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AUSLANDER’S DELTA, THE QUASIHOMOGENEITY OF
ISOLATED HYPERSURFACE SINGULARITIES AND THE
TATE RESOLUTION OF THE MODULI ALGEBRA

ALEX MARTSINKOVSKY

Abstract.

Let R = S/(f) be a complete isolated hypersurface singularity. We show that R is graded if and only if
the Tate resolution of the moduli algebra R/j(f) is minimal. This criterion is based on the following
general result: if the Tate resolution of a cyclic module of infinite projective dimension over
a hypersurface ring is minimal then the d-invariant of (the completion of) that module is zero.

1. Introduction.

The goal of this paper is to establish yet another characterization of quasi-
homogeneous hypersurface singularities. The fundamental result of K. Saito
asserts that a complete hypersurface sungularity is quasihomogeneous if and
only if the defining series belongs to its own jacobian ideal (assuming the base
field is C). This result was later generalized by Scheja and Wiebe to algebraically
closed fields of characteristic zero. Recently this author noticed (see Prop. 1.1 of
[6]) that the quasihomogeneity of an isolated hypersurface singularity is equival-
ent to the vanishing of Auslander’s é-invariant of the moduli algebra of the
singularity. The é-invariant of a module is the rank of the largest free summand in
the maximal Cohen-Macauly approximation of that module (see [1] and [5] for
details on mCM approximations). Based on the above results, we relate, in this
paper, the quasihomogeneity of an isolated hypersurface singularity to the
minimality of the Tate resolution of its moduli algebra (see the theorem below).

Recall ([8]) that any cyclic module over a commutative noetherian ring
R admits a free resolution with an R-algebra structure on it (see [ibid] for
terminology). It can be constructed via the process of adjoining variables that kill
cycles and is commonly referred to as the Tate resolution. In general it is not
minimal (we now assume that R is local). However Theorem 4 of [8] allows to
construct a large class of modules whose Tate resolutions are minimal. Namely
suppose R = S/F, where the ideal F is generated by a regular sequence, F cmgA,
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where A4 is another ideal of S generated by a regular sequence and myg is the
maximal ideal of S. Then the Tate resolution of the R-module R/A4 (the overbar
denotes reduction modulo F) is minimal. Later it was shown by Gulliksen ([3])
that the Tate resolution of the residue field is always minimal. These results lead
to an interesting problem: for which cyclic modules are their Tate resolutions
minimal? The proof of our theorem rests on a general result, also proved here (see
Prop. 2) which gives a necessary condition for the minimality of the Tate
resolution over a hypersurface ring. For a module of infinite projective dimen-
sion it is formulated in terms of the d-invariant of its completion. More precisely,
the d-invariant must vanish.

At first glance this connection between multiplicative structures on infinite
resolutions and mCM approximations may seem surprising. However it ought to
have been expected. Indeed an mCM approximation (at least over a Gorenstein
ring)is a construct that relates the beginning of a minimal projective resolution to
its infinite part. But a multiplicative structure on a minimal resolution, by its very
definitions, does the same thing. This simple-minded observation explains
roughly the idea behind this paper. (It would be very interesting to see whether,
more generally, the vanishing of the é-invariant is a necessary condition for the
existence of a multiplicative structure on any infinite resolution).

Our main technical tool is a k[t]-module structure on a projective resolution
of a module over a hypersurface ring. Its existence was proved in [2]. Its
relevance to the d-invariant was explained in [7]. For the convenience of the
reader we quickly recall the basic facts about the operator ¢ (see [2] for further
details).

Let S be a commutative regular local ring, xe S and R:= S/(x). If (F., J) is
a complex of free R-modules let (., J) denote a lifting of it to S. Since 02 = 0, we
have that §2 = xt, where fis a degree —2 endomorphism of the graded S- module
F. Lett:=r® R. It is a degree —2 endomorphism of the complex F., which is
defined uniquely up to homotopy. The corresponding homotopy class will be
denoted by the same letter t. One can easily show that the aforementioned
homotopy can be chosen to be an R-module homomorphism (see [ 7]). Therefore,
when (F., 0) is minimal (i.e., the entries of @ belong to the maximal ideal of R) it
makes sense to speak of the surjectivity of t (or of any graded piece t;: F;, , — F; of
it). Namely a representative of t is surjective ifand only if any other representative
is. If (F., 0) happens to be a minimal projective resolution of an R-module N then
the operator ¢ will be denoted ¢(N). In this case t is surjective if and only if the
induced map t: TorX (N, k) — Tork (N, k), where k is the residue field R, is surjec-
tive. We also observe that, as is easily seen, the operator ¢ commutes with
completion.

