MATH. SCAND. 76 (1995). 152-160

LAPLACE INTEGRAL ON RATIONAL NUMBERS

DRAGU ATANASIU

1. Introduction.

In 1934 D. V. Widder proved [5, p. 325] that a function ¢: I — R defined on an
open interval of real numbers is of the form ¢(f) = [se™du(x), where p is
a positive Radon measure on R, if and only if ¢ is continuous and positive definite
on I, which means that ¢ is continuous and satisfies the following condition: for
each natural number n > 0 and each family of real numbers c,,...,c,, r1,..., 7,
such that r;e 11, we have

Y ciep(ri+ 1) 2 0.
Jk=1

We prove in Section 2 of this paper a similar theorem for a function defined on
an open interval of rational numbers.

In [3] it is proved without using any integral representation that a completely
monotone function on a commutative semigroup with neutral element is positive
definite. We give in Section 3 of this work an analogous result for a function
defined on the set Ja, o[ » Q, where a is a real number.

We obtain in Section 4 a Levy-Khinchin type formula for negative definite
functions defined on an open interval of rational numbers. This formula is of the
same type as that obtained in [4] for negative definite functions defined on
a commutative semigroup without zero.

In Section 5 are given integral representations which extend some results from
[17 on positive and negative definite functions on Q..

2. Laplace integral on an open interval of rational numbers.

Leta,be R U {— 00, 0}, such that a < b. We denote by I' the set Ja,b[ n Q. We
shall say that a function ¢: I' — R is positive definite on I' if for each natural
number n > 0, each family of real numbers c,,...,c, and each family of rational
numbers ry,...,r, from the set 31", we have
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Y. ciap(rj + 1) 2 0.
J k=1
For each rerI let f, be the real function defined on R by f,(x) = ¢*. We shall
say that a function ¢: I' = R can be represented by a Laplace integral if there
exists a positive Radon measure g on R such that the functions (f,),.r are
u integrable and we have

o(r) = j € du(x), rel.
R

We see as in [1], p. 210 that if such a measure exists, it is uniquely determined
by o.

THEOREM 1. A function @: I’ — R can be represented by a Laplace integral if
and only if it is positive definite on I'.

Proor. It is clear that a function which can be represented by a Laplace
integral is positive definite. Let # be the set of all families (a, ), such thata, + 0
only for a finite number of r. We denote by V the real vector space generated by
the family (f,)er-

Let V, be the set

{feV1f() 20, xeR}.

We can easily verify that V is an adapted space (cf. [2], p. 4-04 or [1], p. 42,
2.6). Let f be an element of V. Then there exists a family of real numbers (a,),.r
from & such that f = ,.ra,f,. We can define a linear mapping L,: V — R by
L, rerarfy) = Y rer a:9(r). L, is well defined because the functions (f,),.r are
linearly independent. We shall prove that L, is positiveon V.. Let fe V,, f # 0.

Then there exist a natural number n > 0 and rational numbersr, = L2 .

se*sin

q1

P , where p;,q;€Z,q; > 0and r; <... <r,, such that

n
Pn
flx)= a,leﬁl" + ...+ a, em”.

We denote by z the number e4: 4. The polynomial function g: R — R defined
by g(z) = a,, + ... + a, z% - 1Pn-Prd2dn g positive for z positive.
It follows that there exist four real polynomial functions (P;); <j<4 such that

9(2) = (Py(2))* + (P2(2))* + 2((P3(2))* + (P4(2))’).

Let n; be the degree of the polynomial P;, We write m = max(ny,n,) and
I = max(ns,ny). We have
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1
oM 1*2 §%<ﬁ—ﬂ).
q1---9n q1---qn dn q1

IIA

The fact that ¢ is positive definite on TI', yields that L, is positive on V.

We obtain from a result of Choquet about adapted cones ([2], p. 4-05,
Proposition 2) or ([ 1], p. 43, 2.7) that there exists a positive Radon measure x on
R, such that the functions (f,),. are u integrable for every reI', and we have

o(r) = L,(f,) = j € dp(x).

REMARK 1. In the case when I' = Q, Theorem 1 becomes Proposition 5.10
from [1], p. 211.

ReMARK 2. The Widder’s result from ([ 5], p. 325) is an immediate consequence
of Theorem 1.

THEOREM 2. For a function ¢: I' — R the following conditions are equivalent:

(i) @ is positive definite and there is a rational number o.€ 10, b — a[ such that the
function r— @(r) — @(a + r) is positive definite on la,b — o N Q.

(i) There exists a positive Radon measure y on]— oo, 0], such that the functions
(x+>€™),r are u integrable, which satisfies

o(r) = J e*du(x), rerl.
1= ©,0]
Proor. The implication (ii) = (i) is immediate.

