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UNIFORM TRANSFORMATION GROUPS ON
LOWER DIMENSIONAL SPACES

YUAN TIAN

Abstract.

In this paper we study transformation groups which are not assumed (locally) compact. We study
transformation groups with uniformly continuous group multiplication and generalize some results
for (locally) compact groups. The main theorem is that if a uniform group G acts openly as
a transformation group on Euclidean 2-space R, then any arcwise connected and effective subgroup
G, of G, which fixes a point of R?, is commutative. Moreover, unless G, = {e}, there is an open,
connected and dense subset O of R? such that, every orbit Gox of x € O is either a Jordan curve or is
homeomorphic with the real line R (when it is homeomorphic with the real line, it is unbounded); G,
has at most two fixed points in R? and in case G, has exactly two fixed points, we have proved that
every orbit Gox of x € R? other than the two fixed points s either a Jordan curve, or is homeomorphic
with the real line R (then it is unbounded).

Introduction.

The study of transformation groups originated in the use of groups in geometry
(in the work of Lie on continuous groups, and in the work of Poincare on
dynamical systems). Three standard works to the theory are (1) Montgomery and
Zippin, Topological Transformation Groups 1955 [1], (2) Borel et al., Seminar on
Transformation Groups, 1960 [2], and (3) Conner and Floyd, Differential Periodic
maps, 1964 [3].

A transformation group of a space is a pair (G, M) where G is a topological
group, M is a Hausdorff space and where further to each element g € G there is
given a homeomorphism x — g(x) of M onto itself satisfying

1) g(x) is simultaneously continuous in g and x;

2) 91(92(x)) = (9192)(x).

There are many different levels of generality on which questions may be raised
and on all of these levels there are many unsolved problems. In case when G is
a (locally) compact topological group and M is a manifold, the theory has been
developed considerably.

Received December 12, 1994.



102 YUAN TIAN

In this paper we study transformation groups which are not (locally) compact,
but which act on a low-dimensional space. We do not make any differentiability
assumptions on the transformations.

In Enflo [4], the (local) uniform continuity of the group multiplication is an
essential assumption and topological groups with locally uniformly continuous
group multiplication are studied. Since a (locally) compact group is always
a (locally) uniform group, the concept “(locally) uniform group” in some sense
generalizes the concept “(locally) compact group”. It is natural to investigate
(locally) uniform group by generalizing some results for (locally) compact groups.

We have the following results in [1] for compact transformation groups:

“Let G be a compact connected group which acts on Euclidean three-space R>
effectively. Then G is either the circle group or the proper orthogonal group in three
variables”.

The circle group is commutative group. The proper orthogonal group in three
variables is not commutative, but any subgroup which fixes a point is com-
mutative.

Similar results also hold for Euclidean 2-space R* and Euclidean 1-space R®.

Consider the corresponding problem for uniform groups. The main theorem
(Theorem 3.4.6) in this paper says that, with somewhat stronger assumptions, we
have similar result under the more general assumption “uniform group” instead
of “compact group”.

In Enflo [4] the following theorem was proved:

“If a locally generated, uniform group acts effectively as a transformation group
on the real line, then it is commutative”.

The concept “G is locally generated” is a generalization of the concept “G is
connected” since a connected group is a locally generated group (see Proposition
1.2.11 in this paper).

We carry over Enflo’s theorem to the case when G is a uniform transformation
group on the unit circle C in Chapter 2 of this paper. We prove

(1) If a connected, uniform topological group G acts effectively as a transform-
ation group on the unit circle C = {z, |z| = 1}, then G is commutative.(See Theorem
2.2.3)

Next we study uniform transformation groups on Euclidean 2-space R2. Our
main theorem in this paper is

(2) Let G be a uniform topological group that acts openly as a transformation
group on R%. For a point x, € R?, let G, be the subgroup of G, which consists of all
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the transformations that fix xo. We assume that Gy, is arcwise connected. If G, acts
effectively on R?, then G is a commutative subgroup of G. (See Theorem 3.4.6)

The proof of this theorem is based on the knowledge about the orbits G,x of
x € R? under G,,. It turns out that “almost” every orbit Gox of x e R? is as good as
either a Jordan curve (which is homeomorphic with the unit circle C) or it is
homeomorphic with the real line R, if G, does not leave every point of R? fixed. In
fact, we show in Chapter 3 the following

(3) If Go does not leave every point of R? fixed, then there is an open, connected
and dense subset O of R, such that, every orbit Gox with x € O is either a Jordan
curve or homeomorphic with the real line R (then it is unbounded) (See Theorem
3.4.3).

Besides, we have good knowledge about the fixed point set of G, in R? as
follows:

(4) If G, does not fix every point of R, then it fixes at most two points of R? (See
Theorem 3.4.4).

(5) Incase G, fixes exactly two points of R?, every orbit Gox of x € R? other than
the two fixed points is either a Jordan curve or it is homeomorphic with the real line
R (then it is unbounded). (See Corollary 3.4.5)

The results (3), (4) and (5) are true without assuming that G, acts effectively on
R?. Using these results, we are able to conclude that G,, as a transformation
group on R?, acts commutatively at least on an open, connected and dense subset
of R2. This easily implies that G, acts commutatively on R2. Moreover, if G, acts
effectively on R?, it is easy to show that G, is a commutative subgroup of G.

The results about orbits Gox of x e R? under G, in this paper ((3), (4) and (5))
have not only been tools for showing that G, is a commutative subgroup of G.
They are as well interesting in themselves. Actually, they can be considered as
generalizations of the following results in [1] for compact transformation
groups:

“Ifa compact group G acts on a locally Euclidean n-dimensional space E then any
(n — 1)-dimensional orbit is locally connected.”
“Let G be a compact connected group which acts on Euclidean n-space E with at
least one (n — 1)-dimensional orbit. Then all orbits except one are (n — 1)-dimen-
sional”.

This paper is organized as follows:

In chapter 1 we give definitions and some general properties and results which
will be useful for the proofs of the theorems in this paper. In chapter 2 we prove
result (1) and in chapter 3 we prove results (2), (3), (4) and (5).
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1. Definitions and general results.
1.1. DEFINITIONS.

1. Transformation group of a space. A transformation group of a space is
defined as a pair (G, M) where G is a topological group, M is a topological
Hausdorff space and where further to each element g € G there is given a homeo-
morphism x — g(x) of M onto itself satisfying

1) g(x) is simultaneously continuous in g and Xx;

2) 91(92(x)) = (9192)(x).

From 2) and from the fact that each g is one-one on M, it follows that for every
xeM

3) e(x) = x; e is the identity in G.

If e is the only element in G which leaves all of M fixed, i.e. if e is the only
element satisfying 3) for all x, then G is called effective.

A transformation group G is called transitive on M if for every x, y € M there is
at least one g e G, such that g(x) = y.

We say that G acts openly as a transformation on M if g — g(x) is an open
mapping G — M, for every fixed xe M.

Wesay that G acts commutatively on M, if for every pair of g, f € G and for every
x € M, we have gf(x) = fg(x).

2. Uniform group. For the definition of uniform space the reader is referred to
Kelly [5]. Werecall that if G is a topological group, then the left uniformity for G is
the uniformity which has as a base the family of sets {(x,y)|x~'ye U} where
U runs through the neighborhoods of e in G. The right uniformity is defined in the
same way but with xy ! instead of x " !y.

We say that a topological group G is a uniform group if there is a uniform
structure % for G such that(x, y) — xy is uniformly continuous with respect to %.

In Enflo [4], itis proved that G is a uniform group if and only if the left and the
right uniformity for G coincide. Then the uniformity of G coincides with the left
and right uniformities and (x,y) — xy is uniformly continuous as a function
G x G = G, x — x~!is uniformly continuous as a function G — G. Besides, there
is the following useful lemma in [4]:

“G is a uniform group if and only if for every neighborhood U of e there is
a neighborhood V of e such that for all xe G, x " 'Vx < U.”

In this paper, we use this necessary and sufficient condition as the definition of
uniform groups.

3. Orbit. Let (G, M) be a transformation group and H a subgroup of G. Then
(H, M) is also a transformation group. For each x € M, the set
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H(x) = {h(x),heH} =« M
is called the orbit of x under H.

4. Locally generated groups. A topological group G is called locally generated,
iffor every neighborhood V of e the smallest subgroup of G which contains Vis G.

5. Pathwise (Arcwise) connected spaces. A topological space X is called path-
wise (arcwise) connected if for any two points x and y in X, there is a continuous
function (homeomorphism) f: [0, 1] — X such that f(0) = x, f(1) = y. The func-
tion f (as well as its range) is called a path (arc) from x to y.

6. n-Manifold. An n-dimensional manifold is a Hausdorff space on which there
exists an open covering by sets homeomorphic with open sets in R".

