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WEIGHTED CONVOLUTION ALGEBRAS
WITHOUT BOUNDED APPROXIMATE IDENTITIES

M. DESPIC, F. GHAHRAMANI' and S. GRABINER

Abstract.

We characterize the multipliers and derivations on any weighted convolution algebra without
bounded approximate identities and the multipliers of the standard ideals in any weighted convol-
ution algebra. We also characterize compact and weakly compact multipliers for any weighted
convolution algebra. It is shown that the algebra of compact multipliers can be identified with
a radical Banach algebra of absolutely continuous measures, and for some weights the algebra of
compact multipliers can have elements outside of the corresponding weighted convolution algebra.

1. Introduction.

Suppose that w is a weight function on the positive half-line (0, c0) satisfying
w(s 4+ t) < w(s)w(t) and that w is continuous. Let L'(w) be the space of all
equivalence classes of functions on (0, co) integrable with respect to w dt, where dt
denotes the Lebesgue measure on (0, c0). With convolution product

X

(L.1) (f*9)x) = L J(x =gy dy (fgeL(w), ae. xe(0,0))
L'(w)is a Banach algebra. The algebras L!(w) have been the subject of much study
in recent years (see for example [1], [2],[4], [5], [71, (8], [9], [10], [11], [12],
[13], [14] and [18]). When w is bounded near 0, L!(w) has a bounded approxi-
mate identity, for example the sequence e, = nyo y/m,n = 1,2,..., isone of them.
However, that condition is not necessary for the existence of a bounded approxi-
mate identity. In fact, it has been shown by S. Ouzomgi in [16] that L'(w) has
a bounded approximated identity if and only if lim inf, ., w(t) < co.

Bounded approximate identities have shown to be powerful tools in the study
of multipliers, derivations and automorphisms of weighted convolution algebras
with bounded weights. In this paper we show that the known results concerning
the multipliers, and derivations of those L!(w) with a bounded weight extend to
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any LY(w). Furthermore, we characterize the multiplier algebra of any standard
ideal, compact and weakly compact multipliers, and compact derivations on
L'(w). These results are new even for convolution algebras with bounded ap-
proximate identities.

We make use of the so called “Weighted Volterra type” algebras defined below.
Suppose that a > 0 and w is a continuous positive weight function on (0, a). We
let L' (0, a) be the space of equvalence classes of functions integrable with respect
to wdt. Again, with convolution as defined in (1.1) L}(0, a) is a Banach algebra.

For a Radon measure g on R* let o) be the infimum of the support of p, with
o(0) = oo. Then the Titchmarsh convolution theorem states that a(u*v) =
alu) + o(v): for a proof see [4].

Due to continuity of w, if ¢ > 0, then w is bounded on [e,a), so that L(0,q)
contains the prime ideal { f € L'(0, a): «(f) > 0}. When w is bounded on (0, a) the
Banach spaces L (0, a) and L'(0, a) are the same spaces with equivalent norms, so
in this case L (0, a) is just the familiar Volterra algebra L*(0, a). So we assume that
wis unbounded (near 0). Then we have L!,(0, a) properly contained in L}(0, a). We
also note that if w is a weight function on (0, o0), then L} (0, a) can be identified
with quotient of the algebra L!'(w) by the standard ideal I, = {feL'(w):
of) 2 a}.

We start with identifying the multipliers of L%,(0, ).

LEMMA 1.2. Suppose that T is a multiplier on L,(0,a) and let 1,,, = {f: f€
L,(0,a) and a(f) = ¢}. Then

a) T is continuous.

b) I, . is invariant under T.

Proor. a) Continuity of T follows from an application of the closed graph
theorem. In fact, if f, » 0 and T(f,) — g, then for he L.(0, a) with a(h) = 0 we
have g *h = lim T(f,)* h = lim f, * T(h) = 0. Hence g = 0, by the Titchmarsh
convolution theorem.

b) Suppose first that a(f) > e Then f = §,*g, for some ge L'(0,a) with
a(g) > 0. We have g = g, *g,, for some g, and g, in L'(0,a) by the Cohen
factorization theorem, where a(g;) > 0 or a(g,) > 0. Suppose a(g;) > 0. Then g,
and g, * J, are in L. (0, a). Hence

T(f) = T(g1*g2*6)) = T(g1) * g2 *d,
from which it follows that
«T(f)) = T(g1)) + g2 *.) = .
This together with the continuity of T shows that T maps I, , into I,, ,.