(i) = (ii) Using Theorem 1 we find the positive Radon measures ¢ and o, on
R such that

o(r) = fe' *du(x), rel’

and
or) — pla +71) = Je"‘ do,(x), rela,b—afl.
Then also
o(r) — ola + 1) = j €1 — ) du(x),
s0

I—e'p=(1-e)n+o,

by unicity of the positive representing measure, hence
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(1 - eax)ll = 04,
or ax = 0 for xesupp(u). This shows that supp(u) =] — «,0].
REMARK 3. In the case when I' = ]0, o[ n Q, the function ¢: I' — R has the

integral representation given by Theorem 2, (i) iff it is positive definite and
satisfies the condition:

sup o(s+r)< oo, rel.
se[0, o[nQ

This is a consequence of [4, p. 295, theorem 1].

3. Finite differences and Laplace integral.

Let a be a real number and let I" be the set Ja, o[ » Q. For a rational number
r = 0 we denote by E,: RT = RT the operator defined by E,@(x) = @(x + r).

THEOREM 3. For a function @: I — R the following conditions are equivalent:
(i) For each natural number p > 0 and each family of strictly positive rational
numbersr,,...,r, we have

(EO - Er,)' . (EO - Er‘,)((p)(r) ; 0’ rel.

(i) @ is positive definite on I' and there is a strictly positive rational number
o such that the function r— @(r) — @(a + r) is positive definite on I,

(i) There is a positive Radon measure p on 1 — o0, 0], such that the functions
(x> €™),o are u integrable, which satisfies

o(r) = J edu(x), rel.
1-00,0]

PRrROOF. (ii)<>(iii) is a particular case of Theorem 2. (iii) = (i) is obvious.

(i) = (ii) It is enough to prove that ¢ is positive definite on I'. Let cy,...,c, be
a family of real numbers and ry,...,r, be a family of strictly positive rational
numbers. We suppose thatcy,...,¢, > 0and ¢4 ..., ¢, < 0. Wedenote by M the
number ¢, + ... + ¢; and by P the number —(¢;., + ... + ¢,). We write

X =cE, +...+qE,,
Y= —(c4iE,, + ...+ CE,),
ME,—-X=U, PE,—Y=V
For each natural number m = 2 we denote by Z,, the sum

m :2 2 2p2 :
Z |:J M+ k*P . Zﬂdvip](m)(l;:)Xij‘ijVm‘k-
0

jk= m(m — 1) m J
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We have Z,,(p)(r) = 0for eachrer.
We also can write

z [j(j—l)M2 Kk —1DP* ) jM kP
mm—1) ' mm—1 " m m

Z,=

J k=0

jM? kp? m\(m\ i ivkim—k
Pom—1 Tmm = |\ )V

=(X — Y)2M™P™ +

Mm+1Pm+ Mum+1

m-—1 m—1
Dividing by M™P™ and letting m tend to co we obain (X — Y)*(@)(r) = O for each
re I’ which finishes our proof.

REMARK 4. It results from ([4], p. 303, Lemma 3 and p. 305, Theorem 6) that
the equivalence (i) <> (iii) of Theorem 3 in the case when a = 0is a consequence of
([4], p. 303, Theorem 4).

ReEMARK 5. For the proof of the implication (i) = (ii) of Theorem 3 we have not
used the integral representation from (iii). An analogous proof, for completely
monotone functions defined on a commutative semigroup with neutral element,
is in ([3], p. 318, Theorem 3.1).

4. Negative definite functions on an open interval.

Let I’ and & be as in Section 2. We say that a function ¢: I’ > R is negative
definite on I' if for each natural number n > 0, each family of real numbers
Cy,...,cpsuchthate; + ... + ¢, = Oand each family of rational numbersr,,...,r,
from the interval I" we have

Y. ciao(ri+r) 0.
k=1

THEOREM 4. For a function @: I — R the following conditions are equivalent:

(i) @ is negative definite on I'.

(ii) There are real numbers A, B, C, a, B, such that C =20, >0, and a,
o+ 2Berl and a positive Radon measure u on R\{0}, such that the functions
{xHZ,Er a.e”*|(a,),er€ F, Zref a, =0, Z,er a,e™ 2 0} are p integrable, which
satisfy the relation

(p(r):A-i-Br-CVZ'“J

R

<e' * e — L:—a—e“"(e”" - 1)) du(x).
\(0) B

PrOOF. (i) = (i) is immediate.
(i) = (ii) Consider the set
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V= {f: R\{0} » RIf(x) = T 0., (a,)ere F; lim f(x) = 0; f 2 0}.
rel’ x-0

Define L,: V, — Vi > Rby L(x+— Y ey a,™) = — () ,er a,¢(r)). Remark, as in
Theorem 1, that L, is positive on V.. We denote by C(R\{0}) the vector space
{f: R\{0} — R|f continuous with compact support}. Because (¢** — ¢"*)?> > 0
for u + v and x % 0, it is possible to obtain as in ([1], p. 43, Theorem 2.7) a real
vector space ¥ > VU C(R\{0}) and a linear function f,q,: 7 - R, positive on
{feV|f = 0}, such that the restriction of L, to V is L, and the restriction of L,
to C(R\{0}) is a positive Radon measure u on R\{0} for which the functions from
V. are pintegrable and we have L,(f) 2 [qyo, fdu for each fe V.. Let us choose
rational numbers a and f such thato,a + 2" and § > 0. We take an arbitrary
element r of I" and find rational numbers y and ¢ such that

a<y<a<a+2f<d<b and y<r<i.

