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ON THE BIFURCATION VARIETY OF SOME
NON-ISOLATED SINGULARITIES

ALEXANDRU ZAHARIA

Abstract.

We show that for some simple non-isolated singularities f: (C**™,0) — (C, 0) with smooth critical set
of dimension k, the complement of the bifurcation variety of f is a space of type K(m, 1), if
min(m, k) < 2.

1. The bifurcation variety.

1.1. Let k,n,meN be positive numbers such that n=k+m and let
f:(C",0) - (C,0) be a holomorphic map germ such that the critical set of f is
smooth and of dimension k. Then we can choose coordinates z = (zy,...,z,) =
(%, ) = (X154 2y Xgs V1s---» V) in C" = C* x C™ such that the singular locus of
f becomes H:= C* x {0} = {y = 0}. Then fe(y)* and, as in [11], [12], the
extended tangent space of (the orbit of) f with respect to the action of the group
9y 1s defined by (see also [16], [17] for some notations used here):

) @
wni=(L)+o(Z),

while the extended codimension of (the orbit of) f is:

c(f):= dimc(y—)z,.

7e(f)

We shall suppose that v:= c,(f) < co. Hence there exists an I-universal unfold-
ing for f,in the sense of [11], [12] or [5]. Namely, there exists a map germ

F:(C" x C",0) > (C x C",0)

such that, if A = (4,,...,4,)€ C" denotes the coordinates in C”, the following
conditions are fulfilled:
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() F(z,4) = (f(z, 4,4

(i) f(z0)= f(z)

(i) f(-,A)e(y)?* for any Ae(C",0)

(iv) fis a versal deformation of f,i.e. the functions
o

73,1_,.("0) for i=1,...,v

give rise to a basis of the C-vector space (y)?/7.(f).

1.2. Itis known that for 1€ C’ generic and sufficiently small, the deformation
£(-, ) of f has only a finite number of singular points of type A4, outside H and in
aneighbourhood of 0 C" (see [ 14] or Lemma (5.3.2) in [17]). We shall denote by
o + 1 the maximum number of critical values for the deformation f(-,A): C" - C
of f. Note that this includes 0 as a critical value. We define the bifurcation variety
of f as being the germ at O e C" of the following set:

Bif(f)= {,leC“|f(-,l): C" — C has not ¢ + 1 critical values}

From the universality property of the unfolding F it follows that the germ
Bif(f) depends only on f, up to an analytic isomorphism, since v = ¢,(f).

Our aim is to show that the complement of the bifurcation variety of f is
a space of type K(x, 1), if min(m, k) < 2 and f is a simple non-isolated singularity
asin (1.1). For k = 1, this result was obtained by V. V. Goryunov, see [6].

1.3. Now we shall give another characterization of Bi f(f). Firstly, we shall
consider the singular locus, X, of the unfolding F:
o

—((z,A)=0, j=1,....,m,.
aZj(z,) , j=1, m}

Y= {(Z,A)EC" x C*

It is clear that H x C* < Z. Let ' denotes the closure of the complement of
H x Cin X:
Y i=Y\(H x C).
Let us choose a representative for the germ f, denoted also by f and defined on
a neighbourhood Q of 0 C". Let U be a neighbourhood of 0e C*. If @ and U are
sufficiently small, then we can assume that X’ does not intersects 0Q2 x U. Indeed,
for the projection
mC'x C' -C mn(z,A) =4,

we have:
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7~ Y(4) n T = {singular locus of the function f(-,4)} x {i} =
= (H x {4}) U ({a finite set of points non-situated on H} x {4}).

Y’ corresponds to this set of points, which, for 1 € C¥ generic and sufficiently small,
are exactly the points of type A, of the deformation f(-, A).

1.4. It follows that if £’ 4 @, then the restriction of the projection
my U

is proper and with finite fibres. Now, as in [8], we can find a thin subset Q of
U such that the restriction

Y nn Y (U\Q)— U\Q

is a finite covering with o sheets. (Recall that ¢ is the maximum number of 4,
points which can appear in a deformation of f.) For Ae U\Q, we put:

1) = {z,), ..., 2D} x {4}

and we denote by a;(4) the value of the symmetric function of degree j computed
in the point

(=F @A, 2., =F(z4(2), )

for j=1,...,0. Then a;(4) is a holomorphic and locally bounded function on
U\Q. Now, considering the polynomial

AT ) =T + a(HT + - + a,(» M.
we can prove, as in [8], the following

THEOREM. Let f be asin(1.1)and let us suppose that Bi f(f) % 0. Then Bi f(f)is
ahypersurfacein U; namely, Bi f( f) is exactly the zero set of the discriminant 6 € Oy
of the polynomial A(T, A).

