MATH.SCAND 76 (1995). 161-178

REAL QUADRATIC NUMBER FIELDS WITH
2-CLASS GROUP OF TYPE (2,2)

ELLIOT BENJAMIN AND C. SNYDER

Abstract.

Let k be a real quadratic number field with the 2-Sylow subgroup of its ideal class group isomorphic to
Z/2Z x Z/2Z and with discriminant divisible by a prime congruent to 3 mod 4. We use graph theory to
describe the structure of the Galois group of the second 2-Hilbert class field of k over k.

§ 1. Introduction.

Let k be an algebraic number field and ClI, its ideal class group in the wider sense.
Suppose K is a finite algebraic extension of k. Then there is a canonical
homomorphism

j: Clk d CIK

obtained by extending the ideals of k to K. Then kerj consists of those ideal
classes in k which become principal, i.e., capitulate, in K. One of the main goalsin
capitulation theory is to explicitly determine kerj. Let k, denote the 2-Hilbert
class field of k, i.e., k, is the maximal abelian extension of k which is unramified at
all the (finite and infinite) primes of k and such that [k, : k] is a power of 2. Let
k, = (k,); andlet G = Gal(k,/k). Alsolet CI, , be the 2-Sylow subgroup of C,. If
Cl,.., isisomorphic to the (Klein) four group, then it is well-known, [ 5], [12], that
G is one of five types of groups:

1. Abelian (4)
2. quaternion of order 8 (0)
3. generalized quaternion (of order > §) Q,)
4. dihedral (D)
5. semidihedral (S)

The object of this paper is to classify G when k is a real quadratic number field
with discriminant, D, divisible by a prime congruent to 3 mod 4. This is accom-
plished by determining the capitulation of the ideal classes of k in each of the three

Received November 5, 1993.



162 ELLIOT BENJAMIN AND C. SNYDER

unramified quadratic extensions of k. In light of [8] and [4], this project
completes this classification problem for all quadratic fields with Cl;_, isomor-
phic to the four group.

§2. Preliminaries.

Let Q,., D,,, and S,, denote the quaternion, dihedral, and semidihedral groups,
respectively, of order 2™, where m = 3 and m = 4 for S,,. Notice that @3 = Q and
On = Q,form > 3.Inaddition to these we let 4 (or A4) be the four group. Each of
these groups is generated by two elements, x and y, with the following presenta-
tions:

X" = 2yt =Ly Ixy = x7! for Q,,.
x" =yt =1,y xy=x"! for D,,.
x =yt =1,y Iy =x2"! for S,.
x2=y*=1y xy=x for A.

Let H; = {x), H, = {x?,y>, H; = {x?%, xy) be the three maximal subgroupsin
each of these groups. In Q and A4 each H; is cyclic. In D,, (m > 3), H, and H; are
also dihedral. In Q,, H, and H; are quaternion. Finally in S,,, H, is dihedral
whereas H, is quaternion.

Now suppose k is a number field with CI, , isomorphic to the four group. As
above, let G = Gal(k,/k). Then by Galois theory and class field theory G/G' is
isomorphicto CI; ,. (G’ denotes the commutator subgroup of G.) Thus G is of one
of the five types of groups listed above. We determine the type of G by computing
the order of the capitulation kernel of k in each of the three unramified quadratic
extensions of k and according as each satisfies Taussky’s condition A or B. Recall,
[12], that if K/k is an unramified extension, then

K/k satisfies condition A iff |ker j N Ng,(Clg)| > 1
K/k satisfies condition B iff |ker j N Nk, (Clg)l = 1.

Now, in the case that K/k is an unramified quadratic extension then ker j is
known, [5], to be an elementary subgroup of Cl,,. Moreover
[Cl.»: Nxu(Clg)] = 2. Thus if K/k satisfies condition B, then |ker j| = 2.

Now let F; be the subfield of k, fixed by H; (i = 1,2,3). Then F,, F,, and F;
constitute all of the unramified quadratic extensions of k. Let j;: Cl, — Cl, be the
canonical homomorphisms described earlier. Then using [8], we have the follow-
ing classification of G. (If |ker j{| = 4, we know, from the argument above, that
K;/k satisfies condition 4 and thus in this case we do not write anything for the
condition.)
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ker j11(A4/B) ker j|(4/B) lker j3| (A/B) G
1. 4 4 4 A
2. 24 24 24 Q
3, 4 2B 2B D
4. 24 2B 2B Q,
5. 2B 2B 2B S.

