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L”>-IMPROVING PROPERTIES FOR SOME MEASURES
SUPPORTED ON CURVES

YIBIAO PAN

1. Introduction.
Let I' be the curve in R* defined by
I(t) = (t, t3,t3), t=0.

In [4] D. Oberlin showed that the Lebesgue measure ¢ on I" has the following
[P-improving property: there are p,qe(1, ), p < g, such that

o *[P(R3) < LA(R3).
More specifically, he proved the following L*? — L? inequality:
THEOREM 1. There is a constant C such that
llo* fllLamsy S C I f Lams),
for fe L>*R3).

The cureve I is said to be nondegenerate because it has nonzero curvature and
torsion. For more general curves, Drury and Marshall ([2]) pointed out that the
natural measures to consider are the affine arclength measures on the given
curves. Let a = (a;,a,,a;), 0 < a, <a, < as, and |a| = a,; + a, + a;. Define
I,:(0,0) - R3 by

(1 Ia(t) = (€, 1%,1%).

Then the affine arclength measure o, on I, is /¢~ 1 dt up to a multiplicative
constant. In [1] Drury studied the curves I', for a = (1,2,k) and proved the
following:

THEOREM 2. Suppose a = (1,2,k) and k = 4. Then there exists a constant C > 0
such that

Received July 7, 1994.



122 YIBIAO PAN

2 loa* fllLzwsy = C I flL3r2r3)s
for fe L*(R3).

Subsequently Pan [6] showed that (2) holdsif a = (1,2, k)and 3 < k < 4, thus
filling the gap between Theorem 1 and Theorem 2.

In this paper we shall present a proof of inequality (2) for a large class of I',’s.
Namely we have

THEOREM 3. Let I', be given as in (1). If a, + a3 = Sa, then there exists
a constant C = C(a) such that

3 loa* fllLaws = C Il f lLazws)s
for fe **(R3).
When |a| = 6 we have o, & dt. Therefore (3) implies that

j " fx - Tty de
0

holds if I',(t) = (t,t% %) (previously known), I,(t) = (t,t3?,y"?), or I,(t)=
(t, [7/3, t8/3).

The paper is organized as follows. In the next section we establish some
estimates which will be used in the proof of Theorem 3. In section 3 we shall use
the method of “cut curves” and Stein’s interpolation theorem to complete the
proof of Theorem 3. The method of “cut curves” was first used by Oberlin for
nondegenerate curves, and later by Drury for degenerate curves. Related results
can be found in Ricci and Stein [7], Oberlin [S].

S ClfllLsrgs
L2(R3)

2. Some preliminary estimates.
Let a, 3 € R. Define ¢ and y by
PO =@+ 1) =1 YO =0+1 -+,

for t€(0, 00). For b > a > 0, we defines $*# on R? by
b

@ 5*q(x, y) = f gx — (1), y — ()t + )*TF=I g,

a

We have the following uniform L¥2 — L3 boundedness result:

THEOREM 4. Suppose a > 1, B> 1, a & f. Then there exists a constant
C = C(a, f) which is independent of a and b such that

(%) "Sapgll ey = C “g“mez),
for ge L**(R?),
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In order to prove Theorem 4, we first list and prove a few lemmas.
LeEMMA 1. Suppose v > Q. Then there are constants c,, C, > 0 such that
(6) G+ IS+ - SCe+ 1))
fort > 0.
LEMMA 2. Suppose B > o > 1. Then there exists a constant C = C(a, f) > 0
such that
() V(O [) — ¢"(W'(t) Z Cle + 1P 73,
Jort > 0.

The proof of Lemma 1 involves a simple use of the mean value theorem and we
omit the details. To prove Lemma 2, we observe that

[w"(t)d),(t)a;¢"(t)ll/(t)] - (ﬁ _ 1)[(t + ])ﬂ-2 _ tﬂ*Z][(t + l)a—l _ ta—l]

@@=+ =P+ 1 -]
=B-ot+ D[t + 1 -]

x[(t+ 1) = 1]

+(o — (B — Dt + 1)~ Yetb-3

-1 =1
<t+1> . (t+l) L
t t

X B—1 [

2 Cle + 1773,
where we used Lemma 1 and the inequality
sF—1 s —1
>

x y

which holds when x > y > 0, s > 1. The proof of Lemma 2 is complete.