1.5. Another description of Bi f(f) is as follows. Let us denote by P the space
of monic polynomials of degree o,

P ={T"+c,T° '+ +¢,lcy,...,c,€C},
and let us consider the map
e:U—->P°, @A) =T +a (AT "'+ + a,(A).

Here, the functions a;(4) are the extensions by continuity of those constructed in
(1.4). Then ¢(2) = T 'A(T, ) and Bif(f) = ¢~ '(4), where 4 = P? is such that
the complement P?\ 4 coincides with the space of polynomials for which Oe C is
not a root and without multiple roots. Looking at the roots of a polynomial, it is
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clear that P\ 4 coincides with the configuration space C,(C\{0}) of a set of
o unordered points in C\{0}; see [7], for the notations not defined here. On the
other hand, if F,(C\{0}) is the configuration space of a set of ¢ ordered points in
C\{0}, then the group Perm, of all permutations of the set {1,...,0} acts on
F,(C\{0}) and we have

F,C\[0})

CAC\O) = =5

Now it follows that P\ 4 is a space of type K(n, 1) since F,(C\{0}) has such
a property, see [ 7], the proof of Corollary 2.3, or [4].
2. Some simple germs.
2.1. We shall give now the lists of &,,-simple germs, supposing that
min(m, k) < 2.
We recall first the case of isolated line singularities, considered in [13]:
THEOREM (Case: £ smooth of dimension 1). If the coordinates in (C",0) are

denoted by X, y,,. .., Ym, thenthe 9 ,,-simple germs in (y)* are those listed in Table 1.

TABLE l: k =dimX =1

Name Normal form Conditions v o
A» = D(1,0) Yito+ym - 0 0
D, =D(1,1) xyi+yi+o+ - 0 0

Ji. o VA + X+ pi 4+ 92 k=2 k—1 k—1

T2 VIOA 2+ X+ y2 + -+ y2 k=4 k—2 k—2

Zi Yileyy + X+ y3 4y kz1 k+2 k+2

Wi VI +x) +yh 4+ +y2 - 4 4

Tooar Xyya+ W+ Y+ yi o+ YR q=r=3 q+r—4 qg+r—4

O xy3 +y3+ XM+ i+ + s k=4 k+1 k+1

St XYy +yiva + Xy i 4+ - 4 4
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The case when the codimension of X is 1 follows from [2], see for example [6],
[15], and is described by the following

2.2. THEOREM (Case: Z smooth of codimension 1). If the coordinates in (C",0)

are denoted by x,...,xy,y, then the 9 ,,-simple germs in (y)* are those listed in
Table 2.

TABLE 2: m = codim X = 1

Name Normal form Conditions v 4
YA G - 0 0
YD X1y - 0 0
YA, Y+ xT x4+ X)) s21 s 5
YD, V0 + T +xxE Hxi o+ xD) s24,k=22 s s
YE, Vi +xt+x3+xi++x0) kz2 6 6
YE, YAy + xdxa + X3+ X34+ x) k22 7 7
YEq VO +xi+xi+ x4 x) kz2 8 8
YB, Y A X+ x) sz2 s s
YC, VX + x5+ x4+ X)) 523 § s
YF, VO X} xh 4 x) - 4 4

Next we consider the case when the codimension of Z is 2. In [16] it is proved
the following

2.3. THEOREM (Case: X smooth of codimension 2). Ifthe coordinates in (C", 0)
are denoted by X, ..., X, V1, V2, then the D ,-simple germs in (y)* are the following
ones:

® those with corank 1 are suspensions of the germs in Table 2
® those with corank 2 are listed in Table 3.
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TABLE 3: m = codimX = 2

Name Normal form Conditions v g
D(1,1) X1)7 + X293 + X3y1)2 kz3 0 0
I, x1y% + x,y2 k=2 1 0
114, X103 4+ x2¥2 + Y1y (35T + x2 4+ + xP) s21L,kz23 s 0
11D, X i+ X5 + yya (T + xax2 x4+ xf) | s24,k=24 5 0
IIE X1y 4+ %93 + y1yaxh + x5+ x2+ -+ xP) kz4 6 0
IIE, x1y? 4 X293 + yiya(xdxe + x3 + x4 + x} k>4 7 0
I1Eq X1¥3 + X¥3 + yiya (s + x3 + x2 4+ + xP) k=4 8 0
1B, X1Y1Y2 + X224+ yip, + x5 + x3 4+ + xP) s=22, k=2 s s—1
HC, | x1y192 + %202 + Y2y + Xax3 + x5 +x2+ -+ xF) | s=23,k=3 s 1
HF, | x4+ Xyt +yaya + X3+ x3+x2 4+ + x2) k=3 4 2
II'B; X1y1y2 + %297 + Y305 + X3+ 4 xd) s22kz22 | s+1 s
II'c, X101y + X2Y? + Y2(yaxa + x5 4+ X3+ - + xP) s23,k=2 | s+1 s
11'C4 X1 Y1Y2 + X3y + Yi(yaxa + x3 + x5+ + x7) k=3 5 3
IT'F, X1y1y2 + X29F + Y305+ x3 + x5+ + xP) k=2 5 4
II'F, x 2+ Xayi + Y305 43 + X3+ + X)) k=3 6 4