THEOREM 1.3. A linear map T on L.,(0, a) is a multiplier if and only if there exists
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a Radon measure p on [0,a) with T(f) = f * p, for every fin L1(0, a) and where
U satisfies

sl [ e pamoyxeo.al <o

PROOF. Suppose that T is a multiplier on L! (0, a). For every e with0 < ¢ < a,
let S, be an operator on L!(0, a) defined by S,(f) = T(d, * f). Then S, is a continu-
ous operator on L'(0, a), since it is the composition of multiplication by &, from
L}0,a) to L'(¢, a) followed by T on L.(¢,a) = L'(¢,a). Now we use this to prove
that S, is a multiplier. Let f and g be in L'(0, a) with afg) > 0. Then, since §, * f
and g are in L!,(0, a) we have

(1.4) S(f*g) =T *f*g)=TO.*f)*g = S,(f)*g.

Since the set of all g with «(g) > 0 is dense in L!(0, a), by continuity of S, we have
S.(f *g) = S.(f)* g, forall f and gin L'(0, a). This shows that S, is a multiplier on
L'(0, a). Thus by a characterization of multipliers of L}(0, a) (see [15, Remark 7])
there exists a measure v, on [0, a) such that S,(f) = f *v,, for every f € L!(0,q).
Hence

(1.5) TG * )= f*v. (feL'(0,a)).

Now we show that a(v,) = ¢. Suppose that f is a non-zero element of L., (0, a) with
of) = 0. Then from (1.5), by the Titchmarsh convolution theorem and by
Lemma 1.2b), we have

(1.6) o f) + alve) 2 ¢,

showing that a(v,) = ¢. Thus, there exists a Radon measure p, on [0, a) with
0. * 4, = v,. Then from (1.5) we have

(1.7) T, *f) = f*d,*p, (feL'(0,a)).
Now from (1.7)
(1.8) T(g)=gx*p. (g€l

since L'(0,a) * 6, = I,, ,.
Suppose ¢ is such that 0 < ¢ < & Then from (1.8), with ¢ replaced by &,
(1.9) T(g) =g*p. (9l o).

From (1.8) and (1.9) it follows that if 0 < &' < ¢, then y, = u, on the interval
[0,a — €]. Hence there exists a unique Radon measure u on [0, a) which coincides
with g, on [0,a — ¢), for every ¢ > 0. Thus from (1.8) we have

(1.10) T(g)=g*p (xg) >0,g€L,(0,a).
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Now suppose that f and g are any elements of L. (0, a), but «(g) > 0. Then from
(1.10) we have

(1.11) T(N)*g=T(f*g)= f*grp=(f*u*g.
Since in (1.11) g is arbitrary, an application of the Titchmarsh convolution
theorem shows that

(1.12) T(f) = f*pu (feL,(0,a)).

Now to prove the assertion concerning the norm | T, let M,[¢a) =
{ve M,(0,a):¢ < a(v)}. We note that M,,[¢, a) = M[¢, a), since wis bounded away
from 0 on [, a). First we show that T, given by T,(v) = v * u, maps M,,[e, a) into
M,[e,a). To this end, let ve M,[e,a). Then for every feL'(0,a) we have
fxvxuell (e a),since f xve Ll (e,a). Thus, fxv*pue L(0,a)and f > f*v*pis
a multiplier on L'(0, a). Hence v * u must have a finite total variation.

1 1
Now, if x =¢, then Oy * = wk*-lim{ ——9d,*u*e, | where ¢, =
w(x) w(x)
Yo, 1mp 1 = 1,2,... and wk* = a(M,,[¢, a), Co([&, a))).
Thus,

=1l

(1. — O+ pul| =

1
—— 0, %
‘T< w(x) )

1

=|T| T)—hm_[ w(x + y)dy

1
( ) ..m‘Wx)ax*en*tu

w w w

< | T| im e,,

()

= || T|, by continuity of w at x.