Thus by determining the order of each ker j; and the condition (4 or B) if
|ker j/| = 2, we can determine the type of G.

We now carry out this program for real quadratic number fields with dis-
criminant divisible by a prime congruent to 3 mod 4.

§ 3. Results.

From now on, let k be a real quadratic number field with discriminant, D,
divisible by a prime = 3 mod 4 and with Cl,_, isomorphic to the four group. Then
by genus theory D is divisible by exactly four distinct primes. We compile a list of
possible D. In what follows we use the following notational conventions:

p;, p will denote primes = 1(4)
q;, q will denote primes = 3(4)
r, r; will denote any primes

r* will denote a fundamental discriminant divisible only by the prime r
ie. r* = (— 1) Z'rif ris odd and 2% e {8, —8, —4}.

Let D = r¥r¥r¥rX. Then D is of one of the following types:
- D=q19,9:q4;letrf = —q;(i=1,2,3,4)
. D=4q,q,q;5;letrf = —4,r¥ = —q;(i=1,2,3)
. D=8q1q:q3;letrf = -8, rf=—q;(i=1,2,3)
- D=pipaqugailetrf =p,rf, = —q(i=12)
- D =8pqiqyletrf =8 r¥=prf,=—qi=12)
- D=8pprgiletrf =p,rf=—q,rf=-8(=12)
.D=4pprgletrf=p,r¥=—qri=—-4(=12).

<N O A W -

THEOREM 1. If D is divisible by at least three primes = 3 mod 4, then G is
Abelian.

PROOF. Let D = r¥rir¥rf where r;=3 mod 4 for i=1, 2, 3. Then
K, = k(\/r’fr‘;), K, = k(/r¥r¥), and K5 = k(,/r%r%) are the three unramified
quadratic extensions of k. Each of these fields contains three real quadratic
subfields whose discriminants are all divisible by a prime = 3 mod 4. Thus the
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norms of the fundamental units of all the quadratic fields are positive. Thus by the
main theorem of [1], four ideal classes in k capitulate in K, K,, and K.
Therefore G is Abelian.

Now we consider D of type 4-7, which requires more work. We first determine
conditions on the primes dividing D in order for Cl; , to be elementary. Since D is
divisible by a prime = 3(4), then Clj¥, = Z/2Z x CI, , denotes the narrow class
group of k, [6]. Thus CI; , is elementary iff CI¥, is elementary. We use Redei’s
elementary method to determine when CI¥, is elementary, [11], [10]. Given
D = r¥ririr}, let Ap be the 4 x 4 matrix [a;;] where

*
1 if (’—) =1
aij = T

0 if not

where (%) is the Kronecker symbol. Then CI¥, is elementary iff the rank of the
matrix A is 3 where A = [¢;;] with
aj; if i)
Cii = 4
A Z a;; ]f l =]
1=1
where c;; are considered mod 2.

PROPOSITION 1. If D = r¥ririr¥ is of type 4, 5 or 6, then Cl, , is elemetary iff

(2)-r8[(2)- 12 () ]
e (2)-(2)-(2)-2)

()= -remn(32) - (32)- (2)- ()
ry rs rs ra ra
Proor. (Sketch) For D of type 4-6, we have

_ 1- aji if {i,j} = {3,4}
% = a; if not )
ji

or

Apply the following reduction steps to A (mod 2).
i) add rows 2, 3,4 to row 1,
ii) add columns 1, 2, 4 to column 3;



REAL QUADRATIC NUMBER FIELDS WITH 2-CLASS GROUP OF TYPE (2,2) 165

iii) add appropriate mult. of row 1 to other rows to obtain column 4 =

[1,0,0,07,
iv) add rows 2 and 3 to row 4.
0 0 0 1
Then A is reduced to 00 where B =
€ is C B 0 0 eB=
00
t
[alz Gy Gzt it a“] . In order that 4 have rank 3, B must
a2 +azy +aq; a3 ap

have rank 2. There are two possibilities
Case 1: a,, = 1 in which case
1 01} 1 1 1]
B*[l 0 1] °r[1 1 1]’
Case 2: a,, = 0 in which case
0 0 0|0 * *J 01 0}
B*[* * 0]’[0 0 0}""[0 1 0]'
This leads directly to the desired conclusion.

