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THE POISSON TRANSFORM FOR SPLIT
REDUCTIVE SYMMETRIC SPACES

H. THORLEIFSSON

1. Introduction.

Let G be a real reductive Lie group in Harish-Chandra’s class, and ¢ an
involution on G commuting with a Cartan involution 6. Let H be an open
subgroup of the subgroup G° of g-fixed points in G. Then G/H is a reductive
symmetric space. Let qo (resp. po) be the — 1-eigenspace of the involution o (resp.
0). Then we have a decomposition g = by @ q¢ = Ty @ p, of the Lie algebra gg of
G (bo (resp. fo) is the Lie algebra of H (resp. K)). G/H is called split if a maximal
abelian subspace of qo N po is also maximal abelian in qo. Let &(G/H) be the
Fréchetspace of smooth functions on G/H. The Poisson transform maps certain
parabolically induced representations equivarianly into §(G/H). I am interested
in describing the image of the Poisson transform for split spaces G/H.

Before I describe the problem handled here and the results given more precise-
ly, let me recall the definition of the Poisson transform and give some motivation
for the problem handled. Let P = MAN be the Langlands decomposition of
a minimal g6-stable parabolic subgroup of G, and m @ a @ n the corresponding
decomposition of its complexified Lie algebra. Identify (a/a n h)* with the sub-
space of a* of elements v trivial on an b. For ve(a/anb)*let A - C, a — a’ be
the one-dimensional character with differential v and let (np,,,/°(v)) be the
representation of G smoothly induced from the one-dimensional character
(M A H)AN — C, man — a*. The Poisson transform 2: I°(v) - &(G/H) is given
by Pf(x) = fum~pf(xh)dh (x€G, f € &(G/H)). Here dh is a H-invariant Ra-
don-measure on H/H n P. The integral converges at least for those v e (a/a N h)*
satisfying Re{v — p,a) > 0 for all aeX(n, a)(Z(n, a) is the set of roots of a in
n and pea* is given by p(X) = 3 Trace(ad(X)|n) for X €a). The restriction of
functions from G to K defines an isomorphism from Ig(v) onto the space
DK/M®) of smooth functions on K/M® with M*=MnKnH. For
e D(K/M?)let f,e IF(v) be the function with f,| K = f and put 2, = Zf_,. In

'

Received March 4, 1994; in revised form December 16, 1994.



298 H. THORLEIFSSON

case H = K this is just the Poisson integral for the non-compact Riemannian
space G/K. In this case every joint eigenfunction of the space D(G/K) of invariant
differential operators on G/K in &(G/K) can be represented by a Poisson integral
of a hyperfunction on K/M. The problem to extend this statement to other
symmetric spaces was the motivation of Oshima and Sekiguchi to introduce and
study the Poisson transform for certain symmetric spaces G/K, in [12].

Now let (¢, V;) be an (M n H)-spherical irreducible smooth representation of
M. Since it is (M n H)-spherical, there is some non-trivial n € V¥ (the space of
(M N H)-invariant continuous linear functionals on V), determining an inter-
twining operator @,:V; —» &M/M N H) by ®,(v)(m) = {&m™ Yo,n) (veV,
me M). &, maps V; onto a submodule of &(M/M N H) (note that M/M n H is
compact). The parabolically induced representation I°(¢:v) can be identified
with a subrepresentation of IX(v) and we get a Poisson transform
P IF(E:v) > E(G/H). 2, will also be used to demote the Poisson transform in
the compact picture of I°(¢: —v). In this generality the Poisson transform was
defined in [11] (under slight restrictions on G/H) and [2] (for more general G/H)
and proved to have a meromorphic continuation to (a/a N k)*. This was general-
ized by Brylinski and Delorme in [5] to general o0-stable P and £ in the discrete
series for M/M n H, and recently by the author to £ of moderate growth.

The motivation for studying the image of the Poisson transform does not only
come from non-compact Riemannian spaces. For a moment let G, be a reductive
Lie group with Cartan involution 6; and a maximal compact subgroup
K, = GY. Put G =G, x Gy, let o and 0 be the involutions on G given by
a(x,y) = (y,x) and O(x,y) = (6,(x),0,(»)) (x,ye G,), and put H = G°. The map
G - Gy, (x,y) — xy~! induces an isomorphism of G/H to G,. A ¢0-stable
parabolic subgroup of G has the form P = P; x P,, P, being a parabolic sub-
groupof G, and P, = 0,(P,).Let P, = M, A, N, be the Langlands decomposition
of P,. A (generalized) principal series representation Ip(&:v) (with unitary &) is
equivalent to a (g, K)-module of the form Ip (¢,,v,) ® I5 (&) : —v,), with an
irreducible (unitary) representation (£,,V;) of M; and v ,ea}. Let
Js e, (&1 :vi): Ip (&1 :vy) = I5,(¢1 1 vy) be the standard intertwining operator. The
Poisson transform 2:Ip(€:v)—> &(G/H) is given by P(¢ Q@ Y)(x)=
(M5, (Wi 1p (1 V1), U fOr P Ip (E1,v1) Y I3, (€, —v,). Thus the Pois-
son transform for G/H is given by standard intertwining operators on G, (All this
is explained or follows from the explanations given in [5] §4). Recall that by the
Langlands classification every irreducible (g, K)-module V is equivalent to the
image of certain standard intertwining operators Jg,p (¢, : v,). This means that
the space of K-finite coefficientfunctions for V is equal to the K-finite image
PIp(E:v). (This can be strengthened to functions of moderate growth.) Note that
Py, ¢, and v, can be determined by the asymptotic expansions of coefficientfunc-
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tions for V. This leads to a general problem of generalizing the Langlands
classification to symmetric spaces using the Poisson transform.