Since ¢ is arbitrary, from (1.13) we have

: f w(x+y)d|u|(y):xe(0,a)}§nTu.
W(x) [0,a—x)

Conversely, suppose that for some Radon measure p satisfying (1.14) we have
T(f) = f*u(f eL,(0,a)). It suffices to show that f * ue L (0,a). We have

(1.14) sup{

(1.15) J:w(x)dm*fl(x)g f:w(x)d(wmfn(x)

- rf[o _ )W(x + Y diul ()1 f(x) dx

= <J w(x) | f(x)] dX>
(0,a)

X sup{ ! J w(x+y)d|,u|(y):xe(0,a)}.
w(x) [0,a—x)
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Hence,

(1.16)  [IT(Nw = llu* fllw

1
= [fllwsup {_ w(x + y)diul(y):x€(0, a)}

W(x) [0,a—x)

1
Together with (1.13) this shows that | T|| = sup {w—(x)—J‘ wix + y)d|ul(y):
{0,a—x)

xe(0, a)} , and the proof is complete.

CoROLLARY 1.17. (a) A linear operator T is a multiplier of L}(w) if and only if
there exists a Radon measure p on [0, o) such that T(f) = f * u (f € L'(w)) and
such that u satisfies the growth condition

1
(1.13) ITI = Sup{_—j wix + y)d|pl(y):xe(0, OO)} < .
w(X) Jo. w)
(b) A linear mapping T is a multiplier of M(w) if and only if there exists a Radon
measure p satisfying (1.18) and T(v) = v * u, for every v in M(w).

PrOOF. (a) Suppose that T is a multiplier of LYw) and for a >0,
I, = {fe L'(w):«(f) = a}. Then from the equation f * Tg = T(f *g) = T(f)*g
and by the Titchmarsh convolution theorem we have T(I,) = I,. Now by ident-
ifying L0, a) with L!(w)/I,, we obtain a mapping T,: L (0, a) — L0, a), defined
by T.(f + 1,) = T(f) + I,. Itis straightforward to verify that T, is a multiplier of
LL(0,a), and || T,|| £ || T, for all a > 0. Hence by Theorem 1.2 for a > 0, there
exists a Radon measure y, on [0, a) such that T,(f) = f * u, and

1

(1.19) sup {—WJ wix + y)d|p,| (y):x€(0, a)} =Tl
W(X) [0,a—x)

Also it can be easily verified that if a < b, then u,|[0,a) = u,. Thus, there exists

a unique Radon measure u on [0,00) such that p, = u|[0,q), so that,

T(f) = f*pu(fe L (w)). Since || T,|| < || T| we have the growth condition

(1.20) sup{—l—J wx + y)dju(y):0 < x < oo}é I TY.
w(x) J0. )

The reversed inequality follows from calculations similar to (1.15) and (1.16).
(b) Suppose that T is a multiplier of M(w). Again an application of the closed

graph theorem shows that T is continuous. Next we show that L*(w) is invariant

under T. For a > 0 and feL'(w) we have T(6,* f) = T(d,) * f € L(w). Since

every function in L'(w) vanishing outside a compact subset of (0, c0) is of the form

8, % f, where a > 0 and f e L!(w), the set of all §, * f is dense in L'(w). Since T is
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continuous, we have T(L'(w)) = L'(w). Thus, by part (a) there exists a Radon
measure g such that T(f) = f * u, and p satisfies (1.18). Now if v is any measure in
M(w) and f is a non-zero element of L(w), then T(v)* f = T(v* f) = v# f %,
and we have T(v) = v * y, by the Titchmarsh convolution theorem. Conversely,
suppose that uis a measure satisfying (1.18). Then it can be easily verified that for
every ve M(w), _[[0_ oy W(x)d|v* | (x) < co. Hence p, is a multiplier of M(w).

It was shown in [ 7, Theorem 1.4] that when w is bounded near 0, the multiplier
algebra of L!(w) can be identified with M,,[0, o0). The following generalizes that
result.

