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HOLOMORPHIC DIRICHLET SERIES
IN SEVERAL VARIABLES*

LE HAI KHOI

1. Introduction.

Entire functions defined by multiple Dirichlet series of the form

a0
(1.1) Y cmnemtEn 2y 2,€C,
mn=1 .
(here for the sake of simplicity we write in the case of two variables) with the real
(even positive) frequencies (4,,), (1,), have been extensively investigated by many
authors. Several problems on orders, types, mean values, topological structures,
functionals, operators, bases and so on were considered.

What about non-entire holomorphic functions? The aim of this note is to solve
some of the problems concerning holomorphic multiple Dirichlet series in
a bounded convex domain in C".

It should be noted that the frequencies in (1.1) are taken as all possible
combinations of the corresponding sequences (4,,)q- ; and (u,)>- ;. Itis clear that
the frequencies established in such a way are not invariant under linear trans-
formations and, therefore cannot be applied to a general case of domains in C*,
except particular forms (polycylindrical and complete circular domains).

Before describing briefly the content of our work we make the following note.
During the last two decades there has been developed extensively a concept of
representing systems of exponents (see, e.g., [5, 8]) which shows, in particular,
that every entire function as well as every holomorphic function in a convex
domain can be represented in the form of Dirichlet series. Moreover, this
representation is not unique. In connection with this we should have a careful
look at the problem of functions defined by Dirichlet series since it may happen
that, depending on the choice of frequencies, different series can represent the

* This work was supported by the Swedish Institute and the Swedish Natural Science Research
Council.
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same function. More precisely, we should distinguish the class of series from the
class of functions they represent.

In our paper we consider a multiple Dirichlet series, with a system of complex
frequencies (%) ;, A* € C", which is holomorphic in a bounded convex domain in
C" (not necessarily containing the origin of coordinates). Section 2 deals with
some auxiliary results concerning convergence of multiple Dirichlet series in
a space of holomorphic functions, which are essentially necessary and important
for the holomorphic case. In section 3 we study a scquence space of the coeffi-
cients of multiple Dirichlet series. There we follow the terminology in [6]. In
section 4 we introduce a class of holomorphic multiple Dirichlet series in
a bounded convex domain, endow it with a topological structure and show that
this is a nuclear (F)-space (complete metrizable topological vector space). And
then we study linear continuous functionals on this space. Differential operators,
also of infinite order, are considered. Some of the results in this section are
obtained in the spirit of [4], which investigated multiple power series of entire
functions. Section 5 concerns one of the possible subclasses of the class introduc-
ed in a previous section. It is shown that this subclass with a suitable choice of
norm becomes a commutative Banach algebra. Some properties of this algebra
are considered. In particular, all results on entire series of the paper [2] are
generalized to the case of holomorphic series mainly in a similar way with
corresponding modifications.

As will be seen in this note, the supporting function of a convex domain in C"
plays an essential role in our discussions.

Also note that a topological structure for a space of so-called analytic Dirichlet
transformations was considered earlier in [3]. However, in that paper it is done
for a particular case: product of half-planes and, moreover, the frequencies are
real and of the form (1.1). The techniques used in [3] are essentially real,
one-dimensional and, therefore, do not work for the general domains in C”
considered in our paper.

A final remark is that the topological structures studied in our note are quite
different from those in [3] and [4].
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a visiting scholar of the Swedish Institute at the Department of Mathematics,
Uppsala University. The author is indebted to the Swedish Institute for the
support given to him. Also he wishes to thank the Matematiska Institutionen for
the hospitality; especially he would like to express his deep gratitude to Professor
C. O. Kiselman for the invitation as well as providing excellent working condi-
tions, for valuable discussions and helpful suggestions in the preparation of this
work.
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2. Preliminary and auxiliary results.
We use some basic notation:

0(2) (2 being a domain in C") denotes the space of holomorphic functions in €,
with the topology of uniform convergence on compact subsets of Q.

Ifz, {eC" then |z| = (242, + ... + 2. Z)V%, (2, 0> = 2,81 + ... + 2,

Let Q be a bounded convex domain in C", with the supporting function defined
as follows

HQ(C) = sup Re <Z7 C>a CE C"-

zeQ

For a point ae Q we denote

(2.1 A=0-ta+tQ0<t<]1,
and
2.2 Qa)=Q—a={z—a:zeQ}.
We see that Qf < Q and
(2.3) Hge(0) = (1 — )Re<a,{) + tHq((), (e C".

Also we have

2.4) Ho({) = Ho({) — Re<a, (), [eC".

Furthermore, since 0 € (a) it is clear that

(25) 0< Ay = inf HQ(a)(C) é ﬁa = sup HQ{a)(C) < 0,
Ill=1 lKl=1

and, therefore

(2.6) %] < How(0) < Balll, V(e C.