By this definition, we see that a Hausdorff space X is a 1-manifold, if for every
point x of X, there is an open neighborhood of x homeomorphic with the open
unit interval (0, 1). Then we also use the expression that X at x is locally an arc.

7. Dimension. The empty set and only the empty set has dimension —1.
A space X has dimension < n (n = 0) at a point p if p has arbitrarily small
neighborhoods whose boundaries have dimension < n — 1. X has dimension
< n,dim X < n,if X has dimension < n at each of its points. X has dimension
n at a point p if it is true that X has dimension < n at p and it is false that X has
dimension <n—1 at p. X has dimension n if dimX <n is true and
dim X < n — 1is false.

By this definition, Euclidean n-space has dimension n [6].

8. Accessibility by arc and by set from a point set. A point a is called arcwise
accessible from a point set B if be B implies the existence of an arc T with end
points a and b such that T — a = B. If A is a point set every point of which is
arcwise accessible from some point set B, then we call A arcwise accessible from B.
That a point p is accessible from B by closed and connected sets means that for
each q e B, there exists a closed and connected set K which contains p and g such
that K — p < B.

9. Domain. A domain is an open and connected subset of a topological space.
1.2. SOME GENERAL PROPERTIES AND RESULTS.

PROPOSITION 1.2.1. Let (G, M) be a transformation group and H a subgroup of G.
For each x € M, consider the orbit H(x) = {h(x), he H}. Then we have

a) H(x) is connected, if H is a connected subgroup of G.

b) (H, H(x)) is also a transformation group and H acts transitively on H(x).
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c) We have either H(x;) = H(x;) or H(xy)nH(x,)=0, for every two
X1,XZEM.

ProOOF. The proofs are trivial.

PROPOSITION 1.2.2. Let (G, M) be a transformation group. Then for every open
set O in M and for every compact set K = O < M, there exists a neighborhood U of
e in G, such that u(x)€ O, for allue U, xe K.

PRrOOF. Since (G, M) is a transformation group, for every xe K (then O is an
open neighborhood of x) there exists a neighborhood O, of x in M and a neigh-
borhood U, of e in G, such that u(y)e O, for all ue U,, ye O,. K is compact, so
there exist finitely many x’s in K, say x;, x,...,X,, such that {0, ,i = 1,2,...,n}
is a finite open cover of K. Let U = (), U,,, then u(x)€ O, for allue U, xe K.

PRrOPOSITION 1.2.3. A Hausdorff space X is pathwise connected if and only if it is
arcwise connected [8].

PROPOSITION 1.2.4. A necessary and sufficient condition that a subset N of R" be
n-dimensional is that N contains a non-empty subset which is open in R" (see [6],
page 44).

PROPOSITION 1.2.5. A subspace of a space of dimension < n has dimension < n
(see [6], page 26).

PROPOSITION 1.2.6. If M is a locally compact, metric, connected space, then in
order that M should be locally connected, it is necessary and sufficient that for every
open subset D of M, the points of 0D that are arcwise accessible from D be dense in
0D (see [7], page 106).

COROLLARY 1.2.7. If D is a domain in R?, then the points of dD that are arcwise
accessible from D are dense in 0D.
ProOF. R?isalocally compact, connected and locally connected metric space.

PROPOSITION 1.2.8. Every domain in R? is arcwise connected.

PROPOSITION 1.2.9. If M is locally compact, connected and locally connected
metric space, then a necessary and sufficient condition that a point p of the boundary
B of adomain D in M should be arcwise accessible from D is that p be accessible by
closed and connected sets from D (see [7], page 110).

PROPOSITION 1.2.10. A compact connected 1-manifold is homeomorphic with
a circle and a non-compact component of a 1-manifold is topologically an open
interval, provided that the topology has a countable base [9].

PROPOSITION 1.2.11. If G is a connected group then G is locally generated.
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PrROOF. We need to show that for every neighborhood W of e the smallest
subgroup of G which contains W is G itself.

We have the following theorem in [1] (page 37):

If G is a connected group and W is an open neighborhood of e, then G = U, W".

If a subgroup contains W, it is easy to see that this subgroup contains every W".
So, this subgroup contains G. That is to say that it is G itself.

REMARK. A locally generated group does not need to be connected. As
a matter of fact, in Enflo’s paper [4], there is an example of a complete,
commutative locally generated group which has more than one element and is
totally disconnected.

2. Uniform groups on connected 1-manifolds.

2.1. LOCALLY GENERATED, UNIFORM GROUPS WHICH ACT EFFECTIVELY AND TRAN-
SITIVELY ON THE UNIT CIRCLE.

Let C denote the unit circle of the complex plane. When we study the circle
C we often need to talk about orientation. In this paper, we let C denote the unit
circle with the anticlockwise orientation.

If f is a homeomorphism on C, then f maps C onto C and f either preserves
the orientation of C or reserves it. When f preserves the orientation, we call f an
orientation preserving homeomorphism, otherwise an orientation reserving
homeomorphism.

We often need to talk about an “interval” of C. Every two points a, b of C divide
the circle into two intervals. In the following, we let (a, b) always denote the open
interval which consists of all points z going from a to b anticlockwisely, exclusive
the end points a and b, and [a, b] denote the closed interval which is the union of
(a,b) and the two end points a and b.

Every homeomorphism f maps an interval onto another interval. If f is an
orientation preserving (reserving) homeomorphism, then f maps interval (a, b)
onto the interval (f(a), f(B))(f(b), f(a))). Then we say that when f is orientation
preserving (reversing) on C, it is orientation preserving (reversing) on every
interval of C.

We need also often to use the expression “we choose points a and b such that
“a < b”...”. Then we mean that we choose a point a first and then a point
b which comes after the point a along the orientation of C. Of course, when
“a < b”, we have also “b < a” in another way, but this will not make any
confusion for us. If we write “b < a”, then we think about point b first and point
a comes after the point b along the orientation of C. When we write “a < ¢ <b”,
we mean that ce(a, b).
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Let d(z, w) denote the distance between two points z and w along the circle.
Then we have the following

PrOPOSITION 2.1.1. Assume that G acts effectively as a transformation group on
the unit circle C. Then for every ¢ > 0, there is a neighborhood U of e in G, such that
for all he U, ze C we have d(h(z),z) < e.

Proor. For every ¢ > 0, we choose points z;€C, i = 1,2,...,n, such that
“z2y <23 <...<z, <2z and d(z;,z;4 ) < ie.

Consider open intervals (z;-y, z;j+,), i=1,2,...,n, where we define
20 = Zn,Zy+1 = Z1,Zn+2 = Z. Thenwe have d(z;_{,z;4+,) < ¢ Vi=1,2,...,nand
U:l=l (zi-152i+2) 2 C.

Every (z;—1, zi+2) is open neighborhood of [z;, z;,,]. Then there exists
a neighborhood U; of e in G, such that h(z)e(z;_4, z;+,) for all he U; and for all
z€[z;, z;+ 1] (see Proposition 1.2.2). Then d(h(z),z) < &,Vze[z;, z;+1], he U,.

Let U = ()/-, U;. Then Vhe U, we have d(h(z),z) < ¢, VzeC.

PROPOSITION 2.1.2. If G is locally generated and acts as a transformation group
on C, then every transformation g € G is an orientation preserving homeomorphism.

Proor. Consider a small interval (a, b) of C. That is to say that we let a, b be
sufficiently close to each other. Then consider a small neighborhood (u, v) of the
interval [a,b]. Then there exists a neighborhood U of e in G such that
Ula,b] < (u,v). If we choose U sufficiently small such that U(a) is sufficiently
close to a and U(b) is sufficiently close to b, then every he U maps (a, b) onto
(h(a), h(b)). This is to say that every he U is an orientation preserving homeomor-
phism on (a, b). So every he U is an orientation preserving homeomorphism on
C.

Since the set of all the orientation preserving homeomorphisms of G consti-
tutes a subgroup of G and we assume that G is locally generated, we get that every
g of G is an orientation preserving homeomorphism.

The following proposition is inspired by Theorem 1.2.1 in Enflo [4], page 236.

PROPOSITION 2.1.3. Let G be a locally generated and uniform group, acting
effectively as a transformation group on C and let M, denote the set of fixed points
for atransformation f € G, where f + e. If M, % 0, then OM + @ and every point of
0M; is a fixed point for all transformations of G.

PRrOOF. Since G acts effectively as a transformation group on C, we know that
M; % C.Then 0M, + P when M, + 0. Let x e 9M,. Then in every neighborhood
of x, there is a point x, (which may be the same as x) such that f(x,) = x, and
f(y) # yfor all y in some small interval (x,, x}] or [x], x,). We assume () % y
for all y in (x,, x}] (the other case can be done analogously).
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Assume that there is a transformation ge G with g(x,) % x,. Then in every
neighborhood of e in G there is an element h with h(x,) % x, since G is locally
generated.

