LAPLACE INTEGRAL ON RATIONAL NUMBERS

DRAGU ATANASIU

1. Introduction.

In 1934 D. V. Widder proved [5, p. 325] that a function $\varphi: I \to \mathbb{R}$ defined on an open interval of real numbers is of the form $\varphi(t) = \int_{\mathbb{R}} e^{tx} d\mu(x)$, where μ is a positive Radon measure on R, if and only if φ is continuous and positive definite on I, which means that φ is continuous and satisfies the following condition: for each natural number n > 0 and each family of real numbers $c_1, \ldots, c_n, r_1, \ldots, r_n$, such that $r_i \in \frac{1}{2}I$, we have

$$\sum_{i,k=1}^{n} c_i c_k \varphi(r_j + r_k) \ge 0.$$

We prove in Section 2 of this paper a similar theorem for a function defined on an open interval of rational numbers.

In [3] it is proved without using any integral representation that a completely monotone function on a commutative semigroup with neutral element is positive definite. We give in Section 3 of this work an analogous result for a function defined on the set $]a, \infty[\cap \Omega]$, where a is a real number.

We obtain in Section 4 a Levy-Khinchin type formula for negative definite functions defined on an open interval of rational numbers. This formula is of the same type as that obtained in [4] for negative definite functions defined on a commutative semigroup without zero.

In Section 5 are given integral representations which extend some results from $\lceil 1 \rceil$ on positive and negative definite functions on \mathbb{Q}_+ .

2. Laplace integral on an open interval of rational numbers.

Let $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$, such that a < b. We denote by Γ the set $]a, b[\cap \Omega]$. We shall say that a function $\varphi: \Gamma \to \mathbb{R}$ is positive definite on Γ if for each natural number n > 0, each family of real numbers c_1, \ldots, c_n and each family of rational numbers r_1, \ldots, r_n from the set $\frac{1}{2}\Gamma$, we have

Received October 29, 1993.

$$\sum_{j,k=1}^{n} c_j c_k \varphi(r_j + r_k) \ge 0.$$

For each $r \in \Gamma$ let f_r be the real function defined on R by $f_r(x) = e^{rx}$. We shall say that a function $\varphi \colon \Gamma \to \mathbb{R}$ can be represented by a Laplace integral if there exists a positive Radon measure μ on R such that the functions $(f_r)_{r \in \Gamma}$ are μ integrable and we have

$$\varphi(r) = \int_{\mathbb{R}} e^{rx} d\mu(x), \quad r \in \Gamma.$$

We see as in [1], p. 210 that if such a measure exists, it is uniquely determined by φ .

THEOREM 1. A function $\varphi: \Gamma \to \mathbb{R}$ can be represented by a Laplace integral if and only if it is positive definite on Γ .

PROOF. It is clear that a function which can be represented by a Laplace integral is positive definite. Let \mathscr{F} be the set of all families $(a_r)_{r \in \Gamma}$ such that $a_r \neq 0$ only for a finite number of r. We denote by V the real vector space generated by the family $(f_r)_{r \in \Gamma}$.

Let V_{+} be the set

$$\{f \in V \mid f(x) \ge 0, x \in \mathbb{R}\}.$$

We can easily verify that V is an adapted space (cf. [2], p. 4–04 or [1], p. 42, 2.6). Let f be an element of V. Then there exists a family of real numbers $(a_r)_{r\in\Gamma}$ from $\mathscr F$ such that $f=\sum_{r\in\Gamma}a_rf_r$. We can define a linear mapping $L_{\varphi}\colon V\to \mathbb R$ by $L_{\varphi}(\sum_{r\in\Gamma}a_rf_r)=\sum_{r\in\Gamma}a_r\varphi(r)$. L_{φ} is well defined because the functions $(f_r)_{r\in\Gamma}$ are linearly independent. We shall prove that L_{φ} is positive on V_+ . Let $f\in V_+$, $f\neq 0$.