Now let (A%, be a sequence of complex vectors in C". Consider a multiple
Dirichlet series

2.7 Y e zeQ.
k=1

First we make a characterization of the coefficients of the series (2.7) when it
converges for the topology of O(Q).

THEOREM 2.1. Ifthe multiple Dirichlet series (2.7)) converges for the topology of
0(Q) and |A*| - o0 as k — oo, then



88 LE HAI KHOI

l k
2.8) lim sup 2815+ Ho®) _ o

k= Mk' -

Conversely, if the coefficients of (2.7) satisfy condition (2.8) and if

2.9) lim 08K

k= o |'1k|

then the series (2.7) converges absolutely for the topology of O(€).

=0,

PRrOOF. Necessity. Suppose that the series (2.7) converges for the topology of
0(Q). Fix a point ae Q. Then for any te(0, 1) there exists a positive constant
A < oo such that

sup {[c,eP|zeQ k2 1} £ A,
which, in view of (2.3), is equivalent to
|cyle(t TOReCaRO +HGH) < 4 Wk > 1.
Combining this inequality, (2.4) and (2.6) gives
loglcx| + Ho(4*) _ log A + (1 = ) [Hg(A*) — Re(a, A*)]

[47] = 149 |4
logA (1 — t)Hgo(#) _ logA
= Mgk'l + ( {ik‘n( )( ) = |§k' + (1 - t)ﬁa,

where Q(a) and B, are defined by (2.2) and (2.5) respectively.
Consequently,
k
lim sup————k——log ‘C"IIIIHQQ ) <1 -1,

k— o0

Letting ¢ tend to 1, we obtain the inequality (2.8).

Sufficiency. Let conditions (2.8) and (2.9) hold. Take an arbitrary compact
subset K of Q. We fix some point ae K. Then it is clear that K = Qf for some
t€(0, 1), where Qf is defined by (2.1). We shall prove that

& k
Y. lel o < oo,
1

By (2.8), for 0 < ¢ < (1 — t)a,, where o, is defined by (2.5), there exists N; such
that Vk > N,

1 Ho(*
og|ckll;1+k| o) _

or

|ci] eHod) < eel?,
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Hence, for k > N,

|CkI£’H“?Mk) = |Ckle(l —1)Re<a,Ak) +tH o(A*)

< ot~ DIHg(R) —Reda, #O)+el k| - (=~ Daal 44| +ejak|

By (2.9), there exists N, such that Yk > N,
[(1 = o, — €]]|A% > 2logk,
or

1

(£~ 1)aa| ] + 5] 4%)
€ <@

Therefore, Vk > max (N, N,)
1

k?

|Ckl e(l —t)Rela,A*) +tH(A*) <

So, we get that

Lol
) lexl e < oo,
K=1

which means that the series (2.7) converges absolutely for the topology of 0(2).

COROLLARY 2.2. If (2.9) holds, then the series (2.7) converges for the topology
of O(R) if and only if it converges absolutely for the topology of O(Q).

REMARKS 2.3. 1) For the case when Q contains the origin of coordinates
Theorem 2.1, with a = 0, is a generalization to n variables of the corresponding
result in [S] and is proved analogously.

2) A similar result for a polycylindrical domain containing the origin of
coordinates was also obtained earlier in [9].

3. The sequence space A(2) of Dirichlet coefficients.

We denote by A(LQ) the set of sequences (c,) satisfying condition (2.8) and call it,
following Kothe [6], a sequence space. We shall study some properties of this
space.

First note that whenever A(Q) contains (c,) it also contains (d;) with |d;| < |c;]
for k= 1,2,.... So A(Q) is normal.

Denote by A4%(Q2) the Kothe dual of A(Q), i.e.

A*(Q) = {(uk): Y. ey converges absolutely for all (ck)eA(Q)}.
k=1
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Also we introduce the following set

Ao(Q) = {(uk): i ¢y, converges for all (¢;) e A(Q)}.

k=1

It is obvious that A%(Q) = Ay(2). We shall see that the condition (2.9) is
sufficient for the equality A%(Q) = A,(Q).
We make a characterization of the Kothe dual (cf. Theorem 2.1).

THEOREM 3.1. If (u;) € Ao(L2), then the following condition holds

. log [u] — Re<a, A*¥)
1 §
6.0 TSP Ho () — Re {a, ¥y

< 1 for some (for all) ae Q.
Conversely, if the sequence (u,) satisfies condition (3.1) and, in addition, the
sequence (A*) satisfies condition (2.9), then (u,) € A*(Q).
Proor. First of all we note that in view of (2.4) — (2.6) we have
Ho({) — Re<a,{) = How({) 2 l{]a, > 0, V(e C", [ £ 0.
Necessity. Suppose that (3.1) is not true. Then

. log lu,| — Re<a, A*)
1 >1
P HaF) — Re<a, ¥y =

the value of the left-hand side can be finite as well as + co. In any case, for
a sequence (g,),-( | O there exists an increasing sequence (k,),-; of positive
numbers such that

log|uy | — Re {a, A*»>
: >1- > 1
Ho(#*) — Re<a, #ry =1 P21

which is equivalent to
log (1/lw, ) < (1 — ¢,) [Re<a, A7) — Ho(4*7)] — Re{a, A*).
Define a sequence (c;) as follows

[l itk=k,p=12...,
*7 00, otherwise.