2)-G)-rolie)-r+(2)-) -
() -18((2)--1=(2)- ]

o (@)@ ef(e)- )
o)) ()]

PrOOF. (Sketch) We have a;; = aj; for i,je{1,2,3}, as; = a4y = asq = 0 and
as3 = 1. We then divide the rest into three cases:
Case 1: a1, = a4 =0
Case2: a4 =0,a,4 = 1;
Case 3: ay4 = a4 = 1.
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By reducing A in each case, we find that:

incase 1, a;;, = az, = lor(ag; ¥ az, & a3 =1),
incase 2,a,, < lora;;=1,

incase 3,a,3 = lora,; =1,

from which the proposition follows.

For D of types 4-7, we make the following conventions: Let K; = k(\/rj),
K, = k(\/ ry),and K3 = k(,/rr;). These are the unramified quadratic extensions
of k. Let j;: Cl, — Clg, denote the homomorphism induced by extension of ideals
from k to K;. Foreach i = 1, 2, 3, let F;; and F;, be the two quadratic subfields

other than k ordered so that F,, = Q(\/Z), Fy, = Q(\/E), F3y = Q(/ryr2). Let
¢ be the fundamental unit (> 1) of k and ;; the fundamental unit of F;;. Notice that

fori = 1, 2, 3 the norm N(g;;) = 1 since the discriminant of F;, is divisible by
a prime = 3 mod 4. On the other hand, for i = 1, 2 N(¢;;) = — 1. Finally we
denote by 4, d; (i = 1, 2, 3) the square-free kernel (skf) of N(1 + ¢), N(1 + &;,)
(i=1,2,3), respectively.

PropPosSITION 3. For D of types 4-7, the following holds:
Fori=1,2 [ker j;| = 2 iff 6 or ;€ K;
|ker j3| = 2 iff Ne3; = —1 & (8 or 865 € K3).
Proor. This follows at once from the theorem of [1] and properties of J;, [9].
Now we obtain more information about 6.

LEMMA 1. Let F be a real quadratic number field with discriminant D and let
n=+1 be a unit of F of norm 1. Then if e = stk N(1 + n), then (e,D/p) =1
for all p| D.

(Here (—, —/p) denotes the Hilbert symbol with respect to p. See e.g. [2] for its
definition and properties.)

ProOF. N(1 + #) = a®> — Db®> for some a,beiZ, not both = 0. Also
N(1 + ) = c?e for some integer ¢ # 0. Hence the equation ex? + Dy? — z? =0
has a nontrivial solution in Q, whence in Q,. But this implies in particular that
(e,D/p) = 1 for all p|D. '

LEMMA 2. Let F be a real quadratic number field with discriminant, D, divisible
by a prime = 3 mod 4. Furthermore suppose the narrow 2-class group, CIf , is
elementary. Let ¢ be the fundamental unit of F. Then stk N(1 + ¢) is the unique
positive integer e satisfying

e|D,e =+ 1,and (e, D/p) = 1 for all primes p|D.
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PrROOF. Recall [2], that an ideal, P, of F is in the principal narrow class genus
iff (NP, D/p) = 1for all p|D. Since CI} , is elementary, the principal narrow class
genus coincides with the principal narrow ideal class. Since D is divisible by
aprime = 3 mod 4, the principal narrow class (genus) contains ambiguous ideals
(cf. [3] pp. 190). But the only principal ambiguous ideals are obtained from (1),
(1+¢), (\/B), and (\/13) (1 + ¢) by dividing each by the largest ideal generated by
arational integer and containing the given ideal. Since (1) and (1 + ¢) are the only
ideals in the prinipal narrow class, we see if e satisfies the statement of the lemma,
then e = stk N(1 + ¢).

Because of Proposition 3 and Lemma 2, we need to compute the Hilbert
symbols of the divisors of D. We simplify the computations by employing some
graph theory.