Our terminology and notation is borrowed from [4]
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2. Main theorem and proof.

Let R = S/(f) be a nonregular hypersurface ring, where S = k[|X,,..., X,|] is
a formal power series ring over an algebraically closed field k of characteristic
zero. Let j(f) < S denote the jacobian ideal of f and let j(f) be its image in R. We
call R an isolated singularity if j(f) is an m,-primary ideal, where mg =
(X1,...,X,). This is equivalent to saying that the moduli algebra R/j(f) is
finite-dimensional over k. The ring R is called (positively) graded if there exists
a k-derivation 6:R — R and a minimal system of generators x,,...,x, of the
maximal ideal of R such that éx; = d;x;, where d; is a positive integer,i = 1,...,n
(for affine algebras this definition is equivalent to the usual one). We can now
state the main result.

THEOREM 1. Under the above assumptions, the hypersurface ring R is graded if
and only of the Tate resolution of the moduli algebra R/j(f) is minimal.

For the proof we need to establish the following result.

PROPOSITION 2. Let S be a commutative regular local ring, xe S, R = S/(x) and
a an ideal of R.
(a) If p.d. a < oo then the Tate resolution of R/a is minimal if and only if a is
generated by a regular sequence.
(b) If p.d. a = oo and the Tate resolution of R/a is minimal then 5(R//\g) = 0, where
R//\g is the completion of R/a.

REMARK. By Prop. 4.1 of [7], we have that [§(R/a) = 0] <> [to(R/a) is surjec-
tive]. Since t commutes with completion and the ring R is local, the matter is
equivalent to saying that t,(R/a) is surjective. Thus the necessary condition (b)
can be reformulated in terms of the module R/a itself (rather then its completion).

We shall also recall

ProposITION 3 (See Prop 1.1 of [6]). Under the assumptions of the theorem
above, the following are equivalent:

1. The moduli algebra R/j(f) is Gorenstein

2. fejlf)

3. fems(f)

4. The maximal Cohen-Macauly approximation of R/j(f) has no free summands.

PROOF OF THE THEOREM. Suppose the Tate resolution of R/j(f) is minimal. If
p.d. R/j(f) is finite then, by Prop. 2, the moduli algebra R/j(f) is Gorenstein,
which, in view of Prop. 3 and Saito’s famous criterion, implies that R is graded. If
p.d. R/j(f) is infinite then, by Prop. 2 we have that §(R/j(f)) = 0, which is, by
Prop. 3 and Saito’s criterion, equivalent to saying that R is graded.
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Conversely, suppose that R is graded. By Saito’s criterion and Prop. 3, we have
that femgj(f),i.e., f = ZI_| cidf/0x;), where c; € mg. By Theorem 4 of [8], the
algebra R<S, Ty,..., T,> with T, of degree 1,i = 1,...,n and S of degree 2 and
with

dT, = 9f/ox; and dS = Y ¢T;
i=1

where 0f/0x; and ¢; are the images of 0f/dx; and, respectively, c; in R, is a free
resolution of the R-module R/j(f). Since ; € mg, we see that the Tate resolution of

R/j(f) is minimal. The theorem is proved.

3. Proof of Proposition 2.

We begin with Part (a). If a is generated by a regular sequence then the minimal
resolution of R/a is given by the Koszul complex on this sequence, which is a Tate
resolution. Conversely, suppose that the Tate resolution of R/a is minimal. Let
Ty,..., T, be all the adjoint variables in degree 1. They correspond to a minimal
set of generators of a. The algebra R(Tj,..., T, is just the Koszul complex on
those variables. This complex has no homology in degree 1, otherwise we would
have to adjoin a variable in degree 2, which would make the projective dimension
of R/a infinite, contrary to the assumption. Therefore the Koszul complex, being
acyclic in degree 1, is acyclic everywhere and, as is well known, in this case g is
generated by a regular sequence. Part (a) is proved.