We denote by c(r) the number

: —ﬁ_ = and by d(r) the number
— oy \2 .
%((V ; oz) r ; 06), We remark that the function x+oe™ — e** —

c(r)e™(e?* — 1), defined on R\{0},is in V, orin —V,.
Let g: R\{0} — R be the function defined by

x> e — e — c(r)e™(ef* — 1) — d(r)e* (e — 1),
and
h: R\{0} - R
the function defined by
x> (e2% — e%")2 + e*(ef* — 1)%
The function g is in V. — V, and the function his in V,. We have

- lgx)l
lim =
=y H(X)
It results that for each natural number n > 0 there is a compact K, = R\{0}
such that

0 for y=0,—o00,00.

1
lg0al = —hix),  xeR\{OH\K,.

We can choose the K, such that K, < K,.; and UK, = R\{0}. Let
¢,: R\{0} — [0, 1] be a function of C¢(R\{0}) such that ¢,(x) = 1 for xe K,. For
p = nwe have
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1 1
——h=2g—gp,=—h
n n
From the fact that l}, is an increasing linear mapping on ¥ we obtain
L,(9) = lim L,(gp,) = lim f 9o, dp = j gdu.
R\(0) R\{0}

p—© p—r oo

From this relation we have:

(1) —(o(r) — pl@) — cr)(ele + B) — ¢(@) — d(r)p + 28) — 2¢(x + B) + ¢(x))
= f (€™ — e — c(r)e™(e’* — 1) — d(r)e™(e?* — 1)) du(x).
R\{0)
This last relation and the inequality

@ —(o(@ + 2f) — 20(x + ) + ¢(@) 2 J (e’ — 1)* dp(x),

R\(0}
imply our result.

REMARK 6. Because we have

20(r + ) — o) — lr + 2) = 28 + f (1 — oY dut)
R\(0}
for reja,a[ N Q we see, as in [1], p. 215, that A, B, C and u are uniquely
determined by «, f and .

5. Positive and negative definite functions on a half-open interval of rational
numbers.

LetaeR and be R u {00} be such that a < b. We denote by I the set [a, b[ N Q.
We say that a function ¢: I’ — R is positive (resp. negative) definite on I if it
satisfies the same condition as in Section 2 (resp. 4).

We define & as in Section 2.

Let yi,: I’ = R denote the function defined by y,(a) = 1 and y,(r) = 0 for
rela,bl.

PROPOSITION 1. For afunction ¢: I — R the following conditions are equivalent:

(i) @ is positive definite on I.

(ii) Thereis a positive Radon measure p on R, such that the functions (x — €'*),.
are | integrable, and a positive real number A, which satisfy

(p(r) = AX(a)(r) + J‘R e d[l(X), rerl.
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PRrOOF. It is enough to prove (i) = (ii). We find as in the proof of the Theorem
1 a positive Radon measure 4 on R such that the functions (x+ ™), are
integrable and we have

(p(r)-:J e du(x), rela,b[
R

and

ola) 2 J e dy(x).
R

This yields the representation given in (ii).

REMARK 7. We remark, as in Section 2, that u and A are uniquely determined
by ¢. When I' is the set Q. = [0, oco[ n Q we deduce from the Proposition 1 that
the semigroup Q, is perfect; a result proved in ([1], p. 209, 5.6).

PROPOSITION 2. For afunction ¢: I' — R the following conditions are equivalent:

(i) @ is negative definite on I

(i) There are real numbers A, B, C, D, B, such that C, D 20, f >0 and
a+2Berl, and a positive Radon measure p on R\{0}, such that the functions
(x> erae™ (@) er €F, Y rera, =0, Y. crae™ = 0} are p integrable, which
satisfy

@(r) = A + Br — Cr* — Dy, (r)

"j (€ — e — TS (e — 1)) dp().
R\{O} B

ProoOF. Because (ii) => (i) is evident, we only have to prove (i) = (ii).
Without loss of generality we may assume that a = 0.
Consider the set

Vi = {(R\{0) U {—o0} > R|f(x) = L a,e™,

rel

(ar)rel‘e'g'_; lim f(X) = 0’ f = 0}9
x—=0

where €% = 1 and ") = 0 for r > 0.

If reI" and r > 0 the function x> (e™ — 1)>e V, and is strictly positive on
(R\(O}) U {— oo},

It results that we can construct a positive Radon measure p on
(R\{0}) U { — 0}, as in the proof of Theorem 4, such that the analog of the
relations (1) and (2) holds witha = 0and 0 < 28 < b.
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Consequently there are the real numbers A’, B’ and the positive real number
C such that we have the relation

o(r)=A + Br—Cr* — J
(R\(ODU(— o)

<e”‘ 1 %(e”" - 1)> du(x), rel

which is equivalent to the representation given by (ii).

REMARK 8. We see as in Remark 6 that A, B, C, D and u are uniquely
determined by f and ¢. When I' = Q, we reobtain, with Proposition 2, the
integral representation from ([1], p. 231, 5.13).
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