Let r be the number of open H-orbits in G/P, and let P,,..., P, be minimal
a-stable parabolic subgroups of G such that HP,, ..., HP, are disjoint and open
in G. To be able to represent joint eigenfunctions of D(G/H) in &(G/H) by
a Poisson integral it is known, that one has to use sums of Poisson integrals for
Py,..., P,. This was first done by Oshima and Sekiguchi in [12] for G/K -spaces.
The Poisson transform is best known for rank one spaces G/H. It can be
normalised to be holomorphic on (a/a n bh)*. In [10] W. A. Kosters handles the
space SL(n, R)/S(GL(1, R) x GL(n — 1, R))for this space r = 1) and proves that
2, is an isomorphism for “generic” 4 (see [10] Theorem 5.4 for a more precise
statement with hyperfunctions). H. Schlichtkrull has given a complete descrip-
tion of the image of the (normalized) Poisson transform for the hyperbolic spaces
([15] Theorem 7.1) and gives an interesting solution to the above described
problem of Oshima and Sekiguchi for these spaces ([15] Theorem 7.4). Much
research has been done in establishing the Plancherelformula for G/H (using the
H-invariant linear functionals mapping fe€IP(£:v) to Z#f(e)). The interested
reader should consult [4] for a survey on the Plancherelformula (and other
questions).

This paper is organized as follows. In §2 some standard notations are intro-
duced. In §3 I give the construction of a manifold B and a representation op , an
9(B), equivalent to the direct sum of Ig°(v;) (with v; “conjugate” to v). In §4 the
construction of standard intertwining operators is extended to an operator
2(B) > 9(B) intertwining op, and o5, In §5 the Poisson transform
2,: 9(B) » &(G/H) is defined and the asymptotics of 2, F (F € 2(B)) is related to
standard intertwining operators. As a consequence a weak injectivity result is
given (Corollary 5.8). In §6 only split symmetric spaces G/H are handled. Then
a® = a N qis maximal abelian in q ~ p and q. Let £,(G/H) be the joint eigenspaces
of D(G/H) in &(G/H) for A€ (a%* (see §2). It is proved that the multiplicity of
K-typesin 2(B)and & ,(G/H) are always the same. To proof this it is assumed that
H is essentially connected. This means H = M°H, (H, being the connected
component of the unit element in H). If G is connected and semisimple and H is
also connected this follows from a result given by T. Oshima in his lecture at the
conference on harmonic analysis on Lie groups in “The Danish Lie group
seminar” in august 1991. In §7 I look at the image of the Poisson transform.
Again only for split spaces G/H with H essentially connected. A set A(G/H) of
minimal K-types of some principal series Ip(¢ : v) is introduced. They are shown
to have the same A-norm (Lemma 7.3). For Ae(a/an h)*, satisfying
Re{A + p,a) < 0 for all aeZ(n,a), it is proved that 2, maps the 6-isoty|pic
component 9(B), of @(B) isomorphically onto the d-isotypic component
&(G/H), of &,(G/H) (see §2 for notations) for all §€ A(G/H) (Proposition 7.5).
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Then a construction of the finite dimensional space V(&) of [2] is given, paramet-
_ rizing the operators from Z(K : {) to 2(B) intertwining np  , and gp ,, giving an

(extended) Poisson transform 2, : Ip(¢:v) ® V(£) - 6(G/H). The image of 2, is
described for v satisfying Re{v — p,a) = 0 for all « € X(n, a) (Corollary 7.6 and
Theorem 7.8).

Now let V be anirreducible (g, K)-submodule of the space & ,(G/H)g of K-finite
functionsin & ,(G/H). By Théoréme 2 and 3 of [ 6] V is equivalent to an irreducible
quotient of a (generalized) principal series representation Ip(¢ : v) with a g0-stable
parabolic subgroup P = MAN, ¢ in the discrete series for M/M n H and
a X(n,a)-dominant ve(a/an h)*. If P is minimal ¢6-stable and v in not just
X(n, a)-dominant but satisfies the stronger condition Re<{v — p,a> = 0 for all
a€X(n,a), then V is equivalent to the unique irreducible quotient Jp(¢:v) of
Ip(¢é:v) and by Theorem 7.8 there is a unique TeV(£) such that
V = P«Ip(£:v) ® CT). This also follows from [2] Theorem 5.10 (proved using
different methods but not restricted to split spaces G/H) for “generic” v (see [2]
for a precise formulation). For the minimal o6-stable parabolic subgroups P it
remains to determine when 2(Ip(¢:v) ® CT) is irreducible and also to handle
the case when v only satisfies the weaker condition of being X(n, a)-dominant.

2. Some notations and preliminary results.

The standard notations Z, R and C will be used to denote the ring of integers, and
the field of real and complex numbers, N for the positive integers and N, for the
nonnegative integers. Let U(g) be the enveloping algebra of g, 3(g) the center of
U(g) and S(g) the symmetric algebra for g. Further let D(G/H) be the space of
invariant differential operators on G/H and let

1 I:U(g) - D(G/H)

be the canonical homomorphism. (If H operates on a vector space V, then V¥
denotes the subspace of H-fixed vectors.) Then I' is an epimorphism with kernel
U(g)® n U(g)h ([8] Ch. II. Theorem 4.6).

Let K be the set of equivalence classes of (continuous) irreducible representa-
tions of K. If V is a K-module and 6 €K let ¥} be the d-isotypic component of
V and Vi the submodule of vectors ve V contained in some finite dimensional
submodule of V.

Let P = M AN be the Langlands decomposition of a fixed minimal 6-stable
parabolic subgroup of G, and m @ a @ nthe corresponding decomposition of the
complexified Lie algebra. Put a® = a n q. Then a° is a maximal abelian subspace
in q N p. Extend a“ to a maximal abelian subspace a? of q. By [14] Theorem 10 the
set X(g, a“) of roots of a® in g is a (restricted) root system. Since P is gf-stable
o|a® % Ofor all e (g, a)and Z(n, a%)is a positive system of roots for (g, a®). Let
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2 *(g,a%) be a positive system of roots for (g, a%), such that aeX*(g, a%) and
a|a® & 0 implies «|a®e Z(n,a%), and let n? be the sum of the root spaces g,,
aeX*(g,a%). Then n = n’. Let W* = W(q, a%) be the Weyl group for (g, a%).