COROLLARY 1.21. Suppose that L}(w) has a bounded approximate identity. Then
a linear map T is a multiplier of L(w) if and only if for some measure ve M,,(0, o)
and a complex number {, T(f) = f*(v + {8o) (f € LY(w)).

ProoOF. The if part being obvious we assume that T is a multiplier of L'(w).
Then there exists a Radon measure p on [0, o0) such that T(f) = f *u and
u satisfies (1.18). Let { = u({0}). Then u = v + {d,, with v({0}) = 0. We identify
v with its restriction to (0, c0) and we show that ve M,,(0, ). Since L!(w) has
a bounded approximate identity we have liminf,_,+ w(x) = a < oo [16]. Let
(x,) = (0, c0) be a sequence such that x, — 0 and w(x,) — a. From (1.18)

1 1

I + wix, + y)d P (y) = w(x, + y)d |60 +vI(y) = ITIl.
W(x,,) (0, ) W(X,,) [0, ©)

Thus

(1.22) LO )W(x,. + Ay = (T — 1Ehw(x,).

Now by Fatou’s Lemma, from (1.22) we have

w(y)dpl(y) = (ITN = 1a,

(0, )
proving the claim about v.

REMARK 1.23. The following example shows that when L!(w) does not have
a bounded approximate identity then the multiplier algebra can be larger than
the unitization of M,,(0, c0).

Suppose that w is non-increasing on (0, c0) and lim,_, o w(x) = oo, for example
w(x) = e~ "), where n(x) = (x> — 1)/x (see [1, page 80]). Then L,(0,1) § L'(0,1).
Let f e L'(0, 1)\ L!,(0, 1). Extend f to (0, c0) by defining it zero on [ 1, c0). Then the
extended f is notin the unitization M,,(0, o) @ C, but, p, does define a multiplier
on LY(w). In fact, since w is non-increasing we have
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%r wix + ) 1f O dy = j WD) )rdy
x) 0

0o WX

s J ISl dy
0

and (1.18) is fulfilled.

In [3] W. G. Bade, H. G. Dales and K. B. Laursen have given a description of
the multiplier algebra of the unique primary ideal of I1(Z,, w). They show that
some of these algebras have “unusual” properties and therefore belong to a class
of Banach algebras which are suitable as (counter) examples for various pur-
poses. In the same sense, it might be interesting to look at the multiplier algebra
ofany standard ideal I, = {f € L'(w): o(f) 2 a}. Below, we give their description.

COROLLARY 1.24. A linear mapping T is a multiplier of I, if and only if there
exists a Radon measure u on [0, o) with T(f) = f*u(fel,) and

IT1 = sup {—w% e y)d|ul(y):xe[a,oo)} <.
PrOOF. Suppose that T is a multiplier on I,. First we show that for any f'in I,,

(1.25) T(f *d2) = T(f)* b..

To prove this suppose that f and g are non-zero elements of 1,. Then

(1.26) T(f*6.)*g =T(f*d.%g) = T(f)*d.*g,

and (1.25) follows from (1.26) and by the Titchmarsh convolution theorem.
Now define S on L!(w) by S(f) = T(f *é,). We claim that S is a multiplier on
LY(w). To prove this, suppose that f,g e L'(w), then from (1.22)

(1.27) S(f*8)*0s = T(f *g*0a)* 0 = T(f *a%g*0s)
= T(f*(sa)*g*éa = S(f)*g*éa'

Hence S(f *g) = S(f) * g, by the Titchmarsh convolution theorem, showing that
S is a multiplier of L'(w). By Corollary 1.17, there exists a Radon measure v on
[0, c0) such that

(1.28) T(f*3) = S(f) = f*v (feL'(w)

and

(1.29) sup {LJ w(x + y)d|v|(y):xe(0, oo)} < o0.
w(X) Ji0. )

Now in equation (1.28) we let f be a non-zero element of L'(w) with a(f) = 0.
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Then, since T(f *d,)el,, by the Titchmarsh convolution theorem we have
a < a(v). Hence v = ¢, * y, for a unique Radon measure x on [0, o0). Thus from
(1.28)

(1.30) T(g)=g*p (ged,*L'(w)).