Let D be a fundamental discriminant (not necessarily positive) of a quadratic
field. Let V(D), the set of vertices of D, be the set of primes, r, dividing D. Let R be
the subset of V(D) x V(D) given by

<12—> = —1lor [(-ri> =—1,iffr,=2andr, = 3(4)]}.
ry ra

Then R determines the edges of a graph with vertices V(D). If (r,,r,) and (r,,r{)
arein R, then we say the edge runs both ways between r; and r, and represent this
by ry .. Il however, (ry,r,) € R but not (r,,r;), then we say the edge runs from

R = {(rlﬁrl)

rytory and denote it by s,
—> e

PROPOSITION 4. Suppose D is the discriminant of a quadratic number field. Let
d be a positive square-free divisor of D, d & 1, D. Also let r be a prime divisor of D.
Finally let N,, = |{q: q is prime, q = 3(4), q| m}| for any positive integer m.

(1) If D = 1(2) or (D = 0(8) & Np = 0(2)), then <£’r—D~> =1l

# of edges from r into V(d) is even ifrtfd

D>>is {even if r|ld & (r=1(4) or r=2)

# ofedgesfrom rinto V(stk(; odd if r|d & r=3()
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(2) If D= 0(8) & Np = 1(2), then(d’D> - le

’
same as (1) if r is odd

even if r=24)d & N;=0Q)
odd if r=2t)d & N; = 1Q2).

. D\\. even if r=2|d & N; =0(2)
f f 2 V| sfk| —
# of edges from 2 into (s (d)) is {odd if r=2[d & N, = 10).

# of edges from 2 into V(d) is

(3) If D = 4(8), then (d’rD> =1l<e

same as (1) if r is odd

Ny = 02) ifr=24d

if r=2 N; =002
l # of edges from 2 into V(D) is {even r ld & N, =02)

odd if r=2]d & N, = 1(2).

PrOOF. (1 & 2) Let D =8%;...p,q,...q, where ae{0,1}. Let d=
2°py...puqy ... q, where be {0,1}. If r 4 2 and r } d, then

(2)-(4)- I 2)-())-()-

iff the number of edges from r into V(d)iseven. If r =2 Yd(sob =0and a = 1)
d’D _ plsD pu’D <11,D qu
r )\ 2 2 2 )7\ 2
3 3 3 3
=(_2_) (3) (i) (_w...(i) (-1
D1 Pu qi q,
@R
P Pu/ \ 41 Py

iff the number of edges from 2 into V(d) is = vt mod 2. ,
Now suppose r|d. First suppose (without loss of generality) »r = p;. Then
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(57)- (o)) (o)) (%)
r) \pm pi )\ b pi )\

-G G o) ()G
D1 P1 D1
()G )G Go)
Ao /\pi/)

-Go) ) G- -

B Py ' Py B

D
iff the number of edges from p, into V<sfk< y >> is even.

Next suppose r = g,. Then, arguing as above, we see

()27 ) (%) ()

iff the number of edges from ¢, into V(sfk( )) is odd.

<d’z”>=<2’z”><’“’ )-(552)(%57)-(%5)
() )- G )-G)G)
() (@) (e
- (5 )-(3)E)0) -

iff the number of edges from 2 into V(sfk (3— ) = vt mod 2.

(3) Let D =4p,...pq,...q. (Notice t = 1(2).) If r is odd then the proof is
similar to the cases above. So let r =2 and first suppose 24td, say
d=py...p.q;..-q, Then

d,D _ pr wa ql’D qv’D — (1 — (1) —
(42)-(252)- ()52 () -1

iff v is even. Finally suppose 2|d, say d = 2p,...p.q; ... q,. Then
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(2-()-6)- (IR (e

iff the number of edges from 2 into V(D) is = v mod 2.

This result will help us determine |ker j;| for i = 1,2,3. When |ker j;| = 2 for
each i, we need to consider whether or not K;/k satisfies condition A or B. We
accomplish this with the help of the following proposition, which is proved in

[13].

PROPOSITION 5. Let F be a quadratic number field with discriminant D. Suppose
D = DD, isafactorization of D into relatively prime fundamental discriminants D,
and D,. If D > 0, we further assume D; >0 for i = 1,2. Let E = F(\/—D‘,) and
suppose A = P; ... P is anideal of F where P; are distinct prime ideals of F such that
the rational primes p; contained in P; divide D,. Then the ideal class (in the wider

- D
sense), A, is in Ng;p(Clg) iff (N/21> = 1.