Recall the construction of the Harish-Chandra isomorphism. Let
7: (@) > W@)” be the projection with respect to the decomposition
U(g) = U(a*) ® (n"U(g) + U(g)h) and let T,a: U(a?) — U(a“) be righttranslation by
ple(a®)* (pY(X) = : Trace(ad(X)|n%), X ea”). Then

@ U@ — U™

is given by y(u) = T,a(7(w)), ue U(g)" . y factorizes (through I') to an isomorphism
(also denoted by ) between D(G/H) and U(a®)**. For A€ (a%)* let y,: D(G/H) —» C
(or x§) be defined by y,(D) = {¥(D), A, De D(G/H). (xa(I'(w)) = {7(u), A + p*,
uell(g)f!. Here ¢, is used for evaluation of an element in (a“) at 1€ (a?)*.) As
usual let &,(G/H) be the space of functions f € §(G/H), satisfying Df = y,(D)f, for
all De D(G/H). Now put L = MA(L = P n 6(P)), and let [ be the corresponding
complexified Lie algebra. There is a canonical isomorphism U(I) = U(m) @ U(a).
Let r be the orthogonal complement of [N} in b (with respect to ¢,»). The
projection to the first component in the decomposition (g) = U(I) ® (nU(g) +
U(g)r) gives a homomorphism

3) 77 U(g)! - U,
For vea* let
@ 0 (@) - Ump o,

be defined by y%(u) = (§7(u),v + p). Here p(X) = 3 Trace(ad(X)|n), (X € a), and
{.,v + p) denotes the evaluation at v + p interpreted as a homomorphism from
U(m) ® U(a) to U(m). For Ae(a’)* put u = 1| a’ ntand v = A|a’ N p. Then one
gets y,(u) = £(/7(w), ue U(g)" (here 72 Uam)#~¥ - O).

3. The principal series.

In this section I look at the principal series for G/H, give a definition of the
manifold B and the representations ¢p, , on Z(B) (adding together the principal
series representations for all H-conjugacy classes of minimal ¢#-parabolic sub-
groups of G). These representations suit well for handling the Poisson transform.

For a representation (&, V;) of M on the Fréchet space Vzand ve a*letmp 4 , be
the smoothly induced representation of G given by lefttranslation on the space
IF(€:v) of smooth functions f: G — V satisfying

(%) f(gman) = a~@*P&m) "' f(g) (g€ G, meM,ac A, neN) ‘
(I(¢ :v) is endowed with the usual Fréchet space topology.) Let Ip(¢:v) be the
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(8, K)-module of K-finite vectors in Iz°(¢ : v). Further let 2(K; V;) be the space of
smooth V;-valued functions on K, and 2(K:¢{) the subspace of feJ(K; V)
satisfying f(km) = &m)~1f(k), for all ke K, me K " M.

As noted in the introduction an n € ;¥ determines an intertwining operator
from V; to 2(M/M n H). I will handle the Poisson transform for subrepresenta-
tions of (the leftregular representation on) 2(M/M n H). Recall that since P is
minimal o¢f-stable mNnpcmnbh and thus M/M N H is compact. Let
d0.€ 2'(M/M n H) be the Dirac distribution at ee M.

LemMA 3.1. Let (&, Ve) be a subrepresentation of the leftregular representation of
(MnK) on (M K/M®. Then T:D(K:&) — DK/M?®, given by Tf(k) =
{f(k),0.>, (f € D(K: &), ke K)is a K-isomorphism to a submodule of 2(K/M°). If
& is equal to the leftregular representation on 2(M/M N H) then T is an isomor-
phism.

Proor. The evaluation by d6.,€ 2'(M/M n H) induces a continuous map
D(K;Ve) > D(K). One easily sees that Tf is right-M“-invariant, for all
feD(K:&). Thus T is a continuous intertwining operator.

Suppose Tf =0. Then <(f(k),d.>=0, for all keK. But then
flk)(m) = E&m~Y)f(k),d.> = {f(km),6.,> =0 (keK, meMnK). Since
M = (M n K)(M n H) we get f(k)(m) =0 for all ke K and me M. Thus f =0,
proving the injectivity of T.

Now suppose & = [ is equal to the leftregular representation on 2(M/M n H)
and let g e 2(K/M?®). Then the map f: K — Z(M n K/M?), k — (k™ 1)g) [pnk 1S
smooth, and satisfies Tf = g, proving the surjectivity of T. By the open mapping
theorem T is open and thus an isomorphism.

If ¢ is any subrepresentation of the leftregular representation [ on
D(M/M n H), then (K : &) can be identified with the submodule of fe (K :1)
satisfying f(k)e V¢forallke K. Thus T: (K : {) - 9(K/M?)is a K-isomorphism
to a submodule of 2(K/M?®).

Let 7p , be the representation of G given by lefttranslation on the space I3°(v) of
smooth functions f: G — C satisfying

(6) flgman) = a"®*?f(g) (geG,meM N H,ae A, neN)

(mp, ., I¥(v)) is just the representation of G induced from the one-dimensional
character man — a’ of (M n H)AN. Let Ip(v) be the (g, K)-module of K-finite
vectors in I°(v). Let (&, V;) be a subrepresentation of 2(M/M n H) and let

(7 Tp: I2(E:v) > IP(v),

be given by Tpf(g) = {f(g),0.)(f € IP(¢:v), ge G). Then Tp is a G-monomor-
phism. It will be more convenient to look at np , than the representations 7p ¢, ,.
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Let P,, = M, A,,N,, be the Langlands decomposition of a minimal parabolic
subgroup of G contained in P. Let x:G — K be the projection onto the
K-component in the Iwasawa-decomposition G = K A4,,N,,, and let Hp: G — a,
and mp: G — M be the analytic maps determined by x = x(x)mp(x)exp (Hp(x))n,
for some ne N (x € G). Define kp: G — K/M® by kp(x) = m,(k(x), m,: K - K/M°
being the canonical projection, and let Hp:G—ay,nq, be given by
Hp(x) = m,(Hp(x)) (x€G), m,: a9 — a9 N qq being the projection along ag N by,
Let L =MA be the Levy component of P. The map G - K/M* x A/AnH,
x > (kp(x), exp (Hp(x))induces an isomorphism G/(L ~ H)N = K/M* x A/A n H.
kp(x) and Hp(x) (x € G) are uniquely determined by x € kp(x)(L N H) exp (Hp(x))N.

For ve(a/a nbh)* and fe 2(K/M?) put

(e, (9)f)(k) = e~ H o PG flicp(g ™ k), g€ G, keK

Since Hp is right-M-invariant and kp is right-M“-invariant, np ,(g)f € 2(K/M*)
(9 € G). Note that v + p, Hp(x)> = {v + p, Hp(x)) (x € G). Again use T} for the
composition of the isomorphism in (7) and restriction to K. The map is given by
Tof (k) = {f(k),0.), ke K (f e I°(¢:v)). We now immediately get

LEMMA 3.2. mp, , is a (continuous) representation of G on 2(K/M*). The restric-
tion map IF(v) » D(K/M®), f v+ f| K, is an isomorphism intertwining the leftregu-
lar representation on I (v) and np_, on D)(K/M?).