REMARK. The names of the germsin Tables 2 and 3 differ from the names given
in[15] and [16] and the value of v for the germ I1”C5 is not correctly calculated in

[16].

2.4. Wecan obtain also the list of simple germs in 2 for the case when I defines
a smooth germ in (C",0) of dimension 2. Namely, we have the following

THEOREM (Case: X smooth of dimension 2). If the coordinates in (C",0) are
denoted by X{,X3,¥1,- .., Ym, then the 9, -simple germs in (y)* are those listed in
Table 4.
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TABLE 4: dim X = 2

Name Normal form Conditions v 4
D(2,0) Vi4o 2 - 0 0
D2, 1) x4+ v 4+ y2 - 0 0
TYA, Yy, + X5+ x) +yi 4+ )2 s=1 s s
TYD, V1 + x5 g x) Y24+ 92 sz 4 s s
TYEs Vi +xt+x3) + v+ 4 v - 6 6
TYE, Vi + xPxa + x3) + 3+ + oy - 7 7
TYEs Vi +xi+x3) + 3+ 4y - 8 8
TYB, RO+ xi+x)+yi+ o+ s22 s s
TYC, Yy +xi+x) +yi+ o+ 523 s s
TYF, YOt +x3+x)+y3 4+ - 4 4
Tl, XY+ x5+ yi+ o+ Y2 - 1 0
THB, | xy1y2 + X7 + Y302 + X)) + y3 + - + v, s22 s s—1
TII'B, X112 + X297 + Y305 + XD H )3+ +yn 522 s+1 s
TIIC, | xyp1y2 + X2y} + Y2(axa + x3) + y3 + - + V2 523 s+ 1 s
TI'Fs | xip1y2 +X2y] + 305 +x3) + 13+ + - 5 4

Proor. We use the results in Theorem (2.3) and the fact that if a function
feWis...,ym)?* S 0 has corank = 3, then f is not simple. To see this, we have to
use suspensions and to observe that, whenm 2 3, for any function f € (y,,..., ym)®
with j2(f) = 0, the number of monomials which can occur in j>(f) is strictly
bigger than the numbers of generators of 7,(f).

REMARK. Theorems (2.1), (2.2), (2.3) and (2.4) gives us the classification of
9,-simple germs for the cases when I defines a smooth germ in (C",0)and n < 5.

2.5. The germs in Table 1 and Table 2 have ¢ = v,see [6],[11],[12] and [15].
For the germs in Table 3 and Table 4, the value of o can be not equal to the value of
v. We computed it directly, using a versal deformation. Namely, we have the
following

PROPOSITION. A versal deformation f for the germs in Table 2 and Table 3 is
given in Table 5 and respectively Table 6.
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TABLE §
f v Versal deformation of f
YA 0 f
YD' 0 S
YA, s YAy + Aaxy + -+ AXSTY)
YD, s S 4 YAy + Agxy + o Aeo 1 X572+ AgXy)
YEs 6 4 YA+ Aaxy + Aaxt + Aaxy + Asxyx; 4 Agxixy)
YE, 7 I+ Yy + Aaxy + A3x3 + xS + Asx? + dexy + A7X1X5)
YEq 8 T4 YAy + Apxy + Asx? + Agx3 + AsXy + AeXyXp + A7x3x, + Agx3x,)
YB; s f+Y 00+ hy+ -+ A4y
YC, s 4V Ay + daxy + -+ Ax37Y)
YF, 4 f+ YAy + Aaxy + A3y + Asx,y)
TABLE 6
f v Versal deformation of f
D(1,1) 0 f
I, 1 S+ Ay,
114 s F 4 yiyaldy + Aaxs + - 4+ Ax5TY)
11D, s [ 4 yyaAy + Aaxs + - 4 A1 x3 + Agxy)
IIE 6 S+ yiyaAy + Aaxs + A3X3 + AgXq + AsX3Xs + AeX3xy)
HE, 7 I 4+ y192(Ay + Aaxs + Asx3 + Agx3 + Asx§ + Aexa + A1X3X4)
HEq 8 | f 4 yiyaldy + Aaxs + A3xd 4 Agx3 4 Asxs + AgXaxa + A7X3X4 + AgXx3x4a)
11B; s F+ Y30+ Aaxa + 4+ Ax5Y
1IC, s [+ 05+ Y, + Asxy + 0+ Ax3T?)
IIF, 4 f 4+ V3R + A% + A3x3 + Aaxzx3)
II'B, | s+1 F+ 9300+ daya + 0+ Ay N + Ayt
Ire; s+1 4V + axy 4+ Ax5 ) + Ayt
11'C, 5 [+ y3(As + 2%y + A3x3) + yi(Ae + AsX3)
II'F, 5 F 4 YAy + axy + A3y + Agx,y,) + Asy?
II"F, 6 I+ Y341+ daxz + A3z + AaX2y2) + yids + Z6X2)
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3. Complement of the bifurcation variety.
3.1. In this section we shall prove the following