Then we have
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log|cy + Ho(4) log (1/jus,)) + Ho(A*7)

lim su < limsu
L VI =Ty |5
, Ho(3*r) — ke
§llmsup 8p[ Q( ) kRe<aaA >]
o ® |A*7|
. & HQ a (lkp)
= llTﬂsgp—‘-’——lz%r—— =0,

which means that (c;) is in A(Q).

However, since |c,u,| = 1 for k = k, (p = 1,2,...) it follows that c,u, does not
tend to 0 as k — 0. So, the series Y . ; ¢, does not converge. We get a contra-
diction.

Sufficiency. Assume that there exists a constant Q such that (3.1) holds, i.e.

. log |ux] — Re {a, A*)
1
P Ha(7) — Rea, /%y

= Q < 1, for some (for all) ae Q,

and also the condition (2.9) is satisfied.
Then for ¢ > 0 (satisfying Q + ¢ < 1) there exists N such that Vk > N
1 — Re<a, A*
oglukkl e<a k> <0+s
Hg(4*) — Re{a, 1*)

or, equivalently,
|“kl < e(Q+e)Hn(Ak)+[1 —(Q+5)]Re<a‘;‘k>.
On the other hand, as we have already seen from the proof of the sufficiency

part in Theorem 2.1, with condition (2.9) for every sequence (c,) from A(S2) the
series

i lckle(l ~t)Re{a,Ak) +1H o (A%)
k=1

converges for any t€ (0, 1).
Consequently, the series ) & 1 ¢,y converges absolutely. This completes the
proof.

COROLLARY 3.2. If (2.9) holds, then (u,) € Ao(L) if and only if (u,) € A*(£), i.e.
A*(Q) = Ao(Q). In this case these sequence spaces can be defined as follows

Ao(Q) = A%(R2) = {(u,) satisfying condition (3.1)}.

It is clear that A(Q) = A**(2). We shall prove that with condition (2.9) the
inverse inclusion is true.
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THEOREM 3.3. Suppose that condition (2.9 ) holds. Then the sequence space A(£2)
is perfect,ie. A**(Q) = A(Q).

Proor. We follow the scheme of the proof of the necessity partin Theorem 3.1.
Suppose that (c,) ¢ A(Q). This means that

k
lim sup log_lckll;{kM >0,

k— oo
the value of the left-hand side can be finite as well as + co. In any case, there exists
Q > 0 such that for a sequence (g,);=1 | O there exists an increasing sequence
(k,)p=1 of positive numbers such that

log e, | + Ho(4*7)
[A%7]

gQ—Ep’VPgl,

which is equivalent to
log (1/lex,)) < Ha(A*7) — (Q — &,)14*2|.

Define a sequence (u;) as follows

T Ve, if k=k,,p=12,...,
k=10, otherwise.

Then we have, for any ae Q,

log|uy | — Re{a,4**) _ log(1/ici ) — Re<a, A*7)
Ho(7?) — Re<a, 775 . Hg(A?) — Re{a, A7y

Ho(2*7) — (Q — &,)|4*7| — Re<a, #*7) _ Vi
—_<— Q Hg(lkp) — Re <a, /{kp> - 1 - (Q - Ep) Hg(a)(lip)

Q |A¥r|
Sl — =4 ¢,
- B. K Hq ) (A7)

where f, is defined by (2.5).
p=1

kp ©
Consequently, taking into account that {TIL(}IFT} is a bounded set we
Q(a)

have

. log|ug] — Reda, ¥y _ .. log (1/jci ) — Rea, A*7)
lim Sup g7 )~ Re<a, 7> = MMSUP—p 75— Re <, 775

§1——Q—<1,

which means, by virtue of Corollary 3.2, that () is in A%(2).
However, since |c,uyl = 1 for k =k, (p = 1,2,...), we get that c,u, does not
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tend to 0 as k — co. So, the series Y - ¢, does not converge. Hence, () &
A%(Q). The proof is complete.

From now on a bounded convex domain Q in C" with the supporting function
Hg({) and sequence (4*)i-; satisfying condition (2.9) are considered to be given.

4. The class E(2) of holomorphic multiple Dirichlet series.

Now we introduce a class E(£2) of multiple Dirichlet series of the form
4.1) Y et zeQ,
k=1

where the sequence (c,) of the coefficients belongs to A(Q). For different elements
of this class of course only the ¢,’s change.