If F is a real quadratic number field with discriminant, D, divisible by a prime
= 3mod 4 and such that Cl , is elementary, then each genus (in the wider sense),
coincides with an ideal class (in the wider sense). Moreover each genus contains
ambiguous ideals. The principal class contains only the ambiguous ideals whose
norms are 1, 4, D, where & = sfk N(1 + ¢), ¢ the fundamenal unit of F. See [3].
Hence there are always nonprincipal ambiguous ideals in F. For F =k, if
|ker j;| = 2 for i = 1,2,3, then we shall find a nonprincipal ambiguous ideal
whose class is in ker j;. Using Proposition 5, we determine if this class is in
Nk, ,(Cly,) from which we can determine if K;/k satisfies condition A or B.

§4. Description of Tables.

The tables at the end of paper give a complete list of real quadratic fields, k, with
discriminant, D, of types 4-7 for which CI, , is elementary. The second column
displays the graph of such a field. The columns headed by d, d,, J, give the values
of 4, 8,, 8, by using Proposition 4. By Lemma 2, § is uniquely determined.
However §, and 6, may not be uniquely determined. If 6, or J, is not uniquely
determined we say that this case is a type Il ambiguity. For this type of ambiguity
the possible values of 4, or d, are given as an ordered n-tuple. (Actually n is
always 3). Corresponding to these values we write the type of groups of
G = Gal(k,/k) in the last column by an order n-tuple. By Proposition 3 we
determine |ker j;| for i = 1,2, 3 by knowledge of 9, 84, J,, 3. Notice that d5 is not
givensince d; is alwaysr; or r4. Sometimes |ker j;| = 2 or 4 depending on the sign
of N(e3,). We call these cases type I ambiguities. In such cases, the sign of N(e3,)is
given as an ordered pair (+, —) in the third column and again the possible
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corresponding type of groups is given in the last column as an ordered pair. If
lker j;| = 2 fori = 1,2,3 we need to check the conditions of K;/k. This is done in
columns 7, 8, 9 by finding a nonprincipal ambiguous ideal of kK which becomes
principal in K; and then applying Proposition 5.

We now provide an example which shows how the tables were constructed.
Consider D of type 4, case cq. Then D = p,p,q,q, and has graph

p, p,

L

q, q,

By Proposition 1, Cl, , is elementary. Notice that N(g;;) = —1 since

<ﬂ> = —1; hence we do not write anything in column 3. By using Proposition
D2

4, we find 6 = q,q,. By Proposition 3, since é € K2, the set of squares of K 5, we
have |ker j;| = 2. Next, to determine é, and 6, we look at the subgraphs

.p2 p,

q,——q, and L«
respectively, and find, once again using Proposition 4, that 6, = p,, q;, or p,q,
and J, = ¢q,9,. Hence in the column headed §, we have (p,, 4y, p>4,). Now if
8y = p,, then 68, = q,q,p, € K? implying, by Proposition 3, that |ker j,| = 2. If
8y =4q; or p,q, then &, 66,¢K? implying that |kerj,|=4. Since
89, = (q192)* € K2, |ker j,| = 2. Thus in the cases §; = q, or p,q, we see G is
dihedral (D), by the table in § 2. On the other hand, if 6, = p,, then |ker j;| = 2 for
eachi = 1,2,3 and thus we need to check condition A4 or B for K;/k. To this end,
since & = ¢4, we see that the prime ideal p, of k containing p, is nonprincipal
but becomes principal in K ;. Since the number of edges from p, into V(p,qq,)in
the graph of kis = 3 which is odd we see p; ¢ Nk, x(Clk,) by Proposition 5. Hence
ker j; n Ng, x(Clk,) has only one element in it so K,/k satisfies condition B.
Similarly K, /k satisfies condition B. Let q, be the prime ideal of k containing q,.
Then q, is nonprincipal in k but becomes principal when extended to K3, since
the prime of F;, over g, is principal. Since the number of edges from ¢, into
V(pp,)is odd we see, by Proposition 5, that K ;/k satisfies condition B. Thus G is

semidihedral (S)). In the last column under G we put (S, D, D) corresponding to
the triple (p,,q;,p,q;) in the column headed 6;.