Consider a neighborhood (x7, x) of x,(x] < x; < x}), where (x,, x}] satisfies
the condition we mentioned above, that is to say f(y) # y for all y in (x;,x,].
Then there is a neighborhood U of e in G, such that U(x,)e(x}, x}). G is uniform,
so there is a neighborhood V of e in G, such that

FVE7(xy) € Ulxy) = (x, %)), Yn =0, 1,2,...

For this V, there is an he V such that h(x,) # x,(h(x;) € (x], x})). We assume
h(x;) € (xy,x}) (otherwise consider #~!). T hen

SR TM(xy) = frh(x)e(x], x),Yn=0,1,2,....

It is easy to see that f(h(x))e(x;,x}) since f, as an orientation preserving
homeomorphism, maps [xy, h(x;)] onto [x,, f(h(x,))] and since f fixes x, the
interval [x,. f(h(x;))] cannot be very large when the interval (x, x',) is sufficiently
small. So f(h(x,)) + h(x,).

Assume that f(h(x,)) € (h(x,), x;) (otherwise consider f ~1).

Thenf"* Y(h(x)) e (f"(h(x,)), x}),¥Yn = 1,2,... Let n tend to infinity, then
S"(h(x,)) tends to a fixed point of f in the interval (x,, x} ]. This is a contradiction.
This shows that x, is a fixed point for all transformations of G. Since x; can be
taken arbitrarily closed to x, it also follows that x is a fixed point for all
transformations of G. Thus all elements of IM; are fixed points for all transform-
ations of G.

COROLLARY 2.1.4. If G is locally generated, uniform and acts effectively and
transitively as a transformation group on C. Then there is no transformation in
G except e which has a fixed point in C.

ProoF. If there exists an f € G except e, such that f has fixed point on C, then
OM, is not empty and all elements of it are fixed points for all transformations of
G by Proposition 2.1.3. In other words, the fixed point set of G is non-empty. This
is not true when G acts transitively on C.

LEMMA 2.1.5. Let G be locally generated, uniform and act effectively and
transitively as a transformation group on C.

(@) Consider any three different transformationsf, g, he€ G. If thereexistsanz e C
such that f(z) < g(z) £ h(z), then for any other point z;€C, we have
f(z1) £ g(z,) < h(z;) (Recall that a <b < c has the precise meaning that
be[a,c]).

(b) Consider any three different points a, b, ceC. If a £ b < c, then for every
transformation f of G, we have f(a) < f(b) < f(0).
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PrOOF. (a) Theinterval[z,z,] of Cis homeomorphic to an interval of the real
line. f, g, h € G can be seen as three increasing continuous functions on the interval
since they are orientation preserving homeomorphisms on C. If any of the two
inequalities “flz,) < g(z,) < h(z,)” is not true, when “f(z) < g(z) < h(z)” is the
truth, there always exists a point we C which is a fixed point of either g ™' f # eor
h~1g # e. This fails by Corollary 2.1.4.

(b) By the fact that every f preserves the orientation of C.

THEOREM 2.1.6. Let G be locally generated, uniform and act effectively and
transitively as a transformation group on C. Then G is a commutative group.

ProoF. To show the theorem, we need to show that for every point z e C and

every two transformations f, g € G, we have
f9(2) = gf (2).

In order to do so, we need only to show thatforallze C,¢ > 0, f,g € G, we have
d(fg(2),qf (2)) < e.

Choose an element he G which is near e but h #+ e and consider the sequence
{h(z),i = 0,1,2,...}. By Corollary 2.1.4, h has no fixed point on C so
h(z) + h'*1(z) for all i.

By Proposition 2.1.1, we can choose h such that d[h'(z), Kt (z)] < e, Vi.

Choose h such that z < h(z), that is to say, h(z) comes after z along the
orientation of C (otherwise consider h~!). Then hi(z) < hi*!(z), Vi.

Then the sequence {hi(z),i = 0,1,2,...} goes anticlockwisely on C. In other
words, we have “z < h(z) < h*(z) < ... < hi(z) < hi'*}(2) <...”

If lim; ., ,, h'(z) exists, then h has a fixed point which is a contradiction. So there
isasequence n,,p = 1,2,...,such that “h"#(z) < z < h"»*!(z),forallp = 1,2,...".

Consider f. There is an i€ {0,1,...,n,}, such that h(z) £ f(z) £ h'**(2). Then
for any other point z, € C, we have hi(z,) < f(z,) £ h*!(z,)(see Lemma 2.1.5). In
particular for g(z) we have hi(g(z)) £ f(g(2)) £ h'*(g(2)).

Similarly, for g, thereisje {1,2,...,n,}, such that k(z) < g(z) £ h'**(z), and for
f(z) we have H(f(2)) < g(f(2)) £ W*(f(2)).

Since g(z) € [h(z), K’ * }(2)], we have hi(g(z)) e [h' T(z), i ** 1(z)] and hi* Y(g(2)) €
[K*9*1(z), K *i* %(2)] (see Lemma 2.1.5).

Then f(g(2) € [h(g(2)), h'* (9(2))] = [H*9(2), B9 %(2)].

Similarly, we can prove that g(f(z)) e [ */(z), h'*i* %(z)].

These results give that d(fg(z), gf(2)) < e.

2.2. CONNECTED, UNIFORM GROUPS ON CONNECTED 1-MANIFOLDS

Proposition 1.2.10 tells us that a compact connected 1-manifold is homeomor-
phic with the unit circle and a non-compact component is topologically an open
interval, provided it is countable (i.e., there is a countable base for the topology),
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so a connected and countable 1-manifold is topologically either a circle or the
real line R.
In Enflo [4], there is the following

THEOREM 2.2.1. If a locally generated, uniform group G acts effectively as
a transformation group on the real line R, then it is commutative.

We have shown in Proposition 1.2.11 that a connected group is locally
generated, so we have the following

COROLLARY 2.2.2. If a connected, uniform group G acts effectively as a trans-
formation group on the real line R, then it is commutative.

THEOREM 2.2.3. If a connected and uniform group G acts effectively as a trans-
formation group on the unit circle C, then it is commutative.

Proor. If there exists a point ¢ of C such that c is a fixe point of all transform-
ations of G, then G is a connected and uniform group, acts effectively as
a transformation group on C — {c} which is homeomorphic with the real line R.
Then by Corollary 2.2.2, G is commutative on C — {c}. Then it is easy to see that
G is commutative on C. In other words, the theorem is proved in case the set of
fixed points for all transformations of G is not the empty set.

We study the orbits G(z) of G, where z € C. We know that G acts transitively as
a transformation group on every orbit G(z).

By Proposition 1.2.1, an orbit G(z) = {g(z), g€ G} is a connected subset of
C when G is connected. We have one of the following two cases: (1) G(z) = C, (2)
G(z) + C.

In case (1) when G(z) = C, G is a locally generated (since it is connected) and
uniform group, acts effectively and transitively as a transformation group on C.
G is commutative by Theorem 2.1.6.

In case (2) when G(z) % C, it is easy to see that G(z), since it is connected, is in
one of the following three cases: (a) G(z) is a single point, (b) G(z) is a proper
interval of C, open, closed or half closed, (c) G(z) is C except one point. In case (b)
we actually also know that G(z) is an open interval since for every two points of an
orbit, there is always a homeomorphism g which maps one point to the other. So
if there is one point which is an inner point, every other point is an inner point.

In case (a), it is easy to see that the single point of the orbit is a fixed point for all
g€G. In case (c), the single point remained by the orbit is a fixed point for all of
geG. In case (b), it is easy to show that the end points of the interval are fixed
points for all ge G.

In all the three cases, the set of fixed points for all transformations of G is not
empty. The theorem is proved.
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COROLLARY 2.2.4. If a connected and uniform group G acts effectively as
a transformation group on a connected and countable 1-manifold, then it is com-
mutative.

3. Uniform transformation groups on R

In this chapter we study uniform transformation groups on R? The main
theorem is the following:

Assume G be a uniform group which acts openly as a transformation group on R?,
Let xo € R? and G, be the subgroup of G, which consists of all the transformations
that have x4 as a fixed point. Assume that G is arcwise connected. Then if G, acts
effectively on R?, G, is a commutative subgroup of G.