From previous sections we see that for each sequence (c,) € A(2) the series (4.1)
is well defined. To denote (4.1) we use the notation ¢ X (¢,) € E(2). Then we can
check that the following algebraic operations (the usual vector addition and
scalar multiplication) are well defined in E(Q)

c+d? (¢ + dy),
Ac B (Acy),

where ¢ X (¢;) and d R (d,) € E(Q).

It is easy to verify that E(Q) is a vector space. A question naturally arises: is it
possible to endow E(Q2) with some topological structure? For the answer we first
define the following function

4.2) licllg = sup {|ck|1/Hfz(a)(l")}’
k=1

where ¢ % (cx) € E() and a is an arbitrary point of Q.
This function (4.2) is finite for ¢ % (c;) € E(2). Indeed, since (c,) e A(Q) fore > 0
there exists N such that Yk > N

log e + Ho(2) _,
124 =
Then, Yk > N

logle _ &4 — Ho(#*) _ el2"| —Reda, )
How(F) = How(2) Ho(2)

(e+laDl , _e+la
S THpe® 15T b

where a, is defined by (2.5). This proves our claim.



94 LE HAI KHOI

Now we fix some point ae Q. We prove the following

THEOREM 4.1. E(Q) is a complete metrizable, non-locally bounded space, i.e.
a non-normable (F)-space, where the invariant metric on E(Q) is given by
plc,d) = |lc — d||g = supez 1 {lcx — dil M0} Ve K (), d % (di) € E(Q).

ProoF. It is clear that p is an invariant metric on E(Q).

For the completeness we consider a Cauchy sequence (c™ X (cf™))x= in
(E(R), p). For ¢ > 0 given there exists N such that p(c™, c™*P) < gforallm = N,
p=1,or

(4.3) lef™ — cfm P Haw ) < g ¥m 2 N, Vp 2 1,
which shows that (cf™)w- 1 is a Cauchy sequence in C for every k € N. Therefore,

¢ = lim,, , cf™, ke N, exists.
Letting p go to oo in (4.3), we obtain

(4.4) e — ¢ o) < g, Vm 2 N.

Define formally a series

4.5) Y e zeQ.
k=1
Let t be an arbitrary number in (0, 1). Take ¢ > O such that (ee’)*e!*! < 1, where
a, 1s defined by (2.5). For this ¢, as shown above, (4.4) holds for some m = 1. Then

[eo] @ o
5 leder < 5 et 4 3 (el — gyt
= k=1 k=1

e o) o0
< 3l et 4 3 Mo a3,
k=1 k=1
The first series in the right-hand side of the last inequality converges, since
™% (ci™)e E(Q). Concerning the second one we note that

Ha) (%) ,Ha(A%) _ H(a)(A%) ,tH(a)(4%) +Reda, i)
€ e =& e

= (get)ﬂmm(i") eRe<a < (Set)aall"lelalll"l = [(get)aaelaljll"l'

Since (1*) satisfies condition (2.9) and (¢e')*=€'®! < 1 it is easily seen that the series
Yo | [(ee')*=el]*! converges.

So, we proved that the series Y i |c,|e”2:*) converges, for every t €(0, 1). This
means, by virtue of Theorem 2.1, that series (4.5) is well defined and ¢ % (¢;) € E(£2).

Furthermore, (4.4) yields that (c™)Z_, converges to c in (E(), p). The com-
pleteness is proved.

For the last assertion of the theorem let us consider an arbitrary neighbour-
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hood U of zero in the space E(£2). Then there exists a positive number ¢ such that
{ceE®Q):p(c,0) = llc|g < &} < U.

For every me N we define formally a series
(4.6) Y cme ™ zeQ,
k=1

where

- {(se‘ Yo" if e —
C ' =

0, otherwise.

Since (c{™)- € A(£) the series (4.6) is well defined and ¢™ & (c™)e E(). It is
clear that ¢™ e U, Vme N. Choose a sequence (¢,,) , as follows

ey = € Ho@@™) 'y =12 .
We have

p(e,,,c("'), 0) = ugmc('n)”E

—_ [BHn(u)Mm)e_2"!)(0)(1"')]1/119(0)(1'") — ge‘z

>

which shows that ¢,,c™ does not tend to 0 as m — 0.
Therefore, no neighbourhood U of zero in E(Q) is bounded with repect to the
metric p. The theorem is proved.

REMARK 4.2. Since (E(£2), p) is a metrizable space its metric, as is well-known
[6], can always be defined by a so-called (F)-norm [6] (or total paranorm [10]).
We can verify that the function (4.2) is, in fact, an (F)-norm (a total paranorm).