From (1.29)

(1.3 sup{ J w(x+y+a)d|u|(y):xe(0,oo)}<oo
w(x) J0. w)

Now if f is any element of I,, then from (1.25) and (1.30) we have
(1.32) T(f)*0a=T(f*0s) = f*a*p.

Hence T(f) = f * u (fe L,), as required.

To calculate the norm of the multiplier T; first we note that if e, = nyo, 1/n>
n=12,...,and ¢ > 0, then wk*-lime, * §, = d,. In fact, if f is any continuous
function on (0, o), then

(1.33) (en*0,, f) = L Jf(x + e)dx — f(e) = <0, /),

by continuity of f Next we show that if x > a, then J,*ueM(w) and
O, * u = wk*-lime, #5, * u. That 3, pe M(w) can be seen from (1.31). Now
suppose x — a = 2¢. Then

(134) ¥ 0xp=e#0,% 0,0, %1 "5 5% S0u % = Sk pt.

Now a calculation similar to (1.13) shows that

(1.35) Sup{w( ) o, W(x +y)d|ul (y)Ixe[a,OO)} =TI

Conversely, if the supremum in (1.35) is finite, then a simple calculation shows
that

(1.36) S *ul = (/1 SUP{ w(x + y)d|ul(y):x€[a, 00)} (fel).

( ) [0, ©)
Hence f+ f = pu is a multiplier on I,. Together (1.35) and (1.36) show that

I —Sup{ w(x + y)d|ul(y): x€[a, 00)}-

( ) [0, o)
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2. Compact Multipliers.

In[1] W. G. Bade and H. G. Dales have described elements f of L'(w) for which
g ¢ * fisacompact operator. Here we characterize all the compact multipliers
of LY(w).

Recall that when w is continuous, a necessary and sufficient condition for the
absence of a bounded approximate identity is lim, _ o w(x) = o0.

Also we recall that the wk*-topology of M,,(0, o) is the topology a(M,,(0, o0),
Co,1w(0, 0)) where Cy 1,,(0, ) is the space of all continuous functions ¢ on
(0, o0) satisfying

fim @x) _ @(x) 0
x—0 W(x) X o0 W(X) ’
with [|o|| = sup ﬂ zx; ‘xe(0, oo)}.

LEMMA 2.1. a) Suppose that L'(w) does not have a bounded approximate ident-
ity. Then if (i;) is a net in M,,(0, c0) with p; <5 u, we have u; * v ¥~ pu* v, for
every v in M,,(0, o0).

b) For any L\w) if {u;:i€l} is a net in M,,(0, 00) with inf{o(w;): i€ I} > O, then
W K, pimplies p;x v XX ux v, for every v in M,,(0, o).

PROOF. a) Suppose p; %5 u. Then for ve M,,(0, 00) and @ € Cg, 1,,(0, o0) we
have

2.2) CUi*v, 9 = J @(x + y)dv(y) dp(x).
(0. 0) J 0, )

First we show that Y(x) = {0, ) @(x + y)dw(y) is in Co,1,,(0, c0). Now for any
sequence (x,) < (0, oo) if x,, - x €(0, c0), then

1 o(x, + )
dv(y) = RA LA
") LO' m)(p(xn + y)dv(y) L)‘ e w(y)

R f LR S/PWNY
(0, )

(2.3)

w(x)
. n t Xp +
by the dominated convergence theorem, since oL+ J) = l V)
w(x,) w(x, + y)

w(x, + y)

) < |lell w(y), showing that  is continuous. Similarly, if x, - co we
w(x,

have by the dominated convergence theorem j o(x, + y)dv(y) = 0.
(0, )

w(X,)

Thus lim, _, ., L Y(x) = 0.
w(x)
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Suppose now x, — 0. We have

1

w(Xn)

w(x, + y)
(0, ) W(x")

since w(x,) > oo, and by the dominated convergence theorem. Thus

= llell dv(y) -0,

f o(x, + y)dv(y)
(0, ©)