In order to prove this main theorem, we prove, under the same assumptions on
G and G, but without that G, acts effectively on R?, the following results about
the orbits of points under G, and the set of fixed points of G,:

(@) If Gy does not leave every point of R? fixed, then there is an open, connected
and dense subset O of R, such that, for every point x of O, the orbit Gyx is either
a Jordan curve or homeomorphic with the real line R. Each Gyx is closed so if it is
homeomorphic with the real line, it is unbounded. (b) If G, does not leave every point
of R? fixed, then it fixes at most two points of R (c) In case there are exactly two
fixed points of G, for every point x of R? other than the two fixed points, the orbit
Gox is either a Jordan curve or homeomorphic with the real line.

3.1. THE SETS M; AND THEIR BOUNDARIES 0M;

The following assumptions on G and G, will be in force throughout Chapter 3.

Assume that G is a uniform group that acts openly as a transformation group
on R% Let xoeR? and G, be the subgroup of G, which consists of all the
transformations that have x, as fixed point. Suppose that G, arcwise connected.

For ¢ > 0, let B; ,, denote the open ball which has x, as its center and ¢ as its
radius. Consider the subsets of R?, which are in the form:

Md = UgeGo g(BJ,xo)-

Then every M, is an open neighborhood of x,. The sets M; and their boundaries
O0M;, for all & > 0, play an important role in this chapter. We have the following
propositions:

PROPOSITION 3.1.1. {M;}s ¢ is a base for the neighborhood system of x, in R%.

PRrROOF. Given ¢ > 0, there is a neighborhood U of e in G, such that,

1) gUg ™" (x0) € B,
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for all g € G, since G is uniform. Especially for all g e Gy, (1) holds and has form
gUX() < Bs, X0

For this U, since G acts openly on R?, Ux, = {h(x,), he U } is a neighborhood of
Xo. Then there is an § > 0, such that

B;, ., € Uxq
and therefore
9(Bs,x,) € gUxo = B, .
for all ge G,. Then

UgeGO g(Bé,xo) = Be,xo-

This is to say
M;< B, .

In other words, we have shown that given ¢ > 0, there is 6 > 0, such that
M; < B, ,,. This gives that {M;};. , is a base for the neighborhood system of x,.

PROPOSITION 3.1.2. (a) Every M is invariant under the transformation subgroup
Gy, that is to say: GoM; = M;.

(b) Also the closure M; is invariant under the transformation subgroup
Go: GoM; = M;.

(c) Also the boundary of M. dMs = M;\Mj, is invariant under the transform-
ation subgroup Gy: Go(0M;) = OM;.

Proor. The proofs are trivial.
PROPOSITION 3.1.3. For every two & and &' withQ < &' < 6, we have My = M.

PRrROOF. Itis trivial to show thatif 0 < &' < 6, then M = M;. Let xe dM;.. We
show that x e M.

Since x € IM;., there is a sequence x, € M such that x, — x. The sequence x,,
can be written as h,(z,) with z, € By ., and h, € Go. Then there is a subsequence of
z, which converges to a point z eE,,r,xo. Without loosing the generality, assume
that z, — z. This gives that h, '(x,) > z€ By .

Consider a small open neighborhood U of e in G. Then Uz and Ux are small
open neighborhoods of z and x respectively in R%. For this U, there is an open
neighborhood V of ein G such that fVf ! « U forall f € G. Then Vz and Vx are
also small open neighborhoods of z and x respectively in R. That x, — x gives
that x,e Vx and that h, !(x,) - z gives that h, !(x,)e Uz when n is sufficiently
large. Then we see that h (x,)eh, 'Vx = Uh, '(x), which gives that
h, Y(x)e U~ 'h; Y(x,) = U~ 'U(z) when n is sufficiently large.
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We see that U ~ 1 U(z) is a small open neighborhood of zin R* when U is a small
open neighborhood of e in G. So when U is sufficiently small, we have that
h; '(x)e U~ 'U(z) < Bjs,,,, which gives that xe M,. The proposition is proved.

PRrOPOSITION 3.1.4. For every 6 > 0, we have (a) dim M; = 2; (b) if M is not
empty, then either dim 0M; = 0 or dim 0M; = 1.

PROOF. (a) dim M; = 2, since M; is an open subset of R? (see Proposition
1.2.4).

(b) dM; is a subset of R? so dimdM; <2 (see Proposition 1.2.5). But
dim 0M; # 2 since ?M; does not contain a non-empty subset which is open in R,
Thus dim 0M; < 1 from which (b) follows directly.

So the boundary dM; is either 0-dimensional or 1-dimensional. G, is a uniform
transformation group on dM;. In chapter 2, we have studied uniform transform-
ation groups on connected and countable 1-manifold. It is natural to hope that
every 0M; consists of either connected 0-manifolds or connected 1-manifolds. If
s0, G, will be commutative on every d M; by using the results of Chapter 2. After
this, if the points of the sets M, for § > 0 fill up all of R?, then G, will be
commutative on R2.

In this section, we give first a proof that the sets dM; for 6 > 0 fill up all of R?
indeed in the following

PROPOSITION 3.1.5. For every point x of R* other than x,, there is a unique > 0
such that x e 0M;. Moreover, for this d, there exists a sequence g,(x) € Gox which
converges to a point ye 0B, . In particular, if x is a fixed point of G, then
X€0B; 4.

In the proof of Proposition 3.1.5, we use the following fact which we present as
a lemma.

LEMMA 3.1.6. Suppose that x and y are points of R? and g, is a sequence of G,
Then g,(x) — y if and only if g, '(y) - x.

Proor. That G is a uniform group gives that for every open neighborhood
U of e in G, there exists an open neighborhood V of ein G such that g ™' Vg < U,
VgeG. We may choose V such that ¥V = V™1, Assume that g,(x) — y. Since
G acts openly as a transformation group on R?, we have that g,(x) e Vy when
n—co. This gives that yeV !g,(x) = Vg,(x). Then we have g,'(y)e
gn 'Vga(x) = Ux. This is to say that g, *(y) = x. In the same way, we can show
that g,(x) = y if g, '(y) > x.

PROOF OF PROPOSITION 3.1.5. Since x # x,, we see that x ¢ M, when 7y is suffi-
ciently small by Proposition 3.1.1. Let 6 = sup{y,x¢M,}. Since when y is
sufficiently large we have x€ B, ,, = (B, +,) © | ye6, 9(B,.x,) = M,, we see that
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0 < 6 < co. Besides, since M,, = M,, when 0 < y, < y,, we see that for every
y with 0 <y < 4, we have x ¢ M,. Let us show that x e dM;.

If x € M;, then there is a ge G, such that x€g(Bs, x,)- Then there is a y with
0 <y < dsuchthatxeg(B, ,,) = M,. Thisis a contradiction. So x ¢ M;. We need
only to show that xe M;.

For every y >4, we have xeM,. Then there is g 'eG,, such that
x€g~ (B, x,)- Then g(x)eB, ..

This gives that there is a sequence g, of Go, such that g,(x) converges to a point
y€0B; ... This is equivalent to g, '(y)— x by the Lemma 3.1.6. But
gn '(1eGoy = Go(0Bs,x,) = Go(M;) = M,, we have x e M.

We have proved x € dM;, and also the existence of the sequence g,(x) € Gox
such that g,(x) — y, with ye 6B, ., .. When x is a fixed point of G, it is easy to see
that y = x€0B; ,,.

This d 1s unique for x with respect to the property that x € dM;. In fact, if we
consider another value y withy > 6 then xe M, so x ¢ dM,. If0 < y < § we have
also x ¢ M, by Proposition 3.1.3, since x € dM;. Proposition 3.1.5 is proved.

It is desirable that every dM; only consists of either connected 0-manifolds or
connected 1-manifolds. To prove this, we need to study the sets dM; in detail.
One of the key tools turns out to be the following proposition which is crucial for
our proofs:

PRroOPOSITION 3.1.7. For every é > 0, 0M; is arcwise accessible from Mj.
To prove Proposition 3.1.7, we need the following

LeEmMMA 3.1.8. If x € 0M; is arcwise accessible from M, then Gox, as a subset of
0M;, is arcwise accessible from M.

PrOOF. It is easy to show that if x e IM; and x is arcwise accessible from M;,
then the orbit G, x, as a subset of 9M;, is arcwise accessible from Mj. In fact, when
x€0dM;and x is arcwise accessible from M, there is an arc T from a point ae M,
to x such that T — x e M;. Every element g of G, is a homeomorphism of R? to
R?,so it maps arc T to an arc g(T). Since both M; and dM; are invariant under G,
we see that g(T — x) € M; and g(x) e M. This gives that g(x) is arcwise accessible
from M;.

To show that even the closure Gox of the orbit Gox, which is also a subset of
0M;, is arcwise accessible from M;, we need to show that if g,(x) — z, where
gn€ Gy, then z is arcwise accessible from M;. By Proposition 1.2.9, it is enough to
show that z is accessible by a closed and connected set K from M;.