§5. More Results.

When looking at the tables we can see that the type of G is determined by the
graph associated with k. We summarize this in the form of a theorem. But first we
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need some terminology. If D = rfr¥r¥r} is of type 4-7, then in the corresponding
graph ry and r, are always the points on the top and r3, r, those on the bottom.
We shall call two graphs equivalent if we can transform one into the other by
flipping the one through a vertical line through the center of the graph (thought of
as a square), by twisting the one by interchanging the two top vertices, or both

operations. For example, the graphsm, {71, and R are all equivalent.

Also by convention e----e shall mean e e, 0—e9, 0——9, OF
——e.

THEOREM 2. Suppose D is of type 4, 5, 6, or 7. Then G = Gal(k,/k) can be
determined in the following way.
(1) Unambiguous cases:

G = Q <> its graph is equivalent to ;

G = A <> its graph is equivalent to

G = Q, <> its graph is equivalent to

G = D <> its graph is equivalent to

(2) Type I Ambiguities

.......

(G=Qg¢>N£3l =-1)

G = D or Q <> its graph is equivalent to M
(G = Q<:>N831 = —1)

(3) Type 11 Ambiguities

G = D or S < its graph is equivalent to ] :
(G=S<=aqa
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G = D or Q, < its graph is equivalent to
(G =0y p)

Here o and f refer to statements involving quadratic and biquadratic residues
of rational integers arising from the primes dividing the discriminant of k. These
statements are rather complicated and are not given here but may be retrieved
from [7]. The main point is that the statements only involve rational integers.

We may also use the graphs to determine which maximal subgroup
(H,, Hy, H;) of G each K; belongs to. If G is D, @,, or S, let K, be the (unique)
unramified quadratic extension of k such that Gal(k,/K,) is cyclic, i.e. H;.
Moreoverif Gis S let K, be the fixed field of H, in k, (which is dihedral) and K, be
the fixed field of H; in k, (which is quaternion). Also denote by q, b, ¢, d the prime

a b

divisors of D such that the associated graph has vertices
c d
THEOREM 3. Suppose D is of type 4, 5, 6, or 7. Then the following hold.
(1) Unambiguous cases:

(2) Type 1 Ambiguities:

G = D or Q, so graph is equivalent to V

if G = D, then K, = k(\/a);
if G = Q,, then K, = k(,/ab).

G = D or Q so graph is equivalent to N
if G = D, then K, = k(,/ab).
(3) Type 11 Ambiguities:

G = D or S so graph is equivalent to :

if G = D, then K, = k(\/a);
if G = S, then K, = k(\/a), K, = k(\/ab), K, = k(,/b).
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G = D or Q, so graph is equivalent to ]

ifG=D,then K, =k(\/ay =~ )
if G = Q,, then K, = k(,/b).

Proor. If G = D, then K, corresponds to the unique K; for which |ker j;| = 4.
Checking the tables yields the result.

If G =Q,, then K, corresponds to the unique K; for which K;/k satisfies
condition A.

If G = S, then each K,/k satisfies condition B and so we cannot determine K,
K,;, and K, by symmetry. However, by applying the transfer maps
t;: G/G' - H;/H|, see [8], we see that kert, = kert; = H, (dihedral); whereas
kert, < H; (quaternion). The tables then give the result. For example, consider
D of type 4, Case ¢o. D = p,p,q,9, and the graph is

PP,

q’ q2

Wesee d = q142,0; = P2,9, = q14, (we are assuming G = §). Then notice that if
P; is the prime ideal of k containing p; (i = 1,2) then P,ekerj; and P; + (1).

Moreover <%2—> = 1. Thus P;e Ng x(Clk,). Thus K3 = K,. If q is the prime
ideal of k containing q, then qekerj; and q # (1). Moreover (%) = 1, thus
1

q€ Ng,x(Clg,) and so K, = K,. By elimination K; = K.