We shall need the following lemma, due to van der Corput ([10]), in order to
establish a key estimate for certain oscillatory integrals (Lemma 4).

LEMMA 3. Suppose ¢ and h are smooth on [a,b] and ¢ is real-valued. If
l¢'(x)l = A, and ¢’ is monotone on [a,b], then

b
<41t (lh(b)l + J’ |1 ()] dx).

b
f e*@h(x)dx

a
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LEMMA 4. Suppose B> a > 1,b>a >0, & n,{eR. Define

b

(8) [(f,r],é’) =J ei(¢¢(l)+mll(t))(t + 1)(ﬂ~3)/2+i;dt'

a

Then there exists a constant C = C(a, f) which is independent of a, b, {, & and 1 such
that

) MmOl < Clnl ™ 2(1 + 1L)'2,
Jor &, n,leR, and a,b > 0.
PROOF OF LEMMA 4. Let x = ¢(t), D(x) = (¢ ~(x)). Define p(x) by
t+ 1)(ﬂ—3)/2+i€
Tt R
where t = ¢ ~(x). Without loss of generality we may assume that n > 0. By
Lemma 1 and Lemma 2 we have

M) Cile+ 17 Sx S Cole + 17
(i) Ca(t+ 1)f7* S P'(x) £ Cu(t + 1)f7%
(i) @"(x) = Cs(t + 1)P 221,

().
') /.

ifl<z<wandfp—2a+1%0.
Let A = ¢(a), B = ¢(b),and p = —&/n. Then B> A > 1 and

p(x)

(iv) J (t+ 1)E-32 dt < Cmax {z~2e+ V2= 1y
¢ 1z, wD

B

(10) 1&,n,0) =j X T 1PNp(x) dx.
A
For #'(A) < p < &'(B),lety = (®) " 1(p);for p £ P'(A),lety = A;fory = &'(B), let
y = B.
Let @ = f — 2a + 1. We shall examine the following three cases separately: (I)
60>0;(II) 8 < 0;(II1) 6 = 0.

Casel: 6> 0.
We pick 6 > 0 such that
(11) (7 + 8215 = g 2(1 + [{])1"2

Letd = min{B,y + 8}, J, = [2(y + 8), 2**'(y + 8)]1 n [y, B], k = 0. For x €[y, B]
we have
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(1) (x4 n9() 2 10() — F()

By (iii) we also have
(13) P(x) — P'(y) 2 Cx~ g,

for x = y + 4. By (iv) we have

(14) j Ip'(x)dx £ C1 + lCI)J Xo2a-D-1 gy
Ty 5

N

< C(1 + )y + )2 D2,

+ cj (¢ + 18372
[ O %)

By (11) we have

(15)

d
J el +no(x)) p(x) dx
Y

d
< CJ x82@=1) gy

Y

< Cy + 0205
= Cn~ 131+ |0)Y2
By (12)«14) and van der Corput’s lemma, we find

(16) é C(r,é) -1 [2’(0} + 6)] —8/(a—1)

f PL ”"’("”p(x) dx
Ji

x ([2“1(7 +9)1%27 D 4 j [p'(x)l dx)
Ji

< Cnd) (1 + L)y + 6)~a- - ok2e=1),

Therefore we have

(17)

=4

k20

o R (N

f eiext nﬁ(x))p(x) dx
Ji

B
f ei(f + "'p(x”p(x) dx
d

Next we treat the integral over the interval [A4,y]. Let
T = ’7~1/2(1 + ICI)1/2y~0/2(u— 1)

and D = max {4,y — t}. Then we have
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(18) é C,y0/2(a—1)_t

¥y
f ei{éx + """"”p(x) dx

D

=Cn~ 121 + )V
For xe[A, D] we have

(19) 2 n(P'(y) — 9'(x)

d
o (Ex + no(x)

2 Cpy?*~ V.

By van der Corput’s lemma we obain

(20) < Clpe) ™1y~ 011 4 L) D)2,

Jl it nd(x)) p(x) dx
Jie

where J, = [27%*YD,27¥D] A [4, D], k = 0. We have

< C(V]’L')_l(l + |C|),y—8/2(a~l)( Z 2—k0/2(a—1))

k=0

21

D
J ei(éx + mP(x))p(x) dx

A4

= Cn~ V(1 + |02
By combining (15) (17) (18) and (21) we find

@) < Cn7 (L + 1)