Since x € dM, is arcwise accessible from Mj, there is an arc T from a point of M,
to x such that T — x = M;,. Suppose g,(x) = z. Then for every te T, g,(t) is
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a sequence of R2. We say that if we choose T sufficiently closed to x, then
{g.(T), ¥n} is bounded.

In fact, since G is uniform, for every open neighborhood U of e in G, there is an
open neighborhood V of e in G such that g,Vg, ' < U for all n. This gives
Vg, 'Ug,for all n. Then T = Vx < g, ' U g,(x) for all nif T is sufficiently
close to x. This gives g,(T) = Ug,(x). But g,(x) = z, so g,(x)e Uz when n — oo.
Then we get g,(T) « UUz. UUz is a small open neighborhood of z when U is
a small open neighborhood of e.

Then every sequence g,(t) has at least one limit point in R? for te T.

Let K be the set which consists of all limit points of g,(t) with te T. Then ze K.
We show that K is closed, connected and K — z = M;.

Let us first show that K — z = M;. For this, it is enough to show that if
te T — x © M, then any limit point of g,(t) is in Mj. If it is not the truth, there is
asequence g, (t) = we 0M,. This gives g,;‘ (w) - t. Butg, '(w)e 0M,since 0M5is
invariant under G, so t€ 0M;. This is a contradiction.

Next, we show that K is closed.

Let a be a limit point of a sequence of points of K. That is to say, let a,, — q,
where every a,, is a limit point of g,(t,,), with t,, € T. Then it is easy to see that there
is a sequence g, _(t,) converging to a when m — oo (then also n,, — ). t,, has
a convergent subsequence. Without loosing the generality, let ¢,, - t € T. Study
the sequence g, (t). This sequence has a limit point a’. Without loosing the
generality, suppose g, (t) = a'. Then a’e K.

Let U and V be two arbitrary open neighborhoods of ein G such that VV < U.
Then Va' is an open neighborhood of a’ in R?. Then n,, (1) € Va’' when m is large.
On the other hand, since t,, — t and G is a uniform group, we have t,,€ g, Vg, (1)
when m is large. This gives g, (tm)€Vy, (t) = VVa' < Ud'. That is to say
gn,(tm) = a'. Butg, (t,)—a,soa = a'. This gives ae K. We have proved that K is
closed.

Finaily, we show that K is connected.

Let K = K; UK,, K,, K, are nonempty and K; n K, = §. We show that one
of K;nK, and K; n K, be nonempty. Without loosing the generality, we
suppose ze K ,. .

Let T; be the subset of T consisting of such ¢ so that some limit point of g,,(t) isin
K, T, be the subset of T consisting of such t so that none of the limit points of g,,(t)
bein K,. Then Ty U T, = T with T; n T, = @. Besides, it is easy to see that none
of T or T, be empty (ze T).

For every te T,, a subsequence of g,(t) can only converge to a point of K ,.

Since none of T; or T, be empty and T is connected, we know that one of
T, N T and T, A T, is nonempty.

When T, N T, is nonempty, let ¢ be a common point of them. Then there is
a sequence t, — t with t,,€ T;. Then for every m there exists a subsequence of
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gn(tn) converging to b,, € K,. b, has a limit point b. Without loosing the general-
ity we suppose b,, — b. Then b € K ;. On the other hand, as we have shown before,
there exists a sequence g, (t,,) converging to b. For this sequence g, we know
that even g, _(f) converges to b. This is to say that b is a limit point of sequence
gn(t). But te Ty, so be K,. This shows that K, n K, %+ §.

When T; n T, is nonempty, let t be a common point of them. Since t € T;, there
exists a subsequence g, (f) » be K;. On the other hand, there is a sequence
tm = t, tw€ Ty. For every m, consider sequence g, (t.). Then there is a subsequ-
ence of g, (t,,) which converges to some b,,€ K,. b,, has a limit point ’. Without
loosing the generality, suppose b,, — b". Then b’ € K. It is easy to see that there is
asequence g, (t,)converging to b’ and then even the sequence 9, (t) converges
to b’, when m — oo. Then we see that b = b". This shows that K; n K, + 0. We
have proved that K is connected.

Therefore, we have proved that G, x is arcwise accessible from M;.

PROOF OF PROPOSITION 3.1.7. If x e dM; we have proved in Proposition 3.1.5
that there exists a sequence g,(x) € Gox which converges to a point y€0B; .
Then ye Gox. This gives also x € Goy by Lemma 3.1.6.

It is easy to see that y is arcwise accessible from M; since y is arcwise accessible
from B, ,,. So x is also arcwise accessible from M; by Lemma 3.1.8.

For the further investigations of the sets 0M;, we need to study the complement
of the sets M; in R%. We do this in the next section of this chapter.

3.2. THE SETS A5 AND THEIR BOUNDARIES 04 ;.

Forevery é > 0, the set M;is open and connected. The closure M, is closed and
connected. The complement of M; in R?, if it is not the empty set, is a disjoint
union of its components. Let 4; denote an arbitrary component of M§ in R?.
Then A, is open and connected. We study the set 4; and its boundary dA,.

PROPOSITION 3.2.1. 0A; is a subset of 0M;.

PROPOSITION 3.2.2. (a) A; is invariant under Go; (b) A, is invariant under Go;
(c) 0A; is invariant under G,

Proor. (a) Consider a point x € 4;. If there is an g € Go, such that g(x) ¢ 4,
then g(x) is in another component Aj; of M¢ since M; is invariant under G,. Then
there is a path g,(x), t [0, 1], g, € Go, which goes from x to g(x) since G, is arcwise
connected. This path must intersect the boundary of 4;. Then there is an ¢ such
that g,(x) e 04, = OM . This gives that x € M;. This is a contraction. (a) is proved.
The proofs of (b) and (c) are trivial.

PROPOSITION 3.2.3. If x € 0A; and x is arcwise accessible from A, then the orbit
Gox, as a subset of 0A;, is arcwise accessible from Aj;.
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PrOOF. The proof is similar the first part of the proof of Lemma 3.1.8.

We consider orbits Gox for xe d4;. Then every dim Gox < 1, since Gox is
a subset of 0M;. Thus, either dim Gox = 0 or dim Gox = {.

PROPOSITION 3.2.4. For every x € 0As, if dim Gox = 1 and x is arcwise access-
ible from Ay, then Gox, provided with the relative topology inherited from R?, is
a 1-manifold.

Proor. Since G, is arcwise connected, for every two points p and g of G, x (that
the orbit is 1-dimensional gives that at least two points of the orbit exist) there is
an path g,(p), te[0, 1] of Gox which goes from p to g with go(p) = p, 9:(p) = q.
This implies that there exists an arc pg of Gox which goes from p to g. We consider
an interior point d of the arc pq. Since Gox = G,d, without loosing the generality,
we choose x as an interior point of the arc pq. Without loosing the generality, we
also choose p and ¢ such that the arc pq is close to x.

Since x is arcwise accessible from A;, both p and g are arcwise accessible from
Aj;. Then there are two arcs Ty, resp. T, from some common point of 45to p resp.
q such that T, —p, T, — q = A;. We may choose T; and T, such that
T, upqu T, constitute a Jordan curve in R2, We call this Jordan curve C,.

By the Jordan curve theorem, C, separates R? into two connected and open
sets 2, and 2,, one bounded and the other unbounded, and C, is the boundary of
each.

We claim that M; can only intersect one of 2, and 2,. In fact, if this is not true,
there are two points of M;, one in 2, and the other in 2,. M;is a domain of R? so
there is an arc of M, from the one point to the other (see Proposition 1.2.8). This
arc must intersect the Jordan curve C,. But C, consists only of points of A5 and
points of 94, which is a part of 9M;. An arc of M; cannot have any common point
with C,. This contradiction shows that M; intersect only one of 2, and 2,.

Let 2, be the one which does not intersect M;. Then there is no point of dM;in
9,. Infact, if there is a point of IM;in @, then 2, is an open neighborhood of the
point. Then there is a point of M; in 2,. This is a contradiction. This gives that
there is no point of Gyx in 2.

But 2, contains points of 4; since part of the boundary of 2, isin 4; and A4, is
open. Let us show that &, contains only points of 4,. If this is not true, there is
point of 2,, which is not a point of 45. 2, is a domain of R2. If we choose, in 2,
a point of A; and a point which is not in A,, there is an arc of 9, joining the two
points. This arc must intersect the boundary of A;. Then we have found a point of
0M;in 9,. This is a contradiction.

On the other hand, the point x is arcwise accessible from M; by Proposition
3.1.7 since x is a point of dM;. Then both p and g are arcwise accessible from M;.
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So there are two arcs L,, resp. L, from some point of M, to p resp. g, such that
Ly — p, L, — g = M;s. We can choose L, and L, such that L, U pq u L, consti-
tute a Jordan curve in R2, We call this Jordan curve C,.