In the rest of this section we shall prove Part (b). According to the remark after
the statement of the theorem, it suffices to show that the degree 0 part t,(R/a) of
the operator t of R/a is surjective. Now we turn again to the process of adjoining
variables to kill cycles. Since p.d. R/a = oo, we must adjoin at least one variable
U in degree 2 after we have adjoined the degree 1 variables Ty, .. ., T, correspond-
ing to a minimal set of generators of a. The resulting algebra R(U, Ty,..., T, ) is
a complex

o Xy m o X2 X

with the property that X; % 0 for all i > 0. By [2], minimal resolutions over
R become periodic after at most dim R + 1 steps. This implies that no other
variable of even degree can ever be adjoined. Otherwise, since all X; have nonzero
ranks, the betti numbers of R/a would be unbounded. Thus only odd degree
variables can be adjoined to R(U, T, ..., T, >. Moreover, since the betti numbers
are bounded, we can only have a finite number of those variables. Let V be the last
one adjoined. The Tate resolution can then be written as
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oLV oYW YV
(3.1) ~
e TR e D (e ()
where the lower row is just the result of adjoining all other variables to R. By [2],
for any module over a hypersurface ring the operator ¢ is eventually surjective
(more precisely, ¢t;: F;, , — F; is the class of the identity map for i = dim R + 1).
But then the operator ¢ for the top row is eventually surjective. (Indeed, since the
surjectivity does not depend on the choice of a representative, we can choose
a lifing of the differential in (3.1) for which all the maps from the bottom row to
the top one are still zero). However the top row is just a copy of the bottom row
and therefore the operator ¢ for the bottom row is also eventually surjective. We
can now repeat this argument with the variable adjoined just before V' and,
repeating this process of “killing the odd degree variables and resurrecting
cycles” we will, at some point, come back to the algebra R<U,T,...,T,).
According to our argument, the operator ¢ for this complex is eventually surjec-
tive.

In order to compute this operator explicitly, we shall now take a closer look at
the differential of R<U, Ty,..., T,). Let d},. .., a, be a minimal generating set of
a and ay,...,a, their liftings to S. Let the variable U correspond to the cycle
u:=2X!_, AT, where A;empg, i = 1,...,n and let ;e mg be a lifting of 4; to S,
i=1,...,n. Since u is a cycle, we have that X?_; Aia; =0 and therefore
X!, Aia; = ex for some €€ S.

For our purposes, it is convenient to switch to the notation introduced in [6].
More precisely, let X,, denote the degree m part of X := R<U, Ty,..., T,>. Then
the set

{T; T;z'I:,U”,)‘ll <12<.<ll,1+2p=m}

1

where [, p, and m are nonnegative integers, is a basis of the free R-module X,,. Let
I:[I] - [n] be an increasing map from the set [[] of integers {0, 1,. .., [} to the set
of integers [n] = {0,...,n}. Then the aforementioned basis elements can be
symbolically written as T;U'?. Let I; denote the map [I — 1] — [n] defined, for
g=1,...,1— 1, by the formulas

Ifq):=1(g),ifqg <
Iq):=1(q + 1),ifqg =2 j

and let CI denote the complement [n]\ Im(I) of the image of I in [n]. Let also
d (respectively, d,, _ ;) denote the differential of X (respectively, its homogeneous
part X,, - X,,-,). Then
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doT,=d,i=1,...,n
diU =2 AT,

and a trivial calculation shows that
dm— l(TIU(p)) = 2“je[ll(_ 1)]7 ' a,!(j) TI, U(p) + ( - 1)1 TI(Zke[n]A;crl;c)U(p_ b

= Zjey(—= 1Y "y, T, U + (= 1) Zye s AT U Y

We now have an obvious lifting of d,,_ ;, denoted d,,_ , : X,, » X,,, to S:

(32 dp (TUP) = ¥ (=1 'agy T, UP + (=1} ¥ AT RUP Y

jeltl keCI
In order to compute the operator t we need to computed,, _  °d,, and “divide” the
result by x.

Let r, be the row of d,,_ , corresponding to the basis element T,U®, where I is
an increasing map from [/] to [n] with [ + 2p = m — 1, and let v, be the column
of d,, corresponding to the basis element T,U“, where J is an increasing map
from[l'] to[n] with!’ + 2q = m + 1. Thus the entries of r; are the components of
the images of various basis vectors of X,, corresponding to T,U?, and the entries
of v, are the components of the image of T;U“. To finish the proof we need

LEMMA 1. In the above notation, we have that rivy = 0,,¢x, where ryv; is the
usual matrix product, ¢ is an element of S, and 6;; is Kronecker’s delta.

PROOF OF THE LEMMA. First we identify the basis elements of X,, whose images
have nonzero components in row r;. It follows from (1) that, up to sign, those
elements are precisely {T; T,U"”|ge CI} and {T;, U%*"| f €[I]} (one of the two
sets may be empty). Up to sign, the components of their images in row r; are,
respectively, a, and 4.