1
—WT;)-zl/(x) —0,as x = 0,and Yy € Cg,1,,(0, ). From (2.2) we now have

lim {p;*v, @) = J J o(x + y)dw(y) du(x)
i (0, @) J (0, )

=u*v, 0).

b) Suppose that w is any weight, (u;) = M,,(0, c0) with inf; a(y;) = a > 0, and
ve M(w). If € Co, 1,,4(0, 00), then we have (2.2). Similar to what we did in part a)
we can show that if y(x) = f(o,m) @(x + y)dv(x), then ¢ is continuous and

lim,, Kg; = 0. Now since ([0, a]) = 0, for all i, by redefining y on [0, a], we
: Yx)
can assume that lim, , 7(5 = 0, and the result follows.

THEOREM 2.4. For amultiplier p,: f+ f * y on L'(w) the following are equival-
ent:

a) p, is compact.

b) p, is weakly compact.

c) uis absolutely continuous and if L(w) has a bounded approximate identity
then

1 o]
2.5 lim —— | wx + y)d =0
2.5) Im 25 1, (x + y)dlul (y)
while if L}(w) does not have a bounded approximate identity in addition to (2.5) one
also has

. 1
@8) fm )

f: wix + ) dll () = 0.

d) p, is a compact multiplier on M(w).

e) p, is a weakly compact multiplier on M(w).

PROOF. (a)=>b) is trivial.

(b) = (c). Suppose that p, is weakly compact. Let e, = n[o.1], n= L,2,....

Then by the weak compactness of p, for every x > 0, there exists a subsequence
(en) of (e,) and a measure v in M(w) such that
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(2.7) —(—)6, ek Y,y

Then if f is a non-zero element of L!(w) from (2.7) we have

239) e S

1
Now from (1.34) and (2.8) we have —— 6, * f * u = f *v. Hence by the Titch-

w(x)
. 1 . .
marsh convolution theorem mé,‘ * u = v. From this and (2.7) it follows that
for x > 0,
1 weakly
2.9) —— G xe, xp sy ——

W) ) O

Hence 6, * pis in L'(w), since L'(w) is weakly closed in M(w). Thus yu is absolutely
continuous.

To obtain the growth conditions in the statement c) we first assume that L(w)
does not have a bounded approximate identity. Let x > 0, and (e,) be as before.
Then

1/n
1 n
2.10 ——d*xe,|| =—— w(x + y)dy > 1,as n— oo,
(2.10) “w(x) ") L (x + y)dy

by continuity of w at x. Let N, be the least positive integer such that if n > N,,

then

Ox* e,

1
W) < 2. Since p, is weakly compact, the set
E=U{ 6*e*un>N}

x>0 ( )

is weakly conditionally compact. From (2.9) we have the set
F= { e )5 *UIx > 0} is contained in the weak closure of E. Hence F is

weakly conditionally compact. The mapping dv(t) — w(t) sv(t) is a linear isometric
isomorphism from M, (0,0) onto M(0, ). Hence by the Dieudonné-
Grothendeick characterization of weakly conditionally compact subsets of M(X)
for a locally compact subspace X [6, Theorem 4.22.1(4)] the set

1 L
{-;(—5 Ox*|pl:x > 0} is weakly conditionally compact. Since in separable Ba-

nach spaces bounded sets are metrizable there exists a sequence (x;) < R* and
f € LY(w) such that x; —» oo and
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1
(2.11) ——— 8, x|y = f.
wlx;)

Then for a > 0,

(2.12) '@@,*&*Iﬂl _weakly , £,
Nowmé X', 0,as x — 00. Hence from (2.12) and by Lemma 2.1.a) we have
f *6, = 0,since §, * |u| € L'(w), whence, f = 0. Thus weak-lim, _, . -W%J O %1 =0
Therefore,

jljrolo — W(Y)d((5 ) * D (y) = lim — W(x + y)dlul(y) =

since f Hj3° w(y)f(y)dy is a continuous linear functional on L'(w). A similar
argument shows that the other limit in part c) has to be 0. Thus,

o0 00

(2.13) llmﬁ w(x + y)d|pl(y) = lim "(T w(x + y)d|ul(y) =

Now suppose that L'(w) has a bounded approximate identity. Then if p, is
weakly compact a similar argument to the first case shows that u is absolutely
continuous hence by Remark 1:21, u € L*(w). Then equivalence of (b) and (c) is in
[1, Theorem 2.2].