By Jordan curve theorem, C, also separates R? into two connected and open
sets %, and 4,, one bounded and the other unbounded, and C, is the boundary of
each.

We claim that 4, can only intersect one of %; and %,. If there are two points of
Aj;, one is in %, and the other is in 4,, then there is an arc of A; joining the two
points since A; is a domain of R2. This arc must intersect the Jordan curve C,.
But C, consists only of points of M; and points of 04 which is a part of IM;. An
arc of A; has no common point with C,.

Let 4, be the one which does not intersect A;. Then no point of 04;isin £,. In
fact, if there is a point of 04;in 4, then %, is an open neighborhood of the point.
Then there is a point of A5in 4,. This is a contradiction. This gives that no point
of Gyx is in 4;.

It is easy to see that we have 2, < #, and %, = 2,.

We have supposed that x is an interior point of the arc pq. Then it is easy to see
that 2, U pq U 4, is an open neighborhood of x in R? in which there are no more
points of Gy x other than the arc pq. This proves that the orbit G, x, at the point x,
provided with the relative topology inherited from R?, is locally an arc.

For any two points of the orbit G,x, there is a homeomorphism g € G, which
send the one point to the other. If the orbit Gox is locally an arc at one point,
provided with the relative topology inherited from R?, then it is locally an arc at
every point of it, provided with the relative topology inherited from R2. This gives
that Gox is an 1-manifold, provided with the relative topology inherited from R2.

COROLLARY 3.2.5. For every xedAs,if dim Gox = 1 and x is arcwise accessible
from A, then there is a neighborhood of x in which there are no more points of 0A4;
other than an arc of Gox. In particular, the orbit Gyx is open in 0A4;.

PRrROOF. See the proof of Proposition 3.2.4.

COROLLARY 3.2.6. For every x € 0As,if dim Gox = 1and x is arcwise accessible
from A;, then Gyx is closed.

PRrOOF. To show that G,x is closed, we need only to show that 0Gox = Gox. If
this is not true, there is a sequence g,(x) = y€ 0Gox. y¢ Gox. Then g, Y(y) = x by
Lemma 3.1.6 and g, '(y) ¢ Gox. Butg, '(y) € 4,. This is impossible by Corollary
3.2.5.

COROLLARY 3.2.7. If xe@A-,, is arcwise accessible from As, then Gox is either
afixed point of Gy, a Jordan curve, or it is homeomorphic with the real line R (then it
is unbounded).
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ProOF. If dim Gox = 0 then Gox = {x} (a connected 0-dimensional space is
a single point) and x is a fixed point of Go. Otherwise dim Gox = 1. If x is arcwise
accessible from A;, Gox is an 1-manifold by Proposition 3.2.4. Besides, GoXx is
closed by Corollary 3.2.6. Gox is connected since G, is connected. So Gox is
a Jordan curve when it is bounded and it is homeomorphic with the real line
R when it is unbounded. (When it is bounded, it is compact. Otherwise it is
a non-compact component (see Proposition 1.2.10).

PROPOSITION 3.2.8. For every 6 > 0, let As denote an arbitrary component of
1S in R2. Then 0A; either consists only of fixed points of Gg, or it is
a one-dimensional orbit Gox which is either a Jordan curve or homeomorphic with
thereal line R (then it is unbounded). In case 0A; only consists of fixed points of G,
0A; = 0B; , and M = B; .

ProorF. Ifthereis a point x € 045 which is not a fixed point of of G, then Gy x is
one-dimensional. When x’ is sufficiently closed to x, Gox' is also one-dimen-
sional. Without loosing the generality, we can choose x such that x e d4; and x is
arcwise accessible from A; since there is a dense set of 0A4; which is arcwise
accessible from A; (see Corollary 1.2.7).

Then Gyx is either a Jordan curve or it is homeomorphic with R (then it is
unbounded). We need only to show that 045 = Ggx.

It is easy to prove that G,x separates R? if we consider the G,x on the sphere
S2. By this fact, it is easy to prove that d4; = Gox.

In case 0A; consists only of fixed points of G, every point of A4, is a point of
0B;, x, by Proposition 3.1.5. But 04, must be whole dB; ., by the fact that 04,
separate M; and A, in R2. Then it is trivial to show that M; = B;, x,-

PROPOSITION 3.2.9. For every 6 > 0, let A; denote an arbitrary component of
M;. Then for every y€(0,0), there is a unique component A, of M such that A is
asubset of A,. For every point x € 0A,, there exists a point x, € 0A, such that x, —> x
asy— 0.

Proor. It is trivial to show that for every ye(0,0), there exists a unique
component A, of M such that A, is a subset of A,. This gives that 4;is a subset of
A,. But 04, does not intersect 94, by Proposition 3.1.3. So 4, is a subset of A,

For any point x€04;, let d, denote the distance between x and 04,. Then
d, > Ofor every y e (0, 6)and d, is a decreasing function of y when y is increasing to
0. So d = lim,;,d, exists. Let us show that d = 0.

If thisis not true, then d > 0. Then there is a neighborhood of x such that every
point of the neighborhood is in the A4,, for all y €(0, §). This is to say that there is
a neighborhood of x such that every point of the neighborhood is in M for all
y€(0, 8). This contradicts with the fact that x e 9M; (Note that M; = Uy<sM,).



UNIFORM TRANSFORMATION GROUPS ON LOWER DIMENSIONAL SPACES 121

So d = 0. This gives that for every y (0, 6), there exists a point x, in the 94,
such that x, — x as y — 6. Proposition 3.2.9 is proved.

LEMMA 3.2.10. Let x and y be two points of R2. If there are two sequences x, and
Vu such that (1): Gox,, = Goy,, for all n; (2): x,, = x and y, — y, when n — oo, then
x€Goy and ye Gox.

PrOOF. Let U, V be two open neighborhoods of e in G such that g~ Vg < U
for all g € G by the uniformity of the group G. Then Uy is an open neighborhood
of y since G acts openly on R?. This gives that y, € Uy when n is sufficiently large.
For same reason, we have x, € Vx when n is sufficiently large.

Since x,, and y, are in same orbit we have x, = g,(y,) for some g, € G,.

This gives that x,, = g,(y,) € Vx when n is sufficiently large. Then y,eg, !Vx =
9, 'Wgag, 1(x) = Ug, '(x). Then g, }(x)e Uy, = U~ Uy when n is sufficiently
large. But U ~'Uy can be taken to be an arbitrarily small open neighborhood of
y by choosing U sufficiently small. Therefore we have shown that g, !(x) = y
where g, ! € G,. This gives that ye Gox. By Lemma 3.1.6, we have also x € G,}.

PROPOSITION 3.2.11. For é > 0, if M§ has two different components As and A’ in
R2, then for every y €(0, ), there are two different components A, and A, of M<, such
that As = A, and As < A,

PRrooF. By Proposition 3.2.9, for every y €(0, d), there is a unique component
A, of M¢such that A; = 4, and a unique component 4} of Mg such that 45 < 4),.

If A, and A are two different components of M; for all ye(0,9), then the
proposition is proved.

If A, = A, for some ye(0,0), let yo = sup{ye(0,d), with A4, = A4;}. Then
Yo £ 0.

We show that 4, = 4.

If this is not true, then 4, and 4/, are two different components of M, in R,
By assumption on y,, there is a sequence , 1 o such that 4, and 4 1o are in one
component 4, (= A',) of M5, in R? for all n.

Itiseasy to see that none of 04,, and 94, only consists of fixed points of G, (see
Proposition 3.2.8). So 4,, = Gox and 04, = Goy, with xe dA,, and ye 04,
and each of them is either a Jordan curve or homeomorphic with the real line.
When y, 1 y,, there are two sequences x,, y, € 04, such that x, —» xand y, — y by
Proposition 3.2.9. Then neither 04, consists only of fixed points of G, and
0A, = Gox, = Goy,is a one-dimensional orbit which is either a Jordan curve or
is homeomorphic with the real line, when n is sufficiently large.

By Lemma 3.2.10, we have yeGox = 04, and xeGoy = 04),. Then
0A,, = 04, and this is a contradiction.

This gives that y, < 9.
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Forevery y €(yo, 6), there are two components 4, and A}, such that 4; = A4, and
Aj < A,. Choose a point a€ A, and a point be 4;. Draw an arc from a to b in
A, (= A;,) whichis a domain. Then the arc intersects a point x, € M} = oM, for
every y €(yo, 6). Choose a sequence y,,\ 7o (7, € (o, 9)). Then at least a subsequence
of x, converges to a point x on the arc. Without loosing the generality, assume
that x, — x. Since x, €M, for every nand M, < M, < M, for m > n, it is
easy to see that xe M, — M, for every n.