REMARK 4.3. 1) By virtue of Theorem 2.1, the sum of the series (4.1) is
a holomorphic function in Q. Therefore, we can define a mapping o: E(Q) — 0(Q)
acting by the rule: each series is mapped to the function which its sum represents.
In general, o(E(Q)) = O(R2). However, it should be noted that for certain se-
quences (4*)°_ , the mapping o can be surjective, i.e. the equality 6(E()) = 0(R)
holds. The choice of the sequence (4*) in this case can be realized in different ways.
This is so if and only if the system (e<*?){_, is an absolutely representing system
in the space O(Q) (see, e.g., [8,9]). Then, as noted in the introduction, the
mapping ¢ is not injective.
2) Furthermore, it is easy to see that the mapping o is not injective if and only if
there exists a sequence (c,) € A(€), not all zero, such that

o0
Y e =0,VzeQ,

k=1
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and the series converges (absolutely) for the topology of 0(f2), or equivalently, if
and only if the system (e¢***)®_, admits a non-trivial expansion of zero in the
space () (see, e.g., [9]). Moreover, this system of exponents is not necessarily
an absolutely representing system in (($2). So, a non-injective mapping ¢ may be
non-surjective.

With the help of Theorem 3.1 we are able to characterize linear continuous
functionals on E(Q).

THEOREM 4.4. Let c X (ci) be in E(Q). Then every linear continuous functional
F from the dual space E()* has the form

4.7) F(o)= ) cith
k=1

where (u,) satisfies condition (3.1),1i.e. is in A*(Q).
Proor. We recall that condition (3.1) looks as follows

log |u,] — Re <a, A*>

Ho(%) — Re<a, 7y ~ ©

lim sup
k— o0

Let F e E(Q)*. For every k = 1 define formally a series

M8

4.8)

We2 7€ Q,
1

]

j
where

w _ ) Lifj=k
7710, otherwise.

It is clear that the series (4.8) is well defined and a® X (c{) € E(Q) for every
k=1
If ¢ 5 (c;) € E(Q), then we have

N N
F(c) = F( lim Y, cke“k'”) = lim p( y cke<ak,z>>
k

N-owk=1 N-owo =1

e}

= Z cxF(a®) = Z CiUy,
k=1 k=1
where u, = F(a®), k=1,2,....

In view of Theorem 3.1, (u,) satisfies condition (3.1).

Conversely, suppose that (u,) satisfies condition (3.1). Using again Theorem
3.1 gives that the formula (4.7) defines a linear functional on E(%).

The continuity of F remains to be proved. Let (c™ & (c{™))=_, be a sequence in
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E(£2) such that ¢™ — 0in (E(R), p). We have to prove that F(c¢™) — 0 as m — oo.
We prove this fact under a more general assumption than (3.1), namely

lim su log ju] — Re (a2 <
oD Ho(i) — Rea, %y ~ %

In this case there exists T'€(0, + co) such that the following inequality holds

log lux| — Re {a, A*>
Hy(A*) — Re<a, 1*)

< TVk

v

1,
which is equivalent to
|uk‘ —_<— eTHg(a)().")+Re<a,l">, Yk g 1.

From this place following the last part in the proof of Theorem 4.1 we get that
since ¢™ — 0 in (E(R), p), for a positive number ¢ (satisfying (ce”)*<e!’! < 1, where
o, is defined by (2.5)), there exists N such that Vm = N

™ = sup {|ci™|Ha@@ < ¢
k21

or

i) < gHaw®) vk > 1, ¥m = N.
Consequently, Vm =2 N

Z My
k=1

IF(em)] =

o0
< Y et uy
K=1

© ©
g Z eﬂﬂ(a)(),k)eTHD(A)(}vk)+Re<“-lk> = Z (8eT)Hn(a)(lk)eRe<a,lk>
k=1

k=1

i Kk

é z [(SeT)aneIaljll |‘
k=1

As noted above, since (ee”)**e!®! < 1 the last series converges and, therefore, it
tends to 0 as ¢ tends to 0. This means that F is continuous. The proofis complete.

We write 2% = (A%,...,4%),k = 1,2,.... By virtue of Theorem 2.1 we can define

differential operators with respect to every variable z; (j = 1,...,n) as follows

0 .
a—zjcx(ck/lf),] =1,...,n,

where ¢ R (cx) € E(Q).
It is easy to prove the following
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0
THEOREM 4.5. The operators PR (j =1,...,n), are continuous in E(Q).

j

Furthermore, we shall show that E() is invariant under certain differential
operators of infinite order.