(c)=>(a). Suppose that y is absolutely continuous and satisfies (2.13). For
n=12..,letf, = X[ AR Then f, is in L'(w) and from (2.13) by [1, Theorem

2.2] py, is a compact multiplier. So it suffices to show that (o, ) converges to p, in
the operator norm topology. Let ¢ > 0, and from (2.13) choose [a,b] < (0, c0)

such that —J w(x + y)d|ul(y) < ¢ when x is not in [a, b]. Then from Corol-

lary 1.17 we have

1 e o]
(2.14) llpy — ps,ll = sup {W(;) L wix + y)d|u — ful (1):x€(0, OO)}

1 e
Se+t SUP{WL wix + y)dlli—f,.l(y)ixe[a,b]}

Forn = 1,2,...,define G,(x) by
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G = —— | wix + ) dlu — 1)
W(X) 0

1 i/n o
= ———(j w(x + y)d |yl (y) + J wix + y)d |yl (y)>.

W(X) 0 n

Then each G, is continuous on [a, b]. In fact for x in [a, b] we have

1 oC
G,(x) = ;V(—X)L W<x - % + y> d(ju — ful * 5a/z> )

and |u| * 8,, € L'(w). Thus continuity of G, follows by the dominated convergence
theorem with w(y) as the dominating function. Now G, (x) < G,(x) and G,
converges to 0 pointwise on [a,b]. Thus, by Dini’s theorem, G, converges
uniformly to 0 on [a,b]. Hence from (2.14) it follows that p, — p,, and p, is
compact, as required.

The implications (d) = (e) = (b) are obvious. Thus to complete the proof of the
theorem it suffices to show that (a) = (d). If p, is compact then by an argument
analogous to that in the proof of (b)=-(c) we see that the set

1
{_w(x) o, xpu:l<x< oo} is conditionally compact. Hence the set K =

{% Oc*u:0 < x < o0,]a| = 1} is conditionally compact. Thus, by Mazur’s
theorem, the closed convex hull co K is also compact. Now if v isin the unit ball of
M(w) with a(v) > 0, then there exists a sequence (v;) in the unit ball of M(w) with
o(v;) = av) and, such that each v;is a convex combination of measures of the form
%5” with0 < x < o0 and |¢| = 1, and v; — v in the weak*-topology of M(w).
w

Then it follows that v * peco K. Hence p, is compact on M(w) as required.

We recall that a weight function w is called regulated at a if for every y > a,
lim,,, XX+
w(x)
shownin [1] that L'(w) contains non-zero elements f with p compact ifand only
if &, < 00, and in this case a,, < o f).

It follows from the argument for (c) = (a) in Theorem 2.4:

= 0. Let a,, = inf{ae(0, 00):w is regulated on [a, 00)}. It was

X o0

COROLLARY 2.15. The ideal of all compact multipliers of L'(w), is the uniform
closure of the regular representation of 1, , and thus it is a radical Banach algebra.

REMARK 2.16. The example introduced in Remark 1.23 with w(x) = ¢ "™ and

x3—1

n(x) = can be used to furnish a compact multiplier p, with f outside of

LY(w). First we note that w is regulated at 0 so that every element of L*(w) acts
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compactly on L'(w) by multiplication [1, Theorem 2.2]. Now let f be as in
Remark 1.23 and let f, = - x;in,1 7 = 1,2,.... Then f e L'(w), whence p, acts
compactly on L!(w). Now by (1.18)

1 1/n
lps, — psll = sup {WL w(x + ») | f()ldy:xe(0, OO)}

i/n
§J [fW)ldy -0, as n— oo,
0
since f € L'(0, 1). Hence p is a compact multiplier, with f ¢ L'(w).