On the other hand, x is a point of dM, for some o (Proposition 3.1.5), so
Yo < & < y,. Let n — o0, then a = y,. This is to say, the arc from a to b intersects
a point of 0M,, . This is a contradiction since we have chosen the arc to be totally
in M¢,. Proposition 3.2.11 is proved. /

LEMMA 3.2.12. If an orbit Gyx is compact, then for every neighborhood W~ of
Gox, there exists a neighborhood of x, such that, if y is in this neighborhood of x, then
Goy W'

PRrROOF. Let # be aneighborhood Gy x. Then by Proposition 1.2.2, there exists
an open neighborhood U of e of G, such that UGx is in #". Since G is a uniform
group, there is another open neighborhood V of e of G, such that g~ *Vg < U,
Yg e Go. G acts openly on R?, so Vx is an open neighborhood of xin R If y € Vx,
then for every ge Gy, g(y)egVx = gVg~'g(x) = Ug(x) =« UGox = # . This is to
say that Gyy is in #".

REMARK. If aJordan curve C separates R? into two connected and open sets,
one bounded and the other unbounded and a point x is in the bounded set, we say
that the Jordan curve C surrounds the point x. If a set Bis in the bounded set, we
say that the Jordan curve C surrounds the set B,

PROPOSITION 3.2.13. If M; is a bounded set in R® and Aj; is an arbitrary
component of Mj, then 8 A; either only consists of fixed points of G or it is an orbit
Gox which is a Jordan curve and which surrounds the interior of the set Mj.

PrOOF. When M; is a bounded set in R? and A, is a component of Mg, 04, is
also bounded. If 34 does not consist of fixed points of G,, then it is an orbit Gy x
which is a Jordan curve by Proposition 3.2.8. Suppose that the Jordan curve
0A; = Gox separates R? into two connected and open sets 2, and 9, and let 2,
denote the bounded set. We show that x, € 2;.

If this is not true, then xo € 2,. Then it is easy to see that both B,, sand M;are
in 2, and 9, = A,.

For every y€(0, ), we know by Proposition 3.2.9 that there exists a unique
component A, of M such that 4, is a subset of 4,.

In fact, for these sets 4,, y€(0,0), we have that 4, < 4,if0 <y <y <3é.

When y is sufficiently close to 4, there exists a point x, € 94, such that x, is close
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to x. Then G x, is one-dimensional and close to the Jordan curve 04, = Gox (see
Lemma 3.2.12).

Then Gox, = 04, is also a Jordan curve and it surrounds the Jordan curve
04; = Gox. For every y'€(y,d), we have that the Jordan curve dA4, = Gox,
surrounds the Jordan curve 04, = Gox, which surrounds the Jordan curve
045 = Gox.

If for all ye(0, 6), 04, is an orbit Gox, which is a Jordan curve and surrounds
the Jordan curve d4; = Gox, thenwheny — 0, Gox, = 4, cannot be close to the
fixed point x, of G, which is obviously a contradiction.

So there exists an y €(0, d), such that 04, either only consists of fixed points of
G, or 04, is an orbit Gyx,, which is a Jordan curve but does not surround the
Jordan curve 0A4;. Let y, be the supremum of all those y.

If 04, only consists of fixed points of G, then 04, = 0B, . . Consider an
¥ €(y0, 6), which is sufficiently close to y,. Then d4, must be close to a point of
0B, ... This contradicts with the fact that 94, surrounds 04;.

If 04, is an orbit Gox,, which is a Jordan curve but does not surround the
Jordan curve 04;, then 64, must surround the point x,, since if not, the bounded
open connected part of the plane separated by 04, must be 4, . But A, contains
A;, this implies that 04, surrounds 04,.

Consider an y (y,, 4) and y is sufficiently close to y,. Then 94, must be close to
04,, which contradicts the fact that 04, surrounds 04, as well.

So 0A4,, is an orbit Gyx,, which is a Jordan curve and which surrounds the
0A; = Gox. Then for every ye(0,7,) which is sufficiently close to y,, 4, also
surrounds dA4;. This contradicts with the assumption on y,.

These give that dA4; surrounds x,. Since A4, separates the interior of M, and
A, it is easy to see that 04, surrounds the interior of M,. The proposition is
proved.

3.3 THE SETS 0M; AND OM,.

PROPOSITION 3.3.1. For every 8 > 0 with 0M; + 0 and for every x € dM;, the
orbit Gy x is either a fixed points of G, a Jordan curve, or it is homeomorphic with
the real line R (then it is unbounded).

PrOOF. By Proposition 3.2.8 and the fact that M§ = U A, every xedM; is
a point of 0A4; for some A;.

PROPOSITION 3.3.2. The set D = {xeR%* 35 > 0 with xe M} = U dM; is
dense in R>.

Proor. For every x of R?, there exists a unique & > 0such that x e 0M;. By the
proof of the Proposition 3.1.5, we know that § = sup{y, x¢ M,} and for every
7€(0, 5), we have that x ¢ M,.
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For each y€(0, d), let A, be the unique component of M;in R?such that x e 4,.
Then for these sets A,, we even have xe A, = A, = A, for any two y and y’ with
O<y<y <d.

Let d, denote the distance between the point x and the 04,. Thend, > Oand d,
is a decreasing function of y when y is increasing to d. So d = lim, ;,d, exists and in
same way as in the proof of Proposition 3.2.9, we can show that d = 0. This gives
that there is a sequence y,/d and a sequence x,€ 04, , such that x, — x. The
proposition is proved.

Proposition 3.2.13 gives us the following.

PROPOSITION 3.3.3. If Mj; is bounded in R?, then M is a Jordan curve. This
Jordan curve separates R? into two connected and open sets, one bounded and the
other unbounded, Mj is the bounded set.

PROOF. Proposition 3.2.13 gives us that if M, is bounded and A; is a compo-
nent of the M¢, then 0A; either only consists of fixed points of G, or it is an orbit
Gox which is a Jordan curve surrounding the interior of the set M;.

In case there is a component A; of the Mg, whose boundary only consists of
fixed points of G, we have 04; = 0B; ., and M; = B, . (Proposition 3.2.8), and
the proposition is obviously true.

So we need only to consider the case when 04, is an orbit Gox which is a Jordan
curve surrounding the interior of the set M;, for every component 4, of the M.

Notice that every 04, has at least one common point with dB;, ,, by Proposi-
tion 3.1.5.

Then we see that there cannot exist two different components 4; and Aj of
M; in R%. Otherwise, d4; and 04} intersect each other.

In other words, we have shown that M is an open and connected set and
d(M¢) = dM, is a Jordan curve which separates R? into two connected and open
sets, denoted by 2, and 2,. Let 2, denote the bounded set, then M;is in 2, and
M; is equal to 2,. We need only to prove that 2, is M;.

If there is a point z in &, which is not in M;, then z € OM;.

If we consider y 10, then zeIVI; for every y. But on the other hand, 01\7IV is
a Jordan curve, surrounding the interior of the M,, and which can be chosen
arbitrarily close to the Jordan curve dM; (see the proof of the Proposition 3.2.2).
This gives that that ze M;’ when y is sufficiently close to 8. This is a contradiction.
Proposition 3.3.3 is proved.

LEMMA 3.3.4. Ifthere exists & > 0,such that M = 0, then there exists a smallest
value 8, of all those & > 0 such that M§ = §. For every § > &,, we have Mz = R2.

ProOF. If there exists an & > O such that M; = @, let §, = inf{5, M§ = @#}. We
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show that M, = @. If this is not true, there is a point x € M. Forevery 6 > o, we
have x € M; (in fact, by the assumption on Jy, it is easy to see that for every § > d,
we have M = R?). Choose a sequence J, \, d,. Then there exists a sequence g, € G,
such that g,(x) € B .,. But on the other hand, notice that g,(x) ¢ Bao,xo‘ So there
is a subsequence of g,(x), which converges to a point y of EJO‘XO. Without loosing
the generality, assume that g,(x) - ye B;, .,

Since ye M;, and g, '(y) - x we get that xe M;_. This is a contradiction. We
have proved that M = 0. Then J, is the smallest value of all § > 0 such that
M = @. For every § > §,, we have M; = R? by Proposition 3.1.3.

PROPOSITION 3.3.5. For & > 0 such that M§ % @, M is open and connected.

ProOOF. By Lemma 3.3.4, if there exists an § > 0, such that M{ = @, then there
exists a smallest value 8, of all § > Osuch that M¢ = @. Forevery § > &4, we have
M = 0.

We need only to show that M¢ is open and connected for all 6 €(0, §,) where
0 <9y = 0.