Let

[e o]

(4.9) L= 3 alt...0n (.. l)eC

Ivii=0

be an entire function in C" such that

(4.10) lim "Ya, v =0,

vl = o
where ||v|| = vy + ... + v,, ¥ = v,!...v,). Thisfunction generates a linear differ-
ential operator of infinite order with constant coefficients

4.11) £MD)= Y aD,
livil=0
vl
where D’ = FIRC As is well-known, for each function fe @(Q2) and each

compact subset F of 2 we always have
Y. la,Jsup|D*f(2)| < + co.
Ivl=0 zeF
Now let ¢ % (c,) € E(22). We have

20 3 ae?) = $ ap(§ aer)
k=1

k=1 Ivli=0
@ e o} k
=Y av< Y a(AF)yet ">>, zeQ.
Ivil=0 k=1

It is easy to verify that the order of summation in the last double series can be
reversed. Then we get

> Cke“k’”) =2 Ck( > av(ik)v> et
=

k=1 lvil=0

< (D)<

k
ol k
=Y qLet " zeQ.
k=1

Suppose that the following conditions holds
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log |L(7*
4.12) lim sup -8 1A%
k— o0 M’ |

Applying Theorem 2.1 we obtain

IIA

0.

THEOREM 4.6. Let L be an entire function (4.9) satisfying conditions (4.10) and
(4.12). Then E(Q) is invariant under a differential operator of infinite order with
constant coefficients £(D) of the form (4.11). More precisely, if ¢ 2 (cx) € E(Q) then
Z(D)c & (e L(A¥) € E(R).

For further study we recall some notation and definitions from [6].

Let P be a class of sequences x = (x;) = 0 (this means x;, = O for every k) with
the following properties:

i) to every k there exists x € P such that x, # 0;

i) if x, ye P, then there exists ze P such that x, < Cz, y, < Cz, for some
Candallk=1,2,...

For such a P let A(P) be a set of all sequences ¢ = (c,) such that p.(c) =
Y xklel < oo for all xeP. The p,, being seminorms on A(P), define the
topology of A(P). Such a A(P) is a complete locally convex space.

DEerINITION 4.7. The sequence space A(P) is said to be nuclear if to every xe P
there exists ye P and r = (r,) 2 0 in [, such that x, < y,r forallk =1,2,...

Or equivalently: to every x € P there exists y e P such that Y | x,/y; < oo (if
¥« = 0, then x;, must be 0 and x,/y, is omitted).

Returning to our case, as a class P we consider the following set
P = {x, = (¥ :te(0,1)}.

It is easy to verify that such a set P has the two properties i) and ii) mention-
ed above. Further, we can prove that in this case the corresponding sequence
space A(P) is nuclear. Indeed, let x, = (exp (Hg:(1")i% € P. Consider x, =
(exp (Hoe(A))= € P, where s > t.

Since (t — s)Ho@)(4%) < (¢ — s)a,|A¥|, where o, is defined by (2.5), we get

© ©
Z e"u;‘(l") - Hﬂ:(lk) = Z e(t - S)Hﬂ(n»(lk’
k=1 k=1

2]
< Y et 9%l < oo (in view of the fact that e ™9 < 1).
k=1

Our claim is proved.
By virtue of Theorem 2.1, we can check the following

LEMMA 4.8. ¢ (cy) is in E(Q) if and only if (c;) belongs to A(P) = A((e*!=*)).
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Hence, we obtain
THEOREM 4.9. The space E(Q) is nuclear.

We now consider the possibility for E(Q2) to be an algebra. For this purpose we
introduce the following operation as a multiplication in E({2)

¢ O d & (cydieo ™),

where ¢ 8 (c;) and d % (d,) € E(Q).

This operation is well defined. Indeed, in view of Theorem 2.1 a sequence
(cedie™o ¥ ) is in A(RQ), which means that ¢ O d & (c,die2*) e E(Q). We easily
obtain the following

THEOREM 4.10. E(Q) is a commutative non-normable algebra.

5. The Banach algebra B(£2).

Consider a subclass B(2) of the class E(Q2) which consists of multiple Dirichlet
series of the form (4.1) satisfying the following condition

(5.1) Y oo™ < oo,
k=1

It is obvious that B(€) is non-trivial: it contains all elements a® & (c{") € E(€),
ke N, where

w_ JLifj=k,
77710, otherwise,

(see (4.8)), as well as any finite linear combination of them.
Also note that since (5.1) holds, o(B(2)) @ H*(Q2), the space of bounded
holomorphic functions in Q, where ¢ is the mapping defined in Remark 4.3.
We can check that besides the usual algebraic operations the multiplication
©® induced from E(£) is also well defined in B(Q). Indeed, for ¢ % (¢;) and d % (d,) €
B(Q) we have

e @
2 lendyet ) e = (jeyfe o) (ldil )
k=1 k=1

o 0
< Y lade - Y |dletd™ < oo,
k=1 k=1

This proves our claim.
By virtue of (5.1) for each ¢ % (c,) € B(f2) we can define
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(5.2) el = lele™a™.
k=1
It is clear that | - || is @ norm in B(£2). As for the space E(£2) we can verify that
B(Q) is complete with respect to the norm (5.2). Indeed, consider a Cauchy
sequence (c™ &(c™)w_, in B(Q). Then Ve >03INVm=NVp=1:|c™ —
™R < g, or

