
A%c(x):= lim AZcy(x) = cz(x) h(rbo(x) — sbo(x))@"(s) ds
-0 bg(x)

Let us put
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2 d= Jho(rbo — sho)@"(s)ds

Then deB and d(x) =0 if bo(x) = 0. Thus, if we put 4%c(x) =0 whenever
bo(x) = 0 then A%c e Co(X), and since A%c, € B and since 42¢, — 4%c boundedly
as § — 0, it follows that 4%ce B, that is,

2
d
S eB forall ce B(b,)
bs
and hence
ciCad
—-b—z—-e B forall c¢y,c,€B(by)
0

Let us now assume that A satisfies condition i). Replacing h(t) by h(t) — h'(0)t we
may assume that h'(0) = 0 ie. h(t)/t >0 as t » 0, and then cd/b}e A for all
c€ B(by). We are going to show that if b, separates x; and x,, then cd/b? separates
x; and x,, for a suitable choice of ce B(b).

So, let us suppose that by(x,) F by(x,), and that by(x,) F 0. Since his not affine
in any open interval containing 0, we can choose r and ¢ such that d(x;) 0,
where d is defined in (2). If by(x,) = O thend/b, = byd/b3 € A separates x, and x,.
If d(x,)/bo(x1) = d(x3)/bo(x,), we put ¢ = ho(ub,), where u is a real number, and
try to choose u to get separation.

Supposing that [bo(xy)| < |bo(x,)] we put A = bo(x1)/bo(x2). If c(x1)/bo(x1) =
c(x3)/bo(x,) then h(Av) = Ah(v) where v = uby(x,). If this holds for all sufficiently
small v then h(A"v) = A"h(v) for all sufficiently small v. But, since h is not odd,
A% —1 and hence |A| < 1. But then we have a contradiction, because #'(0) = 0
and h is not identically zero in any neighbourhood of 0. We conclude that there
must be a number u such that c(x,)/bo(x;) % c(X;)/bo(x;) and then cd/b3e A
separates x; and x,.

Let us now assume that h satisfies condition ii). Replacing h(t) by h(t) — h(—t)
we may assume that h is odd on some interval containing 0.

We begin by showing that if K is a compact subset of X for which there is
afunction b, € Bsuch that |by| > 0 on K then B| K is dense in C(K). To this end let
b,ceB. Then

jho(rb + tc — sho)@(s)ds|K e BIK

if r and ¢ are sufficiently small real numbers and if ¢ € C¥(R) has support in
a sufficiently small neighbourhood of 0. Here, we write | K for the restriction to
K of a function f defined on X. Differentiating twice w.r.t. the variable t and
putting t = 0 we find that
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6’2

B Jh o(rb — sby)¢"(s)ds|KeB|K forall ceB.
0

Let us put

3) d= Jh o(rb — sby)@"(s)ds

Then c;c,d/b3|K € B| K for all ¢, c, € B. Now, the set
A={feCK):f-B|IK < B|K}

is a uniformly closed algebra containing the constant functions. If we can show
that A separates the points of K, it will follow that A = C(K), and hence that B| K
is dense in C(K).

Let x4, x, € K. Since functions of the form cd/bZ belong to 4, it suffices to show
that a function of this type separates x; and x,. Since his not affine we can choose
b and r such that if d is the function defined in (3) then d(x;) #0. If
d/bo| K = bod/b3| K does not separate x,; and x,, we try to find a function ce B
such that ¢/b, | K separates x; and x,. This is clearly possible if [by(x,)| = |bo(x,)],
because by assumption, there is a function ce€ B such that |c(x,)] < |c(x,)]. If
[bo(x 1)l < |bo(x2)l we putc = ho(uby), where uis a real number. As in the first part
a suitable choice of u will give a function ¢ such that ¢/b, | K separates x, and x,
and then cd/b%| K € A separates x; and x,. We have thus shown that 4|K is
dense in C(K).

In the next step we show that if E and F are disjoint subsets of X, for which
there is a function be B such that b|E < —1 and b|F > 1, and if we put

L=Lgp=inf{||b|:beB, b|E < —1and b|F > 1},

then L = 1.

We choose a sequence {b,} in B such that b,|E < —1, b,|JF >1 and
lim ||b,]| = L. For any sufficiently small positive value of A we consider the
oy
lball "

A
”; “ ) andc,|F>h (m) . Thus by the definition of L,

y -1 y -1
"(ubnn) h"”‘””(nmu) o

Taking the limit we find that
h(4) = Lh (—’1—)

functions ¢, = ho( ) Since h is an increasing odd function, |c,|| = k(1)

and also, ¢, | E < —h<

2 L.

L
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or, equivalently that

A
L
for all sufficiently small positive numbers A. Since h'(0) = oo, and since L = 1, we
deduce that L = 1.

Let us finally show that B = Cy(X). If not, then there is a non-zero measure
ue B, and hence the number

M = sup{flbldl,ul:beBand bl < 1}

is larger than zero.
For any ¢ > 0 we pick a function be B with ||b|| £ 1 such that

Jlbldlul >M —e¢.
We can then choose a compact set K, such that |b| > 0 on K, and such that
J bldul > M —e.
K

Let u = u* — u~ be the Hahn decomposition of y, and let E and F be disjoint
compact subsets of K, such that u*(E) = 4~ (F) = 0, and such that

J |bldul > M —e.
EuUF

As has already been shown, there is a function b, € B such that b, |E < —1,
b, | F > 1, and such that ||b,|| < 1 + & Then,

J byduz pu (E)+ pu*(F) 2 Jlbldlﬂ| >M -z
EuF
Also, since peB*,

>M —g,

X\(EUF) EUF

and hence

anluw > 2M — 2e.
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By the definition of M, this implies that (1 + e)M = 2M — 2e. Since this holds for
all ¢ > 0, it follows that M = 2M, contradicting the fact that M > 0. Thus the
only measure in B* is the zero measure, and hence B = C(X).

REMARK. In the first part of the proof it suffices to assume that the points of
X are separated by functions in B, and that the functions in B do not all vanish at
some point in X.

ExampLE 3. Functions satisfying conditions i) or ii) are f.ex. functions h which
are not odd, satisfying |h(t)] < k|t|* *?, for some positive numbers k and J, and
functions such as h(t) = t!/?, where p is an odd natural number larger than 1. If
h(t) = |t|}/P, where p is an even natural number, operates B, then B = Cy(X). This
is because in that case, the function k(t) = | |t|*? + t|'/? — |t|"/?’, operates on B and
satisfies condition ii). The idea to construct the function k is due to A. Bernard

(1]

ReMARK. Clearly there might be weaker conditions on h which could still
imply that B = Cy(X). It would be interesting to know, whether one can drop the
assumption that h is increasing in condition ii). We finally note, that condition ii)
enters in the proof of Katznelsons square root theorem. (See [2] and [3]).
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