B
f elext ”o("”p(x) dx

A

if0=p—-2a+1>0.
Casell: 0 <0.
First we prove that

@) < O™+ o),

B
J £iCx +nd(x)) P( x) dx

Y

To this end we pick s > 0 such that

(24) (y + S)(ﬁ~1)/2(a—1) _ y(ﬁ—l)/z(u—l) = ,,—1/2(1 + |C|)1/2~

Since 6/2(x — 1) + 1 = (f — 1)/2(« — 1) > 0, by Lemma 1 we have

(25) ()) + s)ﬂll(a—l)s > C[(l + y/s)(ﬂ—l)/l(a—l) _ (),/s)(ﬂ—1)/2(a—1)]s(ﬂ—1)/2(a—1)
= Cn™'2(1 + ).

By (i) and (ii) there exists a constant L > 1 such that &'(x) > 29'(y) whenever
x2Ly,y>1LetQ =[y,B]n[yy+s], Q2 =[7BIn[y +sLy + 5], and
Q3 = [, B]n[L(y + s), ). For xe Q; we have
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d
(26) 2 &+ nPx) 2 (/2P (x),
By van der Corput’s lemma and (26) we have

27)

f PTIODpx)dx| < O + 87OV + )y + 9D
2

= COn (L + [E)(y + 9707 2D
< G+ [0

Letk 2 0,w, = 2, n [y + 2%s,9 + 2**1s5]. For x ew, we have
d
(28) E(éx +nP(x)) Z Cn(y + 5)7@~V25s.

By van der Corput’s lemma, (28) and (25), we have

29) j ei@x”w(")’p(x)dx < Z ei(§x+nd>(x))p(x)dx
2, k20 J ok
SCY ()7 'y +9)7%0
k=0
x 271 + |G + 972

< Cn V(L + )2
By (24) we also have
(30) j & n®Np(x) dx| < Cn~ V(1 + O,

2

By combining (27) (29) and (30) we see that (23) holds.
It remains for us to show that

(31) < Cn M2+ (G2

b
j ei(éxﬂrfb(x))p(x) dx

A

If v(ﬂ—l)/Z(a—l) < ’1—1/2(1 + lcl)lll’ then we have

Y
< J‘ x2@=1 gx

0

y
J eiléx +nP(x)) p( x) dx

A

= Cn~ (1 + ()2

Therefore we may assume that y# ~ /2@~ > 5 =1/2(1 4 |¢])1/2 Pick ¢, k € (0, 7)
such that
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(32) K(ﬁ—l)/l(m—l) = ”—1/2(1 + ,C')Uz — ,y(ﬂ—l)/Z(a—-l) _ (,y . 8)(13—1)/2(1—1).

Thus we have

(33) YR g 2 O~ AL + ()2,
4
We then write [A,7] = U (5,-, where @, =[0,k] N [4,7], 2, =([y —&7y]n
j=1
[4,9I\2y, @5 = ([0,7/2] 0 [1,7] N [4, 7]\, and Q4 = ) G, with

k20
@ = ([y — 2+ e,y — 2] N [¥/2,7] 0 [4, 7\ 1.
To prove (31), it suffices to show that

f eilé‘x +n®(x)) P( x) dx
Q

J

(34) < Cn7 M1+ 1L,

forj=1,23,4
By (32) we see that (34) holds for j = 1,2. For xe $; we have

2 Cpy®@= Yy,

|§L@x+nun)
x
and

’j ei[{x+n0(x))p(x) dx < Cr,~1,y—0/(a— 1)- 1(1 + IC')KO/Z(a—l)
a2, -

S Cn7 121+ (03,

which proves (34) for j = 3. Finally, for x € @, we have y/2 < x <y and

g C",))O/(a - “2“8.

d
'K(ix + nP(x))

Therefore we have

=3

kz0

SCU+L) Y (rey®@ 1) 12-ky82a-1)
k20

J eilﬁx +nd(x)) p( x) dx
[H

j elsx+ W(x))p(x) dx
@y

e I (I 14)
This completes the proof of case (II).