3. Derivations.

In this section we give a characterization of derivations of L!(w). First we note
that by [17; Remark 3 (a)] derivations on L'w) are continuous. If L'(w) is
semisimple, then 0 is the only derivation on L!(w). Therefore, for the remainder of
this section, we assume that L'(w) is radical.

THEOREM 3.1. Suppose that L'(w) is any radical weight. A linear map D is
a derivation on L'(w) if and only if there exists a locally finite measure p on [0, )
such that D(f) = xf * u, where

IDIl = Sup{ w(x + y)d|ul(y):x€(0, 00)}-

( ) [0, )

Proor. For w bounded near 0, this was proved in [7]. So we assume that w is
not necessarily bounded. Especially, L'(w) may or may not have a bounded
approximate identity. The first step is to extend D to the multiplier algebra (recall
that the multiplier algebra can be identified with a space of measures satisfying
(1.18)). We extend D as follows: for every multiplier u define an operator T, on
L'(w) by

(3.2) T.(f) = D(f * ) — D(f) * p.

Then a routine calculation shows that for f, f,in L'(w), T,(f; * f2) = T,(f1) * f>.
Thus T, is a multiplier on L'(w). Thus, by Corollary 1.17, there exists a measure
D(p) such that T,(f) = f * D(u), for every f € L(w), or equivalently

(3.3) D(uxf)— p*D(f) =D *f, (feL'(w)).

From (3.3) and by another application of the Titchmarsh convolution theorem it
easily follows that D is a derivation on the multiplier algebra Mul(L!(w)) whose
restriction to L'(w) is D. Then the remainder of the proof follows the same lines as
the proof for the characterization of derivations of L'(w), when L'(w) has
a bounded approximate identity.
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4. Compact derivations.

THEOREM4.1. Suppose that D is a derivation on L'(w) given by D(f) = xf * u. Then
the following are equivalent.

(a) D is a compact derivation on L'(w).

(b) D is a weakly compact derivation on L(w).

(c) u is absolutely continuous and

X @ x ®
42) lim -—~J‘ w(x + y)djui(y) = lim -——j wix + y)d = 0.
( tm 29 1, 07 lim 259 1, ydlu(y)
(d) D has an extension to a compact derivation on M(w).
(e) D has an extension to a weakly compact derivation on M(w).

PROOF. (a)=>(b) is obvious. The proof of (b) = (c) follows the same lines as
(b) = (c) in the proof of Theorem 2.1. Now we prove that (c) = (d). Suppose that
u is absolutely continuous and (4.2) holds. Then we first show that the set

= {%&*u:xem,o@), lo = I} has a norm compact closure. Suppose

x
Oy X

x) 4, * p | is a sequence of elements of E. By passing to a subsequence we
w(x,

can assume that («,) converges to a number a. Now if (x,) has a subsequence (x,, )
with either x, — o or x, —0, then from (4.2) it follows that norm-lim
O, X,
w(xy,)
there will be a subsequence (x,, ) of (x,) converging to some positive x. For every

(5x"k * = 0. Otherwise (x,) will be bounded away from 0 and co. Then

. 1
a > 0, the Radon measure J,* u belongs to L!(w), since &, * u = -a—D((Sa) and
u was assumed to be absolutely continuous. Hence if 0 < a < x, then
63: * U= 6x *a*éa*u’ 'Ml_)(sx—a*éa*# = 5::*#7
"k e

ApXp

oax
o Wl = 5w,
W) = H S i O

whence norm-lim

Having shown that in any case ( :z;c") Oy, * p) has a convergent subsequence
we conclude that E has a compact closure. Thus by Mazur’s theorem the closed
convex hull To(E) is compact. Now suppose that v is any measure in the unit ball
O
w(x,)
lvill < Jlvll) and v; * f SULIER f, for every f e L}(w). Then from compactness of
€O E and by the Titchmarsh convolution theorem we have D(v)eco E, which
shows that D is compact on M(w).

of M(w). Then there exists a net (v;) with each v; a finite sum ) o, (o) =1,
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Since we obviously have (d) = (a), (d) = (€) = (b) = (c), the equivalence of (a),
(b), (c), (d) and (e) follows.
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