If there is an 6 € (0, 5, ) such that M¢ has two different components A5 and Ajin
R?, then by Proposition 3.2.11, for every y € (0, §), there are two different compo-
nents A, and A, of M such that A; = A, and 4; < A,

But by Proposition 3.3.3, when y > 0Qis so small such that M, is bounded, there
is only one component of My‘ . This is a contradiction. Proposition 3.3.5is proved.

COROLLARY 3.3.6. For § > 0 such that M§ & ©, 0M; either only consists of fixed
points of G, or it is a one-dimensional orbit Gox which is either a Jordan curve or
homeomorphic with the real line (then it is unbounded).

PROOF. See Proposition 3.2.8 and Proposition 3.3.5.
PROPOSITION 3.3.7. For & > 0 such that M§ % 0, we have dM;s = oM.

ProOF. By Lemma 3.3.4, let §, be the smallest value of all 6 > 0 such that
M;¢ = §. Then for every d > §,, we have dM; = 0M; = @. We need only to show
that OM; = 0M;, for all 8 (0, 6,), where 0 < Jy < 0.

By Proposition 3.3.3, this is true when 8 > 0 is so small such that M; is
bounded.

If the statement is not true for some d €(0, d,), then there exists a point x e IM,
such that xd dM; % @. Then 0M,, which obviously does not consist of fixed
points of G, is an orbit G,y of a point y € dM;, which is either a Jordan curve or is
homeomorphic with the real line.

Choose a sequence y, /8. Then there are two sequences x,, y, € IM,_such that
X, = X, y, = ¥ (see the proof of Proposition 3.3.2).
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Since yis not a fixed point of G,, we see that when nis sufficiently large, y, is not
a fixed point of G,. This gives that IM, = Goy, = Gox, (see Corollary 3.3.6).

Then by Lemma 3.2.10, we get the contradiction that x € dM;.

We have shown that 0M; = 0M; for all 6 €(0, ,). The proposition is proved.

COROLLARY 3.3.8. There exists at most one 8o > 0, such that oM;, + 0M;_ and
for this 84, we have dM;, = . Moreover, for every 8 > 8,, we have OM; = OM; = ()
and for every point x of R* other than x, there is a unique 5 €(0,5,], such that
xe€dM;.

3.4. THE MAIN RESULTS OF THIS PAPER.

In this section, we give the proofs for our main results in this paper. Recall the
general assumption on G and G stated at the beginning of this chapter.

LEMMA 3.4.1. There is an open, connected and dense subset O of R?, such that,
for every point x of O, the orbit Gox is either a fixed point of G, a Jordan curve, or it
is homeomorphic with the real line R (then it is unbounded).

Proor. Corollary 3.3.8 tells us that dM; = dM; holds for all § > 0 except at
most one d.

Consider this eventual 8. Then 0M;, = @. That is to say that M, = R%.  Let
O0=M; =R*— OM;,. Then O is an open, connected (M, is open and connected
by definition) and dense subset of R2.

For every x€ 0, x # x,, there is an § (0, §,) such that x e IM;. M; is not the
empty set, so xe dM; = dM;. Then the orbit Gox is either a fixed point of G,
a Jordan curve, or it is homeomorphic with the real line R (then it is unbounded)
(see Proposition 3.3.1).

LemMMA 3.4.2. For > Osuchthat M + @, no point x € 0Mj is a fixed point of G,
unless G, fixes every point of R2.

PrOOF. If M 4 @ and there is an x € M which is a fixed point of G, then
OMy = 0M; = 0B;, ., only consists of fixed points of Go.

Consider an arbitrary point yedB; ., and a neighborhood of y. If there is
a point z of this neighborhood which is not a fixed point of G,, then G,z is
aJordan curve, surrounding both x, and y. But if we choose z sufficiently close to
», the Jordan curve Gz is so small that it cannot surround x,. This shows that
a small neighborhood of y consists only of fixed points of G, for every y€ 0B; .
Then when y is sufficiently close to d, every point of 8B, is a fixed point of G,.

In other words, the set of all & > Osuch that every point of 0B; ., is a fixed point
of G, is an open set of the half real line R*.

Let yo = inf{y,B, ,, only consists of fixed points of G,}. Then it is easy to see
that every point of 9B, ., is a fixed point of G,. This gives y, = 0.
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Let y; = sup{y,dB, ., only consists of fixed points of G, }. Then it is also easy
to see that every point of 0B, . is a fixed point of G,. This gives y; = 0.
Then we have that every point of R? is a fixed point of G,.

THEOREM 3.4.3. If G, does not fix every point of R?, there is an open, connected
and dense subset O of R?, such that, for every point x of O, the orbit Gox is either
a Jordan curve or homeomorphic with the real line R (then it is unbounded).

PRrROOF. See the proof of Lemma 3.4.1 and Lemma 3.4.2.

THEOREM 3.4.4. If G, does not fix every point of R?, then G, fixes at most two
points of R2.

PrOOF. Let G, donot fixevery point of R%. By Lemma 3.3.4 and Lemma 3.4.2,
if there is another fixed point x of G, than x,, then x e M,  where d, is the
smallest value of all § > 0 such that M = §.

Then it is easy to show that 0M; = Gox = {x} (notice the assumption on g
and see Lemma 3.2.10 and the proof of Proposition 3.3.2).

Any other point y than x and x, is a point of 0M; with0 < § < J,. Then yis not
a fixed point of G, (Lemma 3.4.2).

COROLLARY 3.4.5. In case there are exactly two fixed points of G, in R2, for
every other point x of R? than the two fixed points, the orbit Gox is either a Jordan
curve or homeomorphic with the real line (then it is unbounded).

THEOREM 3.4.6. If G, acts effectively on R?, then G, is a commutative sub-
group of G.

Proor. If G, acts effectively on R?, then G, does not fix every point of R?
unless G, = {e} which obviously is a commutative subgroup of G. So if G, + {e},
then by Theorem 3.4.3, there is an open, connected and dense subset O of R, such
that, for every point x of O, the orbit G,x is either a Jordan curve or homeomor-
phic with the real line. If we can show that G, acts commutatively on this dense
set O of R, then it is easy to see that G, acts commutatively on R? and then, since
G, acts effectively on R?, it is easy to show that G is a commutative subgroup of
G.

For every xe 0, G, is a connected and uniform transformation group on Gox
which is homeomorphic with C or R. By the results from Chapter 2, G, is
a commutative group if G, acts effectively on Gox.

If G, does not act effectively on G, x (as a transformation group), let H be the
subgroup of G,, which consists of those transformations of Go, which leave Gox
fixed. Then H pointwise is a closed normal subgroup of G, on the orbit and we see
that Go/H is a connected uniform group when G, is connected and uniform (see
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[4], p. 235). The natural map of G, onto Go/H is a continuous and open
homeomorphism. So G,/H is connected, uniform and acts effectively as a trans-
formation group on G,x. By the results from Chapter 2, Go/H acts commutative-
ly on G,x. Then it is easy to see that G, acts commutatively on Gox.

REMARK. (1) We have proved, without assuming that G, acts effectively on R?,
that as long as G, does not fix every point of R, then “almost” every orbit Gox is
as good as either a Jordan curve or is homeomorphic with the real line. If we
know that G, acts effectively on one of those good orbits, that would be enough
to prove that G, is a commutative group, by the result from Chapter 2.

(2) Under the same conditions on G and Gy, most propositions and theorems
carry over to the case of the unit sphere S? instead of the Euclidean 2-space R2.
The proofs are the same with minor modifications and hopefully, we can even get
more complete results on S2 such as (a) if G, does not leave every point of S? fixed,
then there are exactly two fixed points of G, on S2, such that for every other point
x than the two fixed points, the orbit Gyx is a Jordan curve.

(3) Throughout the proofs in Chapter 3, the only assumptions we used about
the larger group G are (a) it acts openly on R?, that is to say, for every point x € R?,
every open neighborhood U of the unity e in G, acting on x, gives an open subset
Ux in R?%; (b) G is uniform, that is to say, for every open neighborhood U of the
unity e in G, there is an open neighborhood V of e in G, such that, for every
transformation f in G, we have f¥f ! < U. Nowhere did we need that the
product fg of any two transformations f and g in G remains in G. So actually, it is
enough to assume that G is a subset of a transformation group on R?, which
contains the unity e of the group, and under the topology of the group, to assume
that G acts openly on R2. Then we assume that G is a uniform subset of the group
in the sense that for every open neighborhood U of the unity e in G, there is an
open neighborhood V of e in G, such that, for every transformation f in G, we
have f¥f~! < U. Under these assumptions on G, all the propositions and
theorems in Chapter 3 still are true. It should be easier to find examples of such
a set of transformations on R? than a full group of transformations.
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