THEOREM. Let f €(y)* be one of the simple germs in Table 2 or Table 3. Then the
complement of the bifurcation diagram of f,(C*\Bi f(f), 0), is a space of type K(m, 1).

3.2. This Theorem is similar to some results obtained by E. J. N. Looijenga
[8], O. V. Lyashko [1], [9] and V. V. Goryunov [6]. For the proof, we shall
consider first the germs in Table 3. We have the following

PROPOSITION. The bifurcation variety of the germs in Table 3 is described in
Table 7.

TABLE 7

f Bif(f)
D(1,1) ()]

L, [
1A, )
11D, 0
HE; ]
1E, [
IEg [}

1B, Bif(YA,-,)
1IC, {0} x C!
IIF, Bif(Y4,) x C?
II'B, Bif(YB,) x C
Irc, Bif(YC,) x C
1'C, Bif(YCs) x C?
II'F, Bif(YF,) x C
II"F, Bif(YF,) x C?

Proor. We shall describe the proof only for f = IIC, and f = II"Cs; the
other cases are similar.
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Suppose first that f = I1C,. We shall denote by f the versal deformation of
f described in Table 6. The critical points of f are the solutions of the following
system of equations

b _ F _ o _ o

ox, 7 0xx 0y, Oy,

Hence the critical points of f non-situated on H are given by the following
conditions:

x;=...=x=y;=0, y,#0 and 3y +24,y,=0.

Now it is easy to see that only for A; + O the function f(-,4) has exactly two
critical values.

Let now f = II"C, and let f denote the versal deformation of f described in
Table 6. As before, we obtain that the critical points of f non-situated on H are
given by the following conditions

Xy =X3=X4=...=X=y; =0, y,+#0 and
V2 +3x3 + A, + 243x3 = 0,
32X, + 2x3 + 241 + 24,x5 + 243x3 = 0.
We have also
f(0,%2,0,...,0,0,y2,4) = y3(y2X2 + X3) + y3(41 + A2X2 + A3%3),
and now it is easy to obtain the result.

3.3. It remains to show that the complement of the bifurcation variety of
a germ in Table 2 is a space of type K(=, 1). For k = 1, this was demonstrated in
[6];in particular this gives us the result for the cases when the versal deformation,
listed in Table 5, depends only on y and x;. For k = 2, we have to observe that the
proof given by V. V. Goryunov in [6] is still valid; for completness, we repeat here
some parts of this proof. Namely, we note, firstly, that the simple germs listed in
Table 2 and their versal deformation listed in Table S are weighted homogeneous
polynomials, with positive weights for the coordinates (x, y, 4). Also, we remark
again that for the germs in Table 2 we have v = o.

Next we have to check that the map ¢, described in (1.5), is a covering above
P\ A. This follows from the following steps:

(STEP 1) ¢~ *(0) = {0}.

(STEP 2) ¢ is proper.

(STEP 3) ¢ is a local diffeomorphism on the complement of Bi f( f).