Then there exist a natural number n > 0 and rational numbers $r_1 = \frac{p_1}{q_1}, \dots, r_n = \frac{p_n}{q_n}$

 $\frac{p_n}{q_n}$, where $p_j, q_j \in \mathbb{Z}$, $q_j > 0$ and $r_1 < \ldots < r_n$, such that

$$f(x) = a_{r_1} e_{q_1}^{\underline{p_1}x} + \ldots + a_{r_n} e_{q_n}^{\underline{p_n}x}.$$

We denote by z the number $e^{\frac{x}{q_1...q_n}}$. The polynomial function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(z) = a_{r_1} + \ldots + a_{r_n} z^{q_1...q_{n-1}p_n-p_1q_2...q_n}$ is positive for z positive.

It follows that there exist four real polynomial functions $(P_j)_{1 \le j \le 4}$ such that

$$g(z) = (P_1(z))^2 + (P_2(z))^2 + z((P_3(z))^2 + (P_4(z))^2).$$

Let n_j be the degree of the polynomial P_j . We write $m = \max(n_1, n_2)$ and $l = \max(n_3, n_4)$. We have

$$0 \leq \frac{m}{q_1 \dots q_n}, \frac{l + \frac{1}{2}}{q_1 \dots q_n} \leq \frac{1}{2} \left(\frac{p_n}{q_n} - \frac{p_1}{q_1}\right).$$

The fact that φ is positive definite on Γ , yields that L_{φ} is positive on V_{+} .

We obtain from a result of Choquet about adapted cones ([2], p. 4–05, Proposition 2) or ([1], p. 43, 2.7) that there exists a positive Radon measure μ on R, such that the functions $(f_r)_{r\in\Gamma}$ are μ integrable for every $r\in\Gamma$, and we have

$$\varphi(r) = L_{\varphi}(f_r) = \int_{\mathsf{R}} e^{rx} d\mu(x).$$

REMARK 1. In the case when $\Gamma = Q$, Theorem 1 becomes Proposition 5.10 from [1], p. 211.

REMARK 2. The Widder's result from ([5], p. 325) is an immediate consequence of Theorem 1.

THEOREM 2. For a function $\varphi: \Gamma \to \mathbb{R}$ the following conditions are equivalent:

- (i) φ is positive definite and there is a rational number $\alpha \in]0, b-a[$ such that the function $r \mapsto \varphi(r) \varphi(\alpha + r)$ is positive definite on $]a, b-\alpha[\cap Q]$.
- (ii) There exists a positive Radon measure μ on $]-\infty,0]$, such that the functions $(x\mapsto e^{rx})_{r\in\Gamma}$ are μ integrable, which satisfies

$$\varphi(r) = \int_{1-\infty, 01} e^{rx} d\mu(x), \quad r \in \Gamma.$$

PROOF. The implication (ii) \Rightarrow (i) is immediate.

(i) \Rightarrow (ii) Using Theorem 1 we find the positive Radon measures μ and σ_{α} on R such that

$$\varphi(r) = \int e^{rx} d\mu(x), \quad r \in \Gamma$$

and

$$\varphi(r) - \varphi(\alpha + r) = \int e^{rx} d\sigma_{\alpha}(x), \quad r \in]a, b - \alpha[.$$

Then also

$$\varphi(r) - \varphi(\alpha + r) = \int e^{rx} (1 - e^{\alpha x}) d\mu(x),$$

so

$$(1 - e^{\alpha x})^{+} \mu = (1 - e^{\alpha x})^{-} \mu + \sigma_{\alpha}$$

by unicity of the positive representing measure, hence

$$(1 - e^{\alpha x})\mu = \sigma_{\alpha}$$

or $\alpha x \leq 0$ for $x \in \text{supp}(\mu)$. This shows that $\text{supp}(\mu) \subseteq]-\infty,0]$.

REMARK 3. In the case when $\Gamma =]0, \infty[\cap \Omega]$, the function $\varphi: \Gamma \to \mathbb{R}$ has the integral representation given by Theorem 2, (ii) iff it is positive definite and satisfies the condition:

$$\sup_{s\in[0,\,\infty[\cap\Omega]}\varphi(s+r)<\infty,\quad r\in\Gamma.$$

This is a consequence of [4, p. 295, theorem 1].

3. Finite differences and Laplace integral.

Let a be a real number and let Γ be the set $]a, \infty[\cap Q]$. For a rational number $r \ge 0$ we denote by $E_r: \mathbb{R}^{\Gamma} \to \mathbb{R}^{\Gamma}$ the operator defined by $E_r \varphi(x) = \varphi(x+r)$.