0
(5.3) Y feim — cfmr ) eta®) < g,
k=1

which shows that (c{™)Z_, is a Cauchy sequence in C for every keN and,
therefore, ¢, = lim,,_, ,, ™, ke N, exists.
Letting p go to oo in (5.3), we obtain

(5.4) Y lefm — ¢ o™ < g ¥m > N.
k=1

First show that (¢, )i, is in A(Q).
Define formally a series

(5.5) Y e zeq.
k=1
Let ¢ be an arbitrary number in (0,1). In view of (5.4) we have

o 0 [e¢]
Z IC,,IeH“f”k) < Z |c;('")|eH“f”k) + Z IC;:") _ Ck|eHg;'(/1")
k=1 k=1 k=1

0 0
< 5 et 1 g 3 olart - i
- k=1 k=1
The first series in the right-hand side of the last inequality converges, since
™ & (c™) e E(Q). Concerning the second one we note that

Hg: () — Ho(#) = (¢ — 1)[Ho(#") — Re<a, /)] < (¢ — 1)a, |24,

where a, is defined by (2.5).

Since (%) satisfies condition (2.9) and e 1%« < 1, as noted before, the series
Y e~ Dl converges.

So, we proved that the series Y = | |c,|e?2/**) converges, for every t € (0, 1). This
means, by virtue of Theorem 2.1, that the series (5.5) is well defined and ¢ ¥ (c;) €
E@).

Furthermore, we have

o0 [ 0] 0
Z le| e < Z leg™ — cil et Z |C;cm)|eH"uk) < o0,
k=1 K=1 k=1
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which shows that
(5.6) c?(c) e B(R2).

Combining (5.4) and (5.6) yields that (c"™)Z_, converges to ¢ in B(f).
Also it is already proved above that

le ©d|l < llc| Id)l, Vc,d e B(£).
So we obtain

THEOREM 5.1. B(Q2) is a commutative Banach algebra.
Further, for each ke N we define a series

M8

X <A,
Pet > zeQ,

]

ji=1

where

-H ).k) Y S
o= )¢ i) =k,
4 0, otherwise.

It is clear that for every ke N
(5.7 b® 2 (cW)e B(R) and ||b¥) = 1.

These elements b*® are useful for the discussions that follow.
As in section 4 we can give a complete description of the dual B(Q)* to B(L).

THEOREM 5.2. Let ¢ & (c,) € B(€2). Then every linear continuous functional F from
B(Q)* has the form
(5.8) F(o)= Y cmeta™),
k=1

where (my) €l the space of bounded sequences.
Proor. Let F e B(Q)*. For c 2 (c,) € B(R2) we have

N N
F(c)=F ( lim ) cke“"'”) = F< lim 3 cke"ﬂ“"’e<"‘">*"ﬂ""">

N-ook=1 N—o k=1

e o] o0
= Y el Fp®) = Y ¢ e,
k=1 k=1

where m, = F(b™®) and

Imy| = |[FG®) < Cp® = C.
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Conversely, if (m;)€l,,, then the formula (5.8) defines a linear functional on
B(Q). Furthermore,

F(ol =

e ¢}
Z HQU.")

QO
S Y logmy|etat?
=1

< suplmyl ) lelefa® < Cllell,
k k=1
which shows the continuity of the considering linear functional F. The theorem is
proved.
As is well-known, B(Q)* is also a Banach space with the norm defined as

IFll = sup [F(c)l.
flell =1
Note, on the one hand, that
(5.9) Imy| = [F(W)| < |F| 1b®] = |F|l, VkeN.

On the other hand, in the proof of Theorem 5.2 we have already got that
[F(e)l < llcll sup |my.
k
From this estimate it follows that

(5.10) I[Fll = sup [F(c)| = sup Iml.
llell =1

Combining (5.9) and (5.10) gives the following alternative expression for the
norm || - ||

THEOREM 5.3. The norm in the space B(Q)* can be defined as follows
[IFll = sup |my,
k

where m, = F(b®), ke N.

For further study for a function ¢ & (c,) € B(R2) we denote formally

e ¢}
(5.11) Y et THalM e g 2 e Q)
k=1

LEMMA 5.4. For every s€ £, ¢ % (c,e* >~ Ha#) belongs to B(Q).

Proor. Using Theorem 2.1 we have an estimate
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log |c, ¥ ~Ha¥| 1 H(3%)
|4

lim sup

k— oo

1 Re (A* 1 Hy (A
= lim sup oglei “fl'lkle< ,S) < lim sup og |Ck||z;l o(4)
P k= o0

This shows that series (5.11) is well defined and

<0.

Csy B (et ~Ha#) e E(Q),

Furthermore,

9
el = Z lee<;'k's>‘Hn(l“)leﬂnuk)
k=1

fo o) 0
= Y lal e < Y ol efa = ||l < oo.
k=1 k=1

The lemma is proved.