The proof of the first step uses the connectivity of the Dynkin dagram
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associated to the corresponding boundary singularity. Namely, the germs in
Table 2 and their versal deformations in Table 5 have the form

f9) =y hix,y), flx,p,4) =y* hix,y, 1),

where h is the corresponding boundary singularity and h'is a versal deformation
of the boundary singularity h. The relation

()

means that all the critical values of the function f(-,-, A) are equal to 0. It is easy to
see that the critical points of this function, which are not situated on {y = 0}, are
exactly the solution of the system
~ ok oh
1 2-h — = — = i=1,...
( ) + y ay ’ axi O’ 3 l, 9k
with y % 0. Now, since 1€ ¢ ~}(0), it is easy to see that all the solutions of the
system (1) satisfy the relation i = 0, hence are also solutions of the system
oh o
2 —-— = —=0, i=1,..,k
( ) .V ay 09 axi ) 1 ) )

On the other hand, the systems (1) and (2) have the same number of sblutions,
see for instance [15]. Hence, if 1 € ¢ ~ }(0), then O is also the unique critical value of
the function ﬁ(-, -, 4), considered as a function on a manifold with boundary. And
now, from [10], p. 105-106, it follows that 1 = 0.

The second step is a consequence of the first one and of the fact that ¢ is
weighted homogeneous, with positive weights for the coordinates in C".

For the proof of the third step it suffices, by weighted homogeneity, to show
that the differential of @, 2, ¢, is an isomorphism in any point A¢ Z, for A suffi-
ciently small. This can be done by considering the space

C x (C* x C) x C,

with coordinates (u, x, y, ), and in this space looking to the closure

9 a
N::{y:{:O, u=f(x,y,4), 5{—: ) a—£=0 for i=1,...,k}.

We consider also the set
N*:= N n {4 = const}.

Let us fix A¢ Z. Then all the critical values of the function f,-, A) are distinct
and we have:

N* = {p@ = u®, x, y®, ))eC x (C* x C) x C°[i = 1,...,0}.
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Now, recall from (1.4) and (1.5) that ¢(4) is computed with the help of the
symmetric functions evaluated in the point

(_f(x(l), y(1)> A), LR __f(x(U)7 y(a)> j')) = (—u(l)’” .y _u(d))'

Since u'Y),...,u'? are critical values of the function f(:,-, 1), it follows that these
are distinct numbers. Hence the differential 2,¢ is not an isomorphism if and
only if the differential of the map

3) A WV, u)

is not an isomorphism; we use here the fact that the symmetric functions give rise
to a locally diffeomorphism around the point (—u'®,..., —u?).

Suppose that 2, ¢ is not an isomorphism. Then there exists a tangent vector di
to the point A€ C*\ X such that dA + 0 and the differential of the map (3) evaluated
at dA is equal to 0.

Since the projection

N3u,x,y,A) — AeC”

is a covering with ¢ sheets, outside X, it follows that there exist o tangent vectors
V® to N, at the points p¥, such that

VO = (0,(dx)",(dy)", dA),

namely the tangent vectors which projects onto dA.
The condition of being tangent vectors means that

(, o qa o o R/
ox, T 0x oy oAy 04,
O A A
ox} 7 0x.0x, 0x,0y 0x.0A, = 0x,04,
V®eKer : : : : : : :
o*f f Af  f *f
oxox, 1 ox? Ox 0y  0x,0A, 1 0x, 04,
R A A A,
\ oyoxy = Oyox 0y? oyory T BydA, ) |pw

Since the singularity of the function f(-,-, 4) at the point (x®, y®) is of type 4,
we have
of

. (py =
axl(p)

_T

6xk

o

() =5, 6 =0

and
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. 2f >F o2y A
0x? T 0xy0x,  0x,0y
det oif o f o*f + 0.
Oxe0x; ox? 0,0y
>f *f *7
\ 0y0x; T dydx, ) |

Hence, the condition that the differential 2 ,¢ is not an isomorphism means that

dA+0 and <f(m) a{(“))) di=0, i=1,...0,

i.e. means that the matrix

Iy I )

0Aq 04,
7f © T o
A =) o =, (0"")

is degenerated, and this is equivalent to the fact that the functions

of o

‘al—l,...,ev.—— 51‘,

(’1:=

are linearly dependent on the set N*. From Table 5, the functions e, ..., e, are
monomials. Moreover, they give rise to a basis of the C-vector space O/t,(f). Itis
easy to see that the monomials

-2 Ly 2
€y see €y Y

give rise to a basis of the C-vector space

C[xl’ . xluy]
oh  oh oh
, 2h
<ax1 o Y 6y>

and that

~ .~ oh oh
u=y2h,2h+ya—y=0, "5;'=O for i=1,...,k}

= {(u’ x’ y’ 2’)
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Hence, for 44 X and sufficiently small, the functions

-2 -2
€1'y T...6,)Y

give rise to a basis for the space of functions defined on the set N*, see for example
[3]and recall that v = ¢. Thisis in contradiction with the assumption that 2, ¢ is
not an isomorphism.

3.4. CONCLUSION. The complement of the bifurcation variety of the simple
germs listed in Tables 1-4 are spaces of type K(=, 1).
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