This justifies the use of np , for the representation of G on Iz°(v) and 2(K/M?).
For f e 2(K/M° let f, denote the element of Iz°(v) satisfying f,| K = f.

I now want to construct the representation ap , on Z(B). For this I need some
preparations. Let W = W(g, a®) be the Weyl group of the (restricted) root system
2 (g, a%). Let Ng(a® (resp. Zx(a®) be the normalizer (resp. centralizer) of a® in K.
The adjoint map Ad : Ni(a®) » End(a®), k — Ad(k)| a® (End(.) being the space of
endomorphisms) maps N(a®)/Zx(a?) isomorphically onto W (see [2] Lemma
1.2). Let Wy, be the image of N .x(a®) in W. Recall that M* = M n K n H. By
[2] Lemma 2.2

®) M? = Zgu(a%)

Thus Ng,y(a%) normalizes M and W,y operates on K/M* by multiplication
from the right. We can thus define

©® B=K/M* xw, W

For we W let P* be the parabolic WPW™~ 1 with we Ng(a%) a representative of w.
By [2] Lemma 2.2 again L = M A is the centralizer of a® in G. Therefore Ng(a?)
normalizes L, M and A (in particular Ng(a®) = Nk(a)). Let k,,: G — K/M* and
H,:G — ay N g, be defined by '
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(10) Ky = Kpw,
(l 1) Hw = ﬁpw.

LEmMMA 3.3. Let ue Nk~ y(a®) and we W. Then
a) Kuw(X) = Ky(xu)u™ !, xeG,
b) H,,(x) = AdwH,,(xu), xeG.

PRrROOF. For x € G we have
xe K, (xuyu” (L n Hyu™ ) exp(Ad(w)H,, (xw)(uN"u™1).
Since u € Ngy(a%), u normalizes L n H, and we get
x € K, (xu)u” Y(L n H)exp(Ad (u)H,,(xu))N*".

Since x,,(xu)u "' e K/M* and Ad(u)H,,(xu) € ap N q, the lemma follows.

Let R denote the representation of Wy on 2(K/M*) given by (R(u)f)(k) =
fku)(f € 2(K/M?), ke K/M*, ue Wy .g). 2(B) can be identified with the space of
smooth functions F: K x W — C satisfying

(12) F(km,w) = F(k,w), ke K, me M*, we W,
(13) F(k,uw) = (R(u) ® 1)F(k,w), ke K, ue Wy, we W.

For Fe2(B) and we W let F,,€ 2(K/M?) be defined by F,,(k) = F(k,w), ke K.
ForgeG and Fe Z(B) let gp,,(g)F : K x W — C be defined by

(14) (op,y(@)F)(k, w) = (mtp~, wy(9)F ) (k)
(15) =~ ORI F(e (g7 k), W),
forke K, we W.

LEMMA 3.4. Let ve(a/a nb)* and put r = |Wyx .y \W|. Then

a) ap (9)F € 2(B), for all Fe %(B) and g€ G. op,, is a (continuous) representa-
tion of G.

b) Let wy,...,w,e W be representatives of the equivalence classes Wx.g\W.
Then the map 9(B) > @ I (wv), F v (F5%, ., i=1,...,1) is a G-isomor-
phism.

Proor. (a) Note that x,, and H,, are right-M“-invariant. But then (15) implies
that op (g)F satiesfies (12). Let ue Nk u(a®) and we W. Then (using Lemma 3.3).

(@p,()F)k, uw) = e~ 0+ Huna™ WD F(ye, (g 1 k), uw)
= ¢~ uwlv+p), AdwH (g~ 'k"»F(Kw(g - lku)u - 1’ uw)
= e WO HW@T R B (g7 Tku), w)

= (GP. v(g)ﬂ(ku’ W)
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Thus (13)is satisfied and 6p ,(g)F € 2(B). That 6, , is a continuous representation
of G follows from part (b) wich is easily verified.

4. Intertwining operators.

In this section I recall the definition of standard intertwining operators for
induced representations and their relationship with asymptotics of coefficient
function for the these representations. The statements are formulated with
applications to the Poisson transform in mind.

If (£, V) is a representation of M, then let €(P:&:v) denote the space of
continuous functions f:G — V; satisfying (5). Let dii be a Haarmeasure on
N normalized by fe ™ ¢?#-HP™M>dji — 1. Lemma 4.2 below is formulated to be used
for the leftregular representation of M on 2(M/M n H). Thus we need to know
that (M) is equicontinuous. This is proved in the following Lemma

LeMMA 4.1. Let (&, V;) be a continuous representation of M. Suppose there is
some ¢ € V™ such that {ve V| ¢(&(m)v) = O for all me M} = {0}. Then &M) is
equicontinuous.

ProOF. Let m, be the subalgebra of m generated by mnp. Since M is
reductive, m, is an Ad (M)-stable ideal in m. Let M,, be the corresponding analytic
subgroup of M. M, is normal in M and, since m n p < m N b, M, is contained in
MAnH and M=(MnK)M, Since ¢ is M, invariant we get
A(Em)(E(m,)v — v)) = 0, for all me M, m,e M,, ve Vy. Thus &| M, is trivial and
therefore (M) = &M n K). But this set is equicontinuous, since ¢ is continuous
and M n K is compact.

Let a* be the set of vea* satisfying Re{v,a) = 0 for all xe Z(n, a).

LEMMA 4.2. Let (&, V;) be a (continuous) representation of M, such that &M) is
equicontinuous, and let ve p + a*. For f € 6(P:&:v) the integral

(16) (& V)f)x) = L_f(xﬁ) di, xeG

converges absolutely and uniformly (for x) on compact subsets of G. It -de{ﬁnes
a nontrivial (continuous) intertwining operator Jiip(E:v): 6(P: Ev)>E(P:E:v).
Let & be the operation of M on V; and let g:G -V, satisfy (5). Suppose there is
some U < G, such that ec U and such that g| U is continuous and bounded and
glG\U = 0. Then

(17) lim a®~*{np.¢ (@) ,9)> = <Uap(:v)S)e), g(e)

ap— ©

(ap — 00 meaning a* — o for all xe Z(n, a)).
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PrOOF. Let fe@(P:&:v)and let y be a continuous seminorm on V;. Then

(18) I fx)ll, = e~ Re o He® ) Emp() =) f (excp(R)],
Since &(M) is equicontinuous there is some constant C > 0 such that
[ f(xA)|, < Ce Re<**»-Hr@> C depends on y, f and x, but is bounded for x in
a compact subset of G. Now vep + a* implies e Re<V 2 HrM> < 1 (see [8]
Corollary 1V.6.6) and thus || f(xA)ll, £ Ce™*»H#*®> Thus 5| f(xA)ll,dA <
C(ye  20-Hr® gy = C, proving the absolute convergence (uniformly for x in
any compact subset of G).