DEFINITION 5.5. We say that an element cX(c,)e B(Q) is essential if ¢, 0,
VkeN.

In particular, ¢ 8 (c\"), with ¢{”) = ¢~ #a*lal*VI% ke N, where B, is defined by
(2.5) and v > 0, are essential elements of B(2) for each v > 0. Indeed, since

Ho(7*) = Hou(4*) — Re{a, A*) < B4 + lal |24,
by virtue of Theorem 2.1, we have

log|ci”] + Ho(4*)

lim sup
k— Ilkl
1 = (Ba+tlal + )|k FL
< lim sup 198 M"Il FBat il _
k—

which shows that such a sequence (c{")®., belongs to A(Q), i.e. ¢V e E(Q).
Furthermore,

o0 00 0
”c(v)u = Z |c§‘v)leﬂg(l") = Z e~ (Batlal+v)ak] GHo(3%) < Z e VI < oo,
k=1 k=1 k=1

This proves our claim.

We recall that a subset T of a topological vector space X is said to be total in
X if each continuous linear form F on X satisfying F(T) = 0 necessarily satisfies
F(X) = 0. This subset T is called a fundamental in X if the smallest closed vector
subspace of X containing T is X itself.
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As is well-known, a subset T of a locally convex topological vector space X is
total in X if and only if it is fundamental in X.

Note that a discrete subset which is total in X is also called a complete system
in X, thanks to the Banach criterion [1].

We shall prove that there exist total sets in B(Q).

THEOREM 5.6. Let S < Q be a set of uniqueness of B(Q) and ¢ & (c,) be an essential
element of B(Q). Then the set

X(e) = {ci:seS}
is a total set in B(£2).

Proor. Let Fe B(Q2)*. Suppose that F(X(c)) = 0. By Theorem 5.2

o0

k - k A
Y. cpmy ettt THaHI Ho3) = s e 8,
k=1

or

o0
Y cmett =0, VseS.
K=1

Furthermore, using Theorem 2.1 we see that

Y omett zeQ,
k=1
is well defined and, morover, this series belongs to B(Q).
Since S is the set of uniqueness of B(Q2) the last equality implies that ¢,m; = 0,
Vk e N. Since the element c is essential it follows that m, = 0,Vk € N. The theorem
is proved.

The zero divisor concept is one of the standard subjects in algebra. This is in
anatural way extended to normed algebras and called a topological zero divisor.
We recall, first of all, this notion (see, e.g., [7])

DEFINITION 5.7. An element x of a normed algebra A is called a topological
zero divisor if there exists a sequence (y;), yx€ A such that |y.| = 1, Vk and
lim [x O yill = lim [y, © x|| = 0.

There was proved a number a number of necessary and sufficient conditions
for an element in a Banach algebra to be a topological zero divisor, as well as
interesting results on this subject which are related to moduli of integrity, closed
ideals and continuous inverses of continuous linear transforms, etc. Some con-
nections between topological zero divisors and the notion of regularity (or
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inversion) and quasi-regularity (or quasi-inversion) have also been studied. We
refer the readers to [7] for more details.

For the completeness of exposition we give some examples taken from [7] of
topological zeros divisors in some concrete Banach algebras.

As the first example of topological zero divisors we look at the commutative
Banach algebra C([0, 1]). Itis shown that f € C([0,1])is a topological zero divisor
if and only if there exists some s, 0 < s < 1, for which f(s) =0. Also f is
a topological zero divisor if and only if f is not invertible.

This result, with the aid of Urysohn’s Lemma, can be carried over to a more
general context. Namely, if X is a compact Hausdorff topological space and
f e C(X), the algebra of all continuous complex-valued functions of X that are
bounded, that the following are equivalent: (i) f is a topological zero divisor; (ii)
f is not invertible; (iii) there exists some se€ X such that f(s) = 0.

For the second example we consider the commutative Banach algebra L, (I'),
where I' is the compact Abelian group under multiplication of complex numbers
of absolute value one,i.e. I' = {{eC:|{| = 1} = {¢": —n < t £ n}. The convol-
ution of two elements f, ge L,(I') naturally has the following form

. 1 [" . .
f*g(®) == _[ (7 ")g(e")dt.
2n | .
It is proved that every element of L,(I') is a topological zero divisor.
Returning to our case we prove the following

THEOREM 5.8. Every element of B(Q) is a topological zero divisor in B(Q).

PrOOF. We mention from (5.7) that b® & (c{), where

—~Hg(%) ¢
c® - )¢ o0, i) =k,
J 0, otherwise,

belong to B(2) and ||b®|| = 1 for each ke N.
Now let ¢ %(c;) be an element in B(Q). It is clear that

c O b% = b® O c ¥ (c;c o),
Then we have
le ®b¥) = 6% @ |l = leyle#¥ >0 as k — oo,

since [lc| = Y= | ledl €2 < oo. This completes the proof of the theorem.
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