D-type 4 & 5
Pr- P2 ri=pior2ry=pyorp Cond 4/B
q1- -q2

cases | graph sgn Nes; | Oo N I K, |K; |K3 |G

Cy : (+,-) riraqy | rad: riq, B |B A [ (D,Q,)
(&) : (+,-) q q2 9> B |B A [ (D,Q,)
C3 rq192 | 9192 riqy D

Ca r4:92 | 4192 9 D

Cs riq, q: LSUR D
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Cq riragy | (r2,q,r2q1) riq, A B B (D,D,Q,)
Ly
Cg q2 (r2,42.7292) q2 A B B (D,D,Q,)
L .
Co ; q9192 (r2,q1.7291) 9192 B B B (5,D,D)
Cio ; rr2qy | 724,y rdq, A A A Q
Cyy 2 q2 q, q> A A |4 |Q
Ci2 % r2qz raq 4192 A
Cy3 % riqy q2 4192 A
Cia Eg raqz r2q. q1 A
D-type 6
pi- -D2 Cond A/B
2. .q
cases | graph sgn Ne3, | 0o o, 0, K, | K, |Ks |G
€y / (+,-) 2pip2 | 2p2 2p, B B |4 |(D,Q)
€2 i (+,-) q q q B |B |4 [|(D,Q)
€3 2p, 2 2p, D
Cq P29 P24 q D
cs 2pq | 2q 2p, D
Cs 2pyq |2 q D
¢y \ (+,-) 2 2 2 B |B |4 |(D.Q)
g > (+,-) PiP2q | P24 | P4 B |B (A |(D.Q)
[ >< 2p.q 2q 2 D




176

ELLIOT BENJAMIN AND C. SNYDER

€10 XI 2pq |2 P D

C11 7 2p,p2 | 2p2 (2,p1,2py) (D,D,D,)
€12 Z q q (9,P1,P19) (Q,, D, D)
C13 ] 2 2 (2,p1,2p1) Q,,D,S)
Cia h_— P1P2q | P2g (9,p1,P19) (D,D,Q,)
Cys 7 2q 2q (2,p1,2p4) (D, S, D)
Ci6 Z 2q 2q (,p1,P19) (D,S,D)
C17 7 2pip2 | 2p2 2p, Qo

Ci8 Z q q q Q0

Ci9 P1q 2 2p, A

C20 2p, P24 q A

€21 P 2q 2p, A

€22 2p, 2q q A

€23 i 2 2 2 0

C24 E P1P29 | P24 Piq Q

Cas >q D29 2q 2 A

Ca6 X 2p, 2q )2 A |
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D-type 7
P1- P2 Cond A/B
2. .q
cases | graph sgnNey, | Op oy [ K, |K, |Ks |G
¢y >< )2 23 2 D
€2 X p2 p2 2p1q D
C3 >< 2piq 2q 2 D
ca X 2p, 2p, 2p1q b
Cs P 2q Py D
Co [4 P 2p, P D
¢ >4 (+.-) 2pip2 | 2q 2q 4 14 |4 ((D,Q
cg (+,-) 2q 2p, 2p, A |A |4 |(D,Q
[ \ (+,-) 2 2 2 B B A [(D,Q,)
Cio l (+.-) 2pip2q | 2029 | 2puq B |B |4 |(D,Q)
Cit 7 PiP2 P2 (2,p1,2p1) B A B (D, Q4 D)
€12 Z pipz | P2 (p1,29,2pq) |B | A |B |(Q,D,D)
Cy3 7 2q 2q (2,p1,2py) B |B |B |(D,D,S)
Cia Z 2pip2 | 2p2 (p1,29,2p19) |B (B (B |(D,S,D)
Cis X 2p2q | P2 2 A
Cie X 2p, 123 2p1q A
Ci9 X 2p,q 2q 2 A
Cig X 2p, 2p, 2pq A




178

ELLIOT BENJAMIN AND C. SNYDER

Cio 2p, 2q P1 A

C20 2p2q | 2p; P A

€21 2p1p2 2q 2q B B A 0,

Cya 2q 2p, 2p, B B A Q,

23 ] 2 2 (2,p1,2p1) B |4 |B |@,DD)
C2a h—ﬂ 2p1p2q | 2p29 | (p1.29,2p9) |B | A |B |(D,D,Q)
Cas i 2 2 2 A4 |4 @

C26 S 2pip2q | 2029 | 2p1q A4 [A A |0
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