The rest of the proofiis standard (compare [ 18] Lemma 1.2 and Lemma 5.1 or
[3] Lemma 15.6).

I now want to extend the standard intertwining operators to 2(B). For
Fe 2(B) let J,%'l' p(WF:K x W — C be defined by (J%P(V)F )k, w) = Jpwp(WV)F,)(K),
for ke K, we W. Let (a/a N h)* be the set of ve(a/a N h)* satisfying Re{v,a)> = 0
for all ae X(n, a).

LEMMA 4.3. Let vep + (a/anb)% and Fe 2(B), Then J,';‘,'P(V)F € Y(B) and
JBp(v): 2(B) — 9(B) intertwines op,, and 0, .

Proor. For ue Ng.g(a®) and we W we have F,, — R(u)F,,. Extend F,, to
FP  elpe(wv). Let me M N H, ae A and ne N**. Then

(RGFE,)kman) = FL,(kman)
= a O IFL (k)
= a TR (K)

= FP  (kman), keK

uw, uwy

ie. RWFE = Fh ... For simplicity now write F,, instead of F .. We now

W, wy uw,uwv*

become (letting dri denote the normalized Haarmeasure on the various N*’s)

R ()Y, uw) = (Jpuw| pus(wv) F, )(k) = j Fy(kri) dri
Nuw

= J. F, (kuiu~Y)di = wa(kuﬁ)dﬁ
A A~
= (Jpmp(WF,)(ku) = (JEp()F)(ku, w).

Thus J¥5(v)F € 2(B). The intertwining property is clear from the definition of op ,
and the intertwining property of Jiw pw(wv).
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5. The Poisson transform.

In this section I give a definition of the Poisson kernel associated to P and give

some properties of the associated Poisson transform. Then the Poisson trans-

form 2,:9(B) - £(G/H) will be defined and a weak injectivity result proved.
For ve(a/anb)* let p,:G— 2'(M/M ~ H) (the space of distributions on

M/M n H) be the Poisson kernel, defined by

a ®*Mg, . for x = hman, he H, me M, ac A, neN

(19)  px) = {0

otherwise
(with (O, f)> = f(m), for fe 2(M/M A H),meM.)

LEMMA 5.1. p, is well defined and satisfies p,(hman) = a~®* P& (m)~ ' p,(x), for
all xeG, meM, ac A, ne N. (& denoting the leftregular representation of M on
P'M/M N H)). If ve —(p + (a/a nb)*%), then p, is (strongly) bounded.

PROOF. p, is well defined and smooth on HP. The boundedness statement
follows from the following lemma.

LEMMA 5.2. Let (¢, V) be a (continuous) representation of M and ve —(p +
(a/anb)%). Suppose p: G — V; is a function satisfying

a) p(hxman) = a~C*?Em) " p(x), for xe G, he H me M, ac A, neN.

b) plg\np = 0.
Then p is bounded.

This follows from the proof in [2] Proposition 5.6 and the remark after that
proof. Under more restrictive hypothesis it is proved in [11] Lemma 4.1. The
decomposition HP = H(M n K)exp(ag M qo)N gives smooth maps

up: HP - M\M N K,
ap:HP — exp(ag N qo).
For x € HP, pup(x) and ap(x) are uniquely determined by x € Hpup(x)ap(x)N. Let

dh be an H-invariant measure on H/H n P (H n P is equal to H n L) normalized
such that

(20) f fk)dk = f F(c(hyye™ <2 HP® g
KIKP HHAP

for every f e %(G/P) (the space of continuous functions on G/P) with support in
HP/P (see [11] Lemma 1.3). The following proposition gives a version of the
Poisson transform needed here. It is a modified version of the one givenin [11]§6
(we cannot use [11] directly except when 2(M/M n H) is finite dimensional).

1

PROPOSITION 5.3. Let vep + (a/anb)* and f € 1(v). Then the integral
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21 Zf(x) = J f(xh)dh
H/HNP
converges absolutely and uniformly (for x) on compact subsets of G and defines

a continuous intertwining operator 2 : I (v) —» &(G/H). Let & denote the represen-
tation M on Q(M/M n H) from the left. Let ge IF(¢:v) satisfy Tpg = f. Then

(22) Zf(x) = L <g(k), p-(x~ k) dk

(23) = J Slkup(x™ k)™ Yap(x k) ~? dk
KnxHP

forall xeG.

PRrOOF. For felp(v) we have f(xh) = f(xx(h)e <7 He®> he H For he H
and x in some compact subset of G |f(x«(h))| remaines bounded. By (20) it is
enough to prove that e " Re<"~#-#e®) is bounded on H. By [1] Theorem 1.1
Hp(h) = Lx,H,, with x, = 0, the sum being taken over simple roots for £(n~, a“)
(with n~ = {Xen|o0(X)= —X}) and H,ea defined by o(X)= <X, H,),
X ea". But then e Re< =7 Hp> i5 bounded since vep + (a/a N b)*. The inter-
twining property is now obvious. The equation (22) follows from (20) and (23)
from the definition of p,.

Recall the definition of y* from (4). The following theorem is proved with
a similar argument as [11] Theorem 4.3.

THEOREM 5.4. Let ve —(p + (a/a nh)%). Then
D2,f = 2 (R(y;(D)f),
for all D e D(G/H) and f € 2(K/M*).