On the other hand,

d(T,U?) = Z (— D" Yayo T, U + (- 1" z WL TUY™D
jell] heCJ

and, therefore, the nonzero entries in v, correspond to the elements of the two
new sets {T; U9 |ie[I']} and {T, T,U“" V| he CJ}. If the two pairs of sets have
no common elements thenr,v, = 0and, obviously, I & J,and we have nothing to
prove. Thus we may assume that the two pairs have an element in common. This
possibility can be realized in the following ways:

1. TI'I;U“’) — j__TJ‘_Um)

2. TI'I;U(p) - iTJ'I;,U(q—I)

3. T;IU(IH 1) _ + TJ'.U(")

4. Tlfu(pﬂ) =+ TJThU(trl)
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We begin with

Case 1) We have that p = g and Im J\{J(i)} = Im I U {g}. In particular I # J
and gelmJ, i.e., g = J(e) for some ee[l"]. Graphically this situation can be
represented as follows:

° ° e o o o Iml
e O ¢ O e @ o o ImJ
g=J) JO)

Here the black dots correspond to the elements of Im I » ImJ (we have also
assumed that e < i). The contribution to r,v; from T; Ty, U® = + T; U9 is
(—1)° " 'aye(—1)"'ayu. But we also have that T; T,, U = + T, U (i.e., we
are again in case 1)), and the corresponding contribution is (—1)'"2a
(—1)°"'ay,, which cancels the previously computed product. Comparing p and
g we see that no other case can be realized simultaneously with case 1). Thus in
case 1) we have both r;v, = 0 and 6;; = 0.

The same argument proves the lemma in Case 4).

Next we turn to Case 2). Now we have that p=¢g— 1 and ImI U {g} =
ImJ U {h}.

First we want to consider the case I & J. Under our assumptions, [I + J] <
[g + h]. Itis clear that in this case = I', h = I(j) and g = J(e) for some e, je[1].
Graphically, we are in the following situation:

h = I(j)
° e ©¢ O ¢ ¢ ¢ o ImI/
e O o o e ¢ o o ImJ

g=1J

where again the black dots indicate the elements of ImI » ImJ. We have also
assumed that g < h.

Now we want to compute the coefficient of the image, under d,,_,, of
+ T, T,U by the basis element T,U®. To this end we put the elements of
ImI U {g} in the increasing order and then apply formula (1). Then have that the
desired coefficient equals (— 1)*@P~!q_ where ¢(g, I) is the ordinal number of g in
ImI U {g}. Because of the assumption g < h, we have that the ordinal number of
ginImI U {g} is the same as the ordinal number of g in J, which equals e. Thus
the element of r; corresponding to + T; T, U'” equals (— 1)° ™ 'a,. Next we want
to compute the coefficient of the image, under d,,, of T;U? by the element
T, T,U“™ Y, This time, to order ImJ U {h} we first move h to the leftmost position,
which contributes the coefficient (— 1)’ *!, then move it to the place correspond-
ing to its ordinal number which is one more then its ordinal number in Im I (see
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picture above). The latter move contributes the coefficient (—1y*!. Utilizing
formula (1) we obtain the desired coefficient (—1)! 4, (— 1)’ V1 (= 1! = (= 1) 4,.
Thus the total contribution to r;v; from case 2) is (—1)° ™! */a 4.

But we also have that T, U?* ! = T, U9, j.e., there will be a contribution to
rivy from case 3). In fact, as is easily seen, case 3) happens exactly when case 2)
does. (One can make Im I and ImJ equal by either adding one element to each or
removing one element from each!) Assuming we are in case 3), the coefficient of
the image of T;, U?* " by T,U® equals (— 1) "' 4,(— )'(— 1y = (—1)"'4,. On
the other hand, the coefficient of the image of T,U'? by T; U'? equals(—1)°"'q,.
Thus the total contribution from case 3) equals (—1)°*/a,4,, which cancels the
contribution from case 2). The same proof works in the case g > h. Thus we have
that r;v; = 0 whenever I £ J.

We now consider the only remaining possibility in case 2). I = J. Now
T T,UP = T,T,U% Yforallge CI = CJand T, U?"V = T; U for all fe[I].
The corresponding contributions are X,.c;a,4, and X, .y a,4, which add up to
¥, a;A; = ex. This finishes the proof of the lemma.

Returning now to the proof of Proposition 1 we see that, for each component,
the operator t for R(U, T,. .., T, > can be chosen to be (d;;¢) (as a matrix). Since it
is eventually surjective, we have that ¢ is a unit. Therefore the operator ¢t of
R{U,T,,..., T, is surjective. But its degree zero part is, by construction, the
degree zero part ty(R/a) of the operator ¢t to R/a. This finishes the proof of the
theorem.

REMARK. Since ¢ turned out to be a unit, we have that x = ¢~ ' Z'_ | a;4,, i.e.,
x emga‘, where a‘ is the contraction of a to S.
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