Caselll: 6=0.

For x > 1 we have ¢'(¢ ~!(x)) & x*~2/@~1 and |p(x)| < C. Suppose z, w > 1
and w > z. Then
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(35) f Cpeoldx s o + m)[ J A, f Al d¢]
z z X ¢~ 1(2) ¢ (t)

< (1 + [EH(L + In(w/z)).
Letv =n"'2(1 + |DY2, 4 = [y + 2*v,y + 2** '], k 2 0. Since

d
I (X + o) = Cn(2"v)

for xe [y, B] n 4;, we have

(36)

B
J eilsx +nd(x)) p(x) dx

Y

< Cl:v + @+ )Y 2*)! ln2:|

k20
< MR+ (L)

It remains for us to show that

»

Y

(37) e+ mOp(x) dx| < O~ (1 + (L))
J4 .
To prove (37) it suffices to show that

r

(38) el neNp(x) dx| < Cn~ 121 + ()2,

JE

where E = [4,y] n [0,y — v] n [v, 00). Clearly we may assume that y > 4v. Let
koeN such that 2%*ly <y <2%+2y Let A, =[y—2*"'v, y—2*] for
k=0,1,...,ko — 1,and 4, = [v,7 — 2*v]. Then we have

r
(39) _IP(x)ldx = €1 + |{])In2
J A

fork=0,1,...,ky— 1, and

(40) _ IP(¥)dx = C(1 + [{Dko.

J Ay,

Therefore we have
k-1n2 k
(41) < Com) '+ ICI)( X o+t 5,?-)

k=0

f eil€x+n¢(x))p(x) dx
E

S V(L IO,
This completes the proof of case (III). Lemma 4 is proved.

We are now ready to prove Theorem 4.
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PrOOF oF THEOREM 4. Without loss of generality we may assume that
B > a > 1. For zeC, define T, by

© b
“2) Ty(x.y) = —zlin J glx — ()
5

y = W(t) — s)|s|* (¢ + 1)* 27203 4 ds,
where 6 = f — 2a + 1. By the calculation in [3] we find
(43) T9(&,n) = m,(S, Mg(<, ),

where

2z+ln1/2m|—z—l b .
@) mEn) = J e IEIOF MOy 4 1)a=2-20/3 gy,

a

Therefore T_, = S*. Let yeR. Since ¢'(t) = (t + 1)*~2, we have

C
T; ST—F—~7T .
" zyg”oo_ ‘F<1 +ly>‘ ||g||1
2

By (44), Lemma 4, and Plancherel’s theorem, we have

cQ +y)*?

T3 5.7 lgll2.
3 —2iy
r(52)

By invoking Stein’s interpolation theorem ([8]), we find

IT-gls=C liglls2

for some constant C which is independent of a, b. The proof of Theorem 4 is
complete.

IT-32459ll2 £

3. Proof of the main theorem.

We now prove Theorem 3. By using a change of variable if necessary, we may
assume that @, = 1. Let a=a,, f=a;. Then 1 <a<f and « + f and
o+ B =5 Let

Tf(x,y,2) = I fx =ty —1t z — tPye+b=506 gy
0

We need to show that
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(45) ITf 23y S C Il f 32y
Define I'* f and I~ f by

I Py 2) = f : f : 0=y — w(s),
z — uPY(s))[(s + 1)s]@* 8- V6y@+b=213 gs dy,
U Hxyz) = f : Lw o+ uy + u(s),

z + uPY() (s + 1)s]*+0 96y +8-2)3 g gy,

By using (s + 1)s < (s + 1)? and Theorem 4 we obtain

:

x z — uPP()lI(s + 1)@E=33 gs

(46) 1" fllsws) <

J: £ =,y — w(s),

3,dydz

x u@tb-203 gy

i

< ClflLsrngs)

3,dx

u™?3dy
3/2,dydz

—_<—Cl f(x_“ay’z)

3,dx

Similarly we have
(47) 1 f s < C IS sy
Therefore we have
ITf IZ2msy £ N T*Tf llswsy IS Nsams)
="+ 1" fllsgs 1 lsrms
S Clf 1wy

which proves (45). The proof of Theorem 3 is now complete.

131
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