PrOOF. Choose u € U(g)" satisfying I'(u) = D (see (1)). Thenu = $*(u) + v, with
ve(nl(g) + U(g)r) (see (3)). Let U(g) — U(g), u — u' be the anti-automorphism,
with Xt = — X for X e€g, and ¢’ denote the leftregular representation of M on
2'(M/M N H). Then (since p, is smooth on HP)

(L@p,)(hman) = &'(m™ )a™ " P(R(u')p,)(e)
= (m™Ma~ TPy W)p,(e)
= {(Ad(m™ ")y (w)p,(hman),

forheH,meM, ac A,ne N. For fe D(K/M®") let fe D(K : {) satisfy Tf = f. We
then get
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»

(RWZ,f)(x) (T, (Lap,)(x k) dk
KnxHP
r

= CE(Ad (p(x™ ) @) f (K), py(x ™ ")) dk

o
KnxHP

= (C(Ad (up(x ™ )~y aa)) S (R pap(x ™)™ Daplx ™ )~ +#) dkc
Kr\:cHP
r

= (ROV)S) (k) py(x~ k) dk

LY
KnxHP

= 2ROy Wf)x), xeG/H

proving the theorem.

COROLLARY 5.5. Suppose G/H is split (i.e. a® = a%) and let Ae —(p + (a/a N h)*).
Then 2, 2(K/M°) < &,(G/H).

We now turn to the definition of the Poisson transform for %(B).
LEMMA 5.6. Let ue Wy, y and ve —(p + (a/a n h)*). Then
Puy [(x) = Z{Ru)f)(x), for xeG/H,

Sor all f e D(K/M?).

PrROOF. For ue Ng.y4(a) and x e HP* we get

x € Hu™ Yupp(eu)u™uap(xu)u ™ HuNu ™1,

Since u normalizes M® and a, N qq this implies upu(x) = upp(xu)u ' and apu(x) =
uap(xu)u~!. Thus we get (using (23))
Sflkppu(x k) ™ Dapu(x k)42 dk

KnxHuPu~!

I

Py /(%)

f flupp(x ™ ku) ™ u™Nap(x ™ Tku) P dk

KnxHPu~!

Flhppl™ ) Naplx™ k)P dk
KnxHP

= 2} (R(u™)f)x). ‘
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Wk ~u operates on C[W7] (the group algebra of W = W(g, a%)) from the left.
Thus 2(K/M°) ®w,.,C[W] is a well defined K-module (K operating on
PK/M®) from the left) that can be identified with the 2(B).

Letve —(p + (a/an h)*). For fe Z(K/M?) and TeC[W] put 2,(f ® T) =
Zwew TW)ZE, f. Using Lemma 5.6 we easily get 2.,(f ® l(u)T) = 2,(Rw)f ® T),
for u e W4 (I(u) denoting the leftregular representation of Won C[ W1). Thus we
get a well defined map from 2(K/M?) Q@ .., C[W]to &(G/H) giving the Poisson
transform:

(24) P,: %(B) — &(G/H).

Using the description of 2(B) by (12) and (13) and putting t = |Wy x| we get
PF=t"1Z, .4 PF,, for FeD(B).

I now want to prove a weak injectivity result for the Poisson transform.
This will be done by relating boundary values with standard intertwining
operators.

THEOREM 5.7. Let Fe P(B) and ve p + (a/a N h)%. Then
lim a**™")2_,F(ka™') = (J3p()F)(k, w),

apw—'d)
forkeK,weW.

Proor. Let felX(v). Let ¢ denote the leftregular representation of M on
P(M/M n H). Choose ge Ig(¢:v) with f = Tpg. Then by Lemma 4.2

lim a** V2P F(ka ') = lim (waw™ YH)*® PP fkwa 'w™1!)

ﬂPw"’(D RP‘*K)

= lim @ *(g,mp g, _,(kwa"'w Hp_,>

ap—

= lim o~ *{Tp ¢, (@)Tp, .5',v(W_ k- 1)9, Tip, &, - W™ I)P— v

ap—
U5p(E: v)g)(kw), p— (W)
But the last term is O if wé¢ Wy 4. If we Wy g it is equal to (using Lemma 4.2)
(99 kw), 8,5 = (T Iap(E: Vg)(kw)
= (R(w)Jpip(v).S)(K).
Now let F € 2(B). With t = |Wx 4| we become
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lim a** V2" Fka ') = lim ¢! Y, ave Ik E(ka™Y)

—uwy
apw— apw— ueW

=t"! Y lim g*e-vgpr F(ka™ )

—uwy
ueWKAH apw—

=t ' Y lim @ V2", (Ru"Y)F,,)(ka ')

ueWgkn~H apw— o0

= lim a*"* V2" F, (ka )

apw—

= (Jpwp(WV)F,, ) (k).
By definition this is (J¥p(v)F)(k, w).

COROLLARY 5.8. Let d € K. Then there exists a non-zero holomorphic function q4
on p + (a/anb)% such that if ve p + (a/a nb)% and qs(v) + 0, then P,| D(B); is
injective.

PROOF. Let F € 2(B); be in the kernel of 2,. Then Jp+p~(WV)F,, is zero for all
we W.Itis therefore enough to construct holomorphic functions g onwp + wa*
such that J. pw(Wv) | Ipw(wv); is injective if g} (wv) + 0. We may assume w = e. By
Frobenius reciprocity & has finite multiplicity in Ip(v). Thus Ip(v), is contained in
a finite sum of Ip(&:v) (¢ some irreducible (M ~ H)-spherical representations of
M). Therefore it is enough to prove the analogous statement for Ip(¢ : v);). On the
submodule Ip(¢: v) of Ip(v). J5p(v) is given by J55(¢:v). Let E; be the projection
onto the d-isotypic component Ip(¢:v); of Ip(£:v). The restriction of Jzp(£: v) to
Ip(£:v); is injective if the determinant g 5 of E;Jpp(¢:v)Es€ End(Ip(¢:v),) is
non-zero. This function is holomorphic on p + (a/a N h)% (compare [18] Lemma
5..3). But then [2] Proposition 3.7 shows, using the meromorphic continuation
of Jgp(¢ :v), that g, 5 is non-zero. This finishes the proof of the corollary.

6. The multiplicity formula.

I now turn to the proof of the multiplicity formula, starting with a lower bound
using the meromorphicity of the Poisson transform. The proof that this also is an
upper bound is done by looking at the Taylor series of K-spherical functions on
G/H. This will only be done for G/H split. Recall that r = |Wk 4\ W/ is equal to
the number of open H-orbits in G/P.