THEOREM 3. For a function $\varphi: \Gamma \to \mathbb{R}$ the following conditions are equivalent:

(i) For each natural number p > 0 and each family of strictly positive rational numbers r_1, \ldots, r_p we have

$$(E_0 - E_{r_1})...(E_0 - E_{r_n})(\varphi)(r) \ge 0, \quad r \in \Gamma.$$

- (ii) φ is positive definite on Γ and there is a strictly positive rational number α such that the function $r \mapsto \varphi(r) \varphi(\alpha + r)$ is positive definite on Γ .
- (iii) There is a positive Radon measure μ on $]-\infty,0]$, such that the functions $(x\mapsto e^{rx})_{r\in\Gamma}$ are μ integrable, which satisfies

$$\varphi(r) = \int_{1-\infty, 0} e^{rx} d\mu(x), \quad r \in \Gamma.$$

PROOF. (ii) ⇔(iii) is a particular case of Theorem 2. (iii) ⇒ (i) is obvious.

(i) \Rightarrow (ii) It is enough to prove that φ is positive definite on Γ . Let c_1, \ldots, c_n be a family of real numbers and r_1, \ldots, r_n be a family of strictly positive rational numbers. We suppose that $c_1, \ldots, c_l > 0$ and $c_{l+1}, \ldots, c_n < 0$. We denote by M the number $c_1 + \ldots + c_l$ and by P the number $-(c_{l+1} + \ldots + c_n)$. We write

$$X = c_1 E_{r_1} + \dots + c_l E_{r_l},$$

$$Y = -(c_{l+1} E_{r_{l+1}} + \dots + c_n E_{r_n}),$$

$$ME_0 - X = U, \quad PE_0 - Y = V.$$

For each natural number $m \ge 2$ we denote by Z_m the sum

$$\sum_{j,k=0}^{m} \left[\frac{j^2 M^2 + k^2 P^2}{m(m-1)} - 2 \frac{jkMP}{m^2} \right] {m \choose j} {m \choose k} X^j U^{m-j} Y^k V^{m-k}.$$

We have $Z_m(\varphi)(r) \ge 0$ for each $r \in \Gamma$.

We also can write

$$Z_{m} = \sum_{j,k=0}^{m} \left[\frac{j(j-1)M^{2}}{m(m-1)} + \frac{k(k-1)P^{2}}{m(m-1)} - 2\frac{jM}{m} \frac{kP}{m} \right]$$

$$+ \frac{jM^{2}}{m(m-1)} + \frac{kP^{2}}{m(m-1)} \left[\binom{m}{j} \binom{m}{k} X^{j} U^{m-j} Y^{k} V^{m-k} \right]$$

$$= (X - Y)^{2} M^{m} P^{m} + \frac{X}{m-1} M^{m+1} P^{m} + \frac{Y}{m-1} M^{m} P^{m+1}$$

Dividing by $M^m P^m$ and letting m tend to ∞ we obtain $(X - Y)^2(\varphi)(r) \ge 0$ for each $r \in \Gamma$ which finishes our proof.

REMARK 4. It results from ([4], p. 303, Lemma 3 and p. 305, Theorem 6) that the equivalence (i) \Leftrightarrow (iii) of Theorem 3 in the case when a = 0 is a consequence of ([4], p. 303, Theorem 4).

REMARK 5. For the proof of the implication (i) \Rightarrow (ii) of Theorem 3 we have not used the integral representation from (iii). An analogous proof, for completely monotone functions defined on a commutative semigroup with neutral element, is in ([3], p. 318, Theorem 3.1).

4. Negative definite functions on an open interval.

Let Γ and \mathscr{F} be as in Section 2. We say that a function $\varphi: \Gamma \to \mathbb{R}$ is negative definite on Γ if for each natural number n > 0, each family of real numbers c_1, \ldots, c_n such that $c_1 + \ldots + c_n = 0$ and each family of rational numbers r_1, \ldots, r_n from the interval $\frac{1}{2}\Gamma$ we have

$$\sum_{j,k=1}^{n} c_j c_k \varphi(r_j + r_k) \leq 0.$$

THEOREM 4. For a function $\varphi: \Gamma \to \mathbb{R}$ the following conditions are equivalent:

- (i) φ is negative definite on Γ .
- (ii) There are real numbers A, B, C, α , β , such that $C \ge 0$, $\beta > 0$, and α , $\alpha + 2\beta \in \Gamma$ and a positive Radon measure μ on $\mathbb{R}\setminus\{0\}$, such that the functions $\{x \mapsto \sum_{r \in \Gamma} a_r e^{rx} \mid (a_r)_{r \in \Gamma} \in \mathscr{F}, \sum_{r \in \Gamma} a_r = 0, \sum_{r \in \Gamma} a_r e^{rx} \ge 0\}$ are μ integrable, which satisfy the relation

$$\varphi(r) = A + Br - Cr^2 - \int_{\mathbb{R}\backslash\{0\}} \left(e^{rx} - e^{\alpha x} - \frac{r-\alpha}{\beta}e^{\alpha x}(e^{\beta x} - 1)\right)d\mu(x).$$

PROOF. (ii) \Rightarrow (i) is immediate.

 $(i) \Rightarrow (ii)$ Consider the set

$$V_{+} = \left\{ f \colon \mathsf{R} \setminus \{0\} \to \mathsf{R} \mid f(x) = \sum_{r \in \Gamma} a_{r} e^{rx}, (a_{r})_{r \in \Gamma} \in \mathscr{F}; \lim_{x \to 0} f(x) = 0; f \ge 0 \right\}.$$

Define $L_{\varphi}\colon V_+ - V_+ \to \mathbb{R}$ by $L_{\varphi}(x \mapsto \sum_{r \in \Gamma} a_r e^{rx}) = -(\sum_{r \in \Gamma} a_r \varphi(r))$. Remark, as in Theorem 1, that L_{φ} is positive on V_+ . We denote by $C^c(\mathbb{R}\setminus\{0\})$ the vector space $\{f\colon \mathbb{R}\setminus\{0\}\to\mathbb{R}\mid f$ continuous with compact support $\}$. Because $(e^{ux}-e^{vx})^2>0$ for $u \neq v$ and $x \neq 0$, it is possible to obtain as in ([1], p. 43, Theorem 2.7) a real vector space $\widetilde{V} \supset V \cup C^c(\mathbb{R}\setminus\{0\})$ and a linear function $\widetilde{L}_{\varphi}\colon \widetilde{V} \to \mathbb{R}$, positive on $\{f\in\widetilde{V}\mid f\geq 0\}$, such that the restriction of \widetilde{L}_{φ} to V is L_{φ} and the restriction of \widetilde{L}_{φ} to $C^c(\mathbb{R}\setminus\{0\})$ is a positive Radon measure μ on $\mathbb{R}\setminus\{0\}$ for which the functions from V_+ are μ integrable and we have $L_{\varphi}(f)\geq \int_{\mathbb{R}\setminus\{0\}} fd\mu$ for each $f\in V_+$. Let us choose rational numbers α and β such that $\alpha, \alpha+2\beta\in\Gamma$ and $\beta>0$. We take an arbitrary element r of Γ and find rational numbers γ and δ such that

$$a < \gamma < \alpha < \alpha + 2\beta < \delta < b$$
 and $\gamma < r < \delta$.

We denote by c(r) the number $\frac{r-\alpha}{\beta}$ and by d(r) the number $\frac{1}{2}\left(\left(\frac{r-\alpha}{\beta}\right)^2-\frac{r-\alpha}{\beta}\right)$. We remark that the function $x\mapsto e^{rx}-e^{\alpha x}-c(r)e^{\alpha x}(e^{\beta x}-1)$, defined on $\mathbb{R}\setminus\{0\}$, is in V_+ or in V_+ . Let $g\colon\mathbb{R}\setminus\{0\}\to\mathbb{R}$ be the function defined by

-,

$$x \mapsto e^{rx} - e^{\alpha x} - c(r)e^{\alpha x}(e^{\beta x} - 1) - d(r)e^{\alpha x}(e^{\beta x} - 1)^2$$

and

$$h: \mathsf{R} \setminus \{0\} \to \mathsf{R}$$

the function defined by

$$x \mapsto (e^{\frac{\gamma}{2}x} - e^{\frac{\delta}{2}x})^2 + e^{\alpha x}(e^{\beta x} - 1)^2$$