LEMMA 6.1. Suppose G/H is split. Let A€ (a®)* and (6, E) an irreducible represen-
tation of K. Then m(8, & ,(G/H)) = |Wx g \W|dim E™".
PROOF. a° = an q can be identified with a/a nh. By Frobenius reciprocity

J has finite multiplicity in 2(B). The Poisson transform, restricted to @(B),,‘ canbe
continued meromorphically to all of (a)*. Since 2(B)s s contained in a finite sum
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of some Ip~(&, wv)'s, this follows from the existence of a meromorphic continu-
ation of 2 ", toall of (a®)* (proved in [11] Theorem 5.1 under certain restrictions
on (G, H) and more generally in [2] Theorem 5.10). Put F = %(B);. We now use
the following lemma that can be proved in the same way as [ 12] Proposition 2.21

LEMMA 6.2. Let V be a Fréchet space and F a finite dimensional vector space.
Further let U < C be open and connected and let f : U — Hom(F, V) be meromor-
phic. Suppose there is some v e U such that fis holomorphic at v and f (v) is injective.
Let A€ U. Then there is a meromorphic map A:U — End(F) such that

JA:U - Homc(F, V), p— f(p)o A(p)
is holomorphic at 4 and (fA)(A) is injective.

By Corollary 5.8 2,| 2(B); is injective for “most” ve p + (a/a n h)*. By the
previous lemma we immediately get that m(d, &,(G/H)) is bounded by m(é, 2(B))
from below. As a K-module 2(K/M®)". The statement of the lemma now follows
from Frobenius reciprocity.

We now turn to the upper bound on the multiplicities. Let (d, E) be an
irreducible representation of K and let (8", E’) denote the dual representation.
Further let &,(G/H); be the é-isotypic subspace of &,(G/H) (Ae(a%)*) and
85(G/H; E) the space of smooth maps F: G/H — E satisfying F(kx) = §(k)F(x), for
x€G/H, ke K. D(G/H) operates on & 5(G/H; E) from the right. Let &, 5(G/H; E) be
the corresponding eigenspace (4e(a®)*). Then E® &; ;v(G/H; E)3 (v, F) —
F,e &,(G/H);, with F,(x) = (v, F(x)), xeG/H, is an isomorphism. Thus the
multiplicity of é in &,(G/H)) is equal to the dimension of &, ;v (G/H; E').

We will get an upper bound on the dimension of this space by looking at
certain terms in the Taylor expansions of Fe &, ;v (G/H; E'). Let

n:S(q) > S(p N a)

be the projection onto the second compenent in the decomposition
S(a) = (En 9)S(q) ® S(p N q). If pe S(q)" then n(p) e S(p N g) %

Let ##(p N q) denote the space of harmonic elements in S(p N q) (with respect
to K n H). The following lemma shows that in case H is essentially connected, i.e.
H = H,Z.g(a%, then S (p N q) is just the space of harmonic elements with
respect to (K n H),, allowing us to use the results of [9].

LEMMA 6.3. Let H be essentially connected. Then S(p n q)*~H# = S(p N q)'"".

ProoF. Since H is essentially connected Wy, g = Wx~n),. By Chevalley the
orthogonal projection from p N q onto a* determines an isomorphism 7, be-
tween S(p N q)'"? and S(a%)* *~= (see [8] Corollary I1.5.12). Let we Zy . 4(a%) and
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peS(p N q)®. Then n,(Ad(w)p) = Ad(w)my(p) = my(p). Since m, is injective
Ad(w)p = p for all we Zgy(a%. Thus pe S(p N q)*~# proving the lemma.

The following lemma will only be used for G/H split. But for future references
I'will state it here more generally. As before let a? be a maximally abelian subspce
of q containing a, W? = W(g,a%) and W = W(g,a%. The Cartan involution
6 defines an automorphism on W? by w(X)= Ow(0(X)), for X ea’. Put
W = {we W*|w® = w} (this equal to {we W¢|w(a’ p) = (a’ A p)}) and let
Wy’ be the subgroup of W generated by reflections s, with « € (g, a%) vanishing
on a? N p. Restriction to a? N p defines a map W — W giving an exact sequence
(see [13] Lemma (7.2) (i)

1> Wi WS Wwo i
In particular if pe S(a%)"* then n(p) € S(a®)"”. Let
7:S(a)" - S(a)W
denote the restriction of 7 to S(a%)"".
ASSUMPTION 6.4. This assumption is said to be valid if 7 is surjective.
If G/H is split then a? = a® so Assumption 6.4 is valid.

LEMMA 6.5. Suppose Assumption 6.4 is valid. Put r = |Wx 4 \W|. There exist
homogeneous elements v, = 1,v,,...,v,€ S(p N q)*H such that

r

Spna)= 3, vum(S@")H(ana).
i=1
Thus every p e S(p N q) has a decomposition into linear combination of elements of
the form v;n(q)p, with q € S(q)" and pe #(p N q).

Proor. By [8] TheoremIIL1.1 S(p N q) = S(p N q)* 2 A#(p N q). By Cheval-
ley the orthogonal projection of p N q onto a* defines an isomorphism between
S(p N qf*~H and S(a®)**~# (using K n H = (K N H), Nk, y(a®). In this proof let
G, be the adjoint group of g. & (as an involution on g) defines an involution on G,

also denoted by ¢. Using [9] Proposition 1 and Chevalley we get G(q)“f =
6(q)” =~ S(a¥)"* (using the orthogonal projection of q onto a“). .
By Assumption 6.4 n(S(q)”) is the preimage of S(a®)"” under the isc.ymorphnsm
S(p N q)¥~H ~ S(a%)"*~H. By the first part of [7] Lemma 8 there exist r homo-
geneous elements o, =1, 0,,...,05,€S(a)?** such .that S(a®) kot =
_,S(a%" (in [7] Lemma 8 the subgroup W is also required to be generated
by reflections. But this is not used to proof of the first part of that lemma). Nf)w
the statement follows letting v; € S(p N g} be the canonical elements mapping

to #; under the isomorphism S(p N q/*~H = S(a”)¥* " ‘
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Let S,,(g) (resp. €™(g)) and U, (g) (meZ) be the standard filtration (resp.
gradation) of S(g) and (g) by degree. Further let A : S(g) — U(g) be the symmetr-
ization map.

THEOREM 6.6. Suppose G/H is split and H is essentially connected. Let 1 € (a®)*
and (0, E) an irreducible representation of K. Then

m(8, & (G/H)) = |Wi~u\W|dim E™".