The function g is in $V_+ - V_+$ and the function h is in V_+ . We have

$$\lim_{x \to y} \frac{|g(x)|}{h(x)} = 0 \quad \text{for} \quad y = 0, -\infty, \infty.$$

It results that for each natural number n > 0 there is a compact $K_n \subset \mathbb{R} \setminus \{0\}$ such that

$$|g(x)| \le \frac{1}{n} h(x), \quad x \in (\mathbb{R} \setminus \{0\}) \setminus K_n.$$

We can choose the K_n such that $K_n \subset K_{n+1}$ and $\bigcup K_n = \mathbb{R} \setminus \{0\}$. Let $\varphi_n \colon \mathbb{R} \setminus \{0\} \to [0,1]$ be a function of $C^c(\mathbb{R} \setminus \{0\})$ such that $\varphi_n(x) = 1$ for $x \in K_n$. For $p \ge n$ we have

$$-\frac{1}{n}h \le g - g\varphi_p \le \frac{1}{n}h.$$

From the fact that \tilde{L}_{φ} is an increasing linear mapping on \tilde{V} we obtain

$$L_{\varphi}(g) = \lim_{p \to \infty} \tilde{L}_{\varphi}(g\varphi_p) = \lim_{p \to \infty} \int_{\mathsf{R} \setminus \{0\}} g\varphi_p \, d\mu = \int_{\mathsf{R} \setminus \{0\}} g \, d\mu.$$

From this relation we have:

(1)
$$-(\varphi(r) - \varphi(\alpha) - c(r)(\varphi(\alpha + \beta) - \varphi(\alpha)) - d(r)(\varphi(\alpha + 2\beta) - 2\varphi(\alpha + \beta) + \varphi(\alpha)))$$

$$= \int_{\mathbb{R}\setminus\{0\}} (e^{rx} - e^{\alpha x} - c(r)e^{\alpha x}(e^{\beta x} - 1) - d(r)e^{\alpha x}(e^{\beta x} - 1)^2) d\mu(x).$$

This last relation and the inequality

$$(2) \qquad -(\varphi(\alpha+2\beta)-2\varphi(\alpha+\beta)+\varphi(\alpha)) \geq \int_{\mathbb{R}\setminus\{0\}} e^{\alpha x} (e^{\beta x}-1)^2 d\mu(x),$$

imply our result.

REMARK 6. Because we have

$$2\varphi(r+\beta) - \varphi(r) - \varphi(r+2\beta) = 2C\beta^{2} + \int_{\mathbb{R}\setminus\{0\}} e^{rx} (1 - e^{\beta x})^{2} d\mu(x)$$

for $r \in]a, \alpha[\cap Q]$ we see, as in [1], p. 215, that A, B, C and μ are uniquely determined by α , β and φ .

5. Positive and negative definite functions on a half-open interval of rational numbers.

Let $a \in \mathbb{R}$ and $b \in \mathbb{R} \cup \{\infty\}$ be such that a < b. We denote by Γ the set $[a, b[\cap \mathbb{Q}]]$. We say that a function $\varphi: \Gamma \to \mathbb{R}$ is positive (resp. negative) definite on Γ if it satisfies the same condition as in Section 2 (resp. 4).

We define \mathcal{F} as in Section 2.

Let $\chi_{\{a\}}: \Gamma \to \mathbb{R}$ denote the function defined by $\chi_{\{a\}}(a) = 1$ and $\chi_{\{a\}}(r) = 0$ for $r \in]a, b[$.

PROPOSITION 1. For a function φ : $\Gamma \to \mathbb{R}$ the following conditions are equivalent:

- (i) φ is positive definite on Γ .
- (ii) There is a positive Radon measure μ on R, such that the functions $(x \mapsto e^{rx})_{r \in \Gamma}$ are μ integrable, and a positive real number A, which satisfy

$$\varphi(r) = A\chi_{\{a\}}(r) + \int_{\mathbb{R}} e^{rx} d\mu(x), \quad r \in \Gamma.$$

PROOF. It is enough to prove (i) \Rightarrow (ii). We find as in the proof of the Theorem 1 a positive Radon measure μ on R such that the functions $(x \mapsto e^{rx})_{r \in \Gamma}$ are integrable and we have

$$\varphi(r) = \int_{\mathbb{R}} e^{rx} d\mu(x), \quad r \in]a, b[$$

and

$$\varphi(a) \ge \int_{\mathbb{R}} e^{ax} \, d\mu(x).$$

This yields the representation given in (ii).

REMARK 7. We remark, as in Section 2, that μ and A are uniquely determined by φ . When Γ is the set $\mathbb{Q}_+ = [0, \infty[\cap \mathbb{Q} \text{ we deduce from the Proposition 1 that the semigroup <math>\mathbb{Q}_+$ is perfect; a result proved in ([1], p. 209, 5.6).

PROPOSITION 2. For a function $\varphi: \Gamma \to \mathbb{R}$ the following conditions are equivalent:

- (i) φ is negative definite on Γ .
- (ii) There are real numbers A, B, C, D, β , such that C, $D \ge 0$, $\beta > 0$ and $a + 2\beta \in \Gamma$, and a positive Radon measure μ on $\mathbb{R}\setminus\{0\}$, such that the functions $\{x \mapsto \sum_{r \in \Gamma} a_r e^{rx} \mid (a_r)_{r \in \Gamma} \in \mathscr{F}, \sum_{r \in \Gamma} a_r = 0, \sum_{r \in \Gamma} a_r e^{rx} \ge 0\}$ are μ integrable, which satisfy

$$\varphi(r) = A + Br - Cr^{2} - D\chi_{\{a\}}(r)$$

$$\cdot - \int_{\mathbb{R}\setminus\{0\}} (e^{rx} - e^{ax} - \frac{r-a}{\beta} e^{ax} (e^{\beta x} - 1)) d\mu(x).$$

PROOF. Because (ii) \Rightarrow (i) is evident, we only have to prove (i) \Rightarrow (ii). Without loss of generality we may assume that a = 0.

Consider the set

$$\begin{split} V_+ &= \{ (\mathsf{R} \setminus \{0\}) \cup \{-\infty\} \to \mathsf{R} \mid f(x) = \sum_{r \in \Gamma} a_r e^{rx}, \\ (a_r)_{r \in \Gamma} &\in \mathscr{F}; \lim_{x \to 0} f(x) = 0; f \ge 0 \}, \end{split}$$

where $e^{0(-\infty)} = 1$ and $e^{r(-\infty)} = 0$ for r > 0.

If $r \in \Gamma$ and r > 0 the function $x \mapsto (e^{rx} - 1)^2 \in V_+$ and is strictly positive on $(\mathbb{R} \setminus \{0\}) \cup \{-\infty\}$.

It results that we can construct a positive Radon measure μ on $(R\setminus\{0\})\cup\{-\infty\}$, as in the proof of Theorem 4, such that the analog of the relations (1) and (2) holds with $\alpha=0$ and $0<2\beta< b$.

Consequently there are the real numbers A', B' and the positive real number C such that we have the relation

$$\varphi(r) = A' + B'r - Cr^2 - \int_{(\mathbb{R}\setminus\{0\})\cup\{-\infty\}} \left(e^{rx} - 1 - \frac{r}{\beta}(e^{\beta x} - 1)\right) d\mu(x), \quad r \in \Gamma$$

which is equivalent to the representation given by (ii).

REMARK 8. We see as in Remark 6 that A, B, C, D and μ are uniquely determined by β and φ . When $\Gamma = Q_+$ we reobtain, with Proposition 2, the integral representation from ([1], p. 231, 5.13).

REFERENCES

- C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Graduate Texts in Math. 100, 1984.
- G. Choquet, Le problème des moments, Séminaire Choquet, Initiation à l'analyse, 1 ère année (1962), n° 4.
- 3. P. H. Maserick and F. H. Szafraniec, Equivalent definitions of positive definiteness, Pacific J. Math. 110 (1984), 315-324.
- P. Ressel, Positive definite functions on abelian semigroups without zero, In Studies in Analysis (Ed. G.-C. Rota). Adv. Math. Suppl. Studies 4 (1979), 291-310, Academic Press, New York-London.
- 5. D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Bull. Amer. Math. Soc. 40 (1934), 321-326.

DEPARTMENT OF MATHEMATICS CHALMERS UNIVERSITY OF TECHNOLOGY AND THE UNIVERSITY OF GÖTEBORG S-412 96 GÖTEBORG SWEDEN