PROOF. Letuvy,...,0,€S(p N q)*"# beasin Lemma6.5. For Fe &; ;v(G/H; E')
let Ti:#(pngq)—E* be defined by Ti(p)= (R(A(pv;)F)e), i=1,...,r,
pe#(pna)

(1) TreHomg y(#(pna),E)i=1,...,r

The symmetrization map A intertwins the adjoint representation on &(g) and
U(g). Let ke KnH and u = A(pv;). Since v; is Ad(K n H)-stable we have
Tr(Ad(K)p) = (R(Ad (kJw)F)(e) = 8" (K)(Ru)F)(e) = 8" (k) T¢(p), proving (1).

(2) Fe,,sv(G/H;E), T =0,i=1,...,r, implies F = 0.

Suppose Ti=0, ie. (R(A(pv,)F)e)=0 (i=1,...,r). 1 wil prove
(R(u)F)(e) = 0, for all uell(g) using induction on the degree of u. Thus let
uel,(g), meZ If m <0 then u = 0 and there is nothing to be proved. Now let
m 2 0 and assume (R(v)F)(e) = 0 for all veU,,_ (g). By Poincare-Birkoff-Witt
ue(fU,_(g) + U, 1) D AS,(pnq). Let Xef, vel,_i(g) Then
(R(Xv)F)(e) = 6" (X)(R(v)F)(e). But this is 0 since vel,,_,(g). The same proof
also gives (Ru)F)e) =0 for uel,_;(g)h. We may therefore assume
ue A(S,(p N q)). But then u is a linear combination of elements of the form
A(v;pq) with pe #(p N q) and g e i(S(q)") (and v;pg e S,,(p N g)). Let Ge S, ()
besuchthatg — ge(f n q)S,,-1(p N q). Letr, se S(g) be such that rs e S,(g). The
symmetrization map A has the property A(rs) = A(r)A(s) + U,,_,(g). Since
(RQL, - 1(g))F)(e) = {0} by induction hypothesis, we get (R(A(rs)F)(e) =
(R(A(r)A(s))F(e). Now using this we get (R(A(v;pg))F)(e) = (R(A(vipg))F)(e) =
(R(A(v;p))R(A(G))F)(e). But this is equal to x,(A(§))(R(A(v;p))F)(e) = 0. Since F is
analytic it must vanish on the connected component of eH in G/H and since F is
spherical it must vanish on all G/H.

By (1) and (2) m(, & ;(G/H)) is bounded from above by r times the dimension of
Homyg (3¢ (p N q), E). But this space is isomorphic to Homg . 4(E', #(p N q)°)
(#£(p N q) the contragredient module of S#(p N q)). #(p N q)° can be identified
with the space 5#” of harmonic polynomials on p N q. Let X € a® be regular, H? the
adjoint group of h* and H*® = {ge H?| 6(g) = g} (the involution 6 on h” defines an
involution 6 on H?). By [9] Proposition 1, H®X = (H®®).X. Let Oy denote this
orbit. By [9] Theorem 17 the map s#’ p +— p|Oyxisanisomorphism to the space
of rational functions on (the variety) Oy. In particular p | Oy is holomorphic. Since
Ad((H n K),) is a real form of (HZ®),, the map 5#’ — &H N K/M?), p > Plasunxx
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is injective. Therefore dim Homy,x(#(p N q), E') £ dim Homg,x(E, &(H N
H/M?) = E'™" This finishes the proof.

7. The image of the Poisson transform.

I now want to give a description of the image of the Poisson transform 2 _, for
Aep + (a/anbh)} in case G/H is split. First recall the definition of a lowest
K-type.

DEFINITION 7.1. Let to be a Cartan subalgebra of ¥, and p e t* the highest weight
of anirreducible representation d of K, with respect to some positive system * (£, t).
Thenormof é is defined to be || 0|| = {p + 2p., 1 + 2p.) (p. is half the sum of roots in
Z*(t,1). Let V be any K-module. § is a lowest K-type of V if

a) é occursin V.

b) 18]l = min{||d|| ¢ a K-type occuring in V}

If L is any subgroup of K and ¢ a representation of L let A(E) denote the set of
lowest K-types of the induced representation 2(K : &).

Let MM~H be the set of equivalence classes of irreducible (M n H)-spherical
representations of M. For £ M H et ¢ also denote a representation in this
equivalence class. For £ € MM~H Jet A(¢) denote the set A(E |y k). Then A()is the
set of minimal K-types of Ip(¢:v) (v € a*). Let A(G/H) be the union of the sets 4(&),
the union taken over all ¢ e MMH,

THEOREM 7.2. a) Let vea* and € MM . Then every K-type in A(¢) has
multiplicity one in Ip(&:v).

b) If vep + (a/anb)* then Ip(¢:v) has a unique irreducible quotient. Let
Jp(€:v) denote this unique quotient. Every K-type in A(&) is contained in Jp({: v).

) Let &, and &, be unitary and finite dimensional representations of M and
vep + (a/anb)X. If Jp(&,:v) and Jp(E,:v) are equivalent, then &, and &, are
equivalent.

Proor. First note that the multiplicity of K-types in Ip(¢ : v) is independent of
v. Let P,, = M,,A,,N,, be the Langlands decomposition of a minimal parabolic
subgroup of G contained in P. Then P, " M = M, (A, n M)(N,, » M) is the
Langlands decomposition of a minimal parabolic subgroup of M. Let
Py €(a,, N m)* be half the sum of the roots of a,,nm in n, N m (counted with
multiplicity). By [2] Lemma 4.4 ¢|M,, is irreducible and ¢ is equivalent to
a quotient of Ipf _ (&| M,,: pu)-

We now choose vea* such that {py + v,a) >0, for all aeZ(n,,a,) By
induction in stages Ip(¢:v) is a quotient of Ip ({| Mu:pym + v). Since pp + v is
strictly positive Ip (£|M:py + v) hasa unique irreducible quotient, the Lang-
lands quotient Jp (& | My: pa + V) ‘
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Since Ip (£| M,,:py + v) and Jp (E|py + v) have the same lowest K-types,
A(¢) is the set of lowest K-types of Ip_(¢| M,,: py + v). These K-types all have
multiplicity one in Ip (£ | M,,: py + v) ([17] Theorem 6.5.9) and therefore also in
Ip(€ :v) proving part a) and b).

If Jp (E1lm,,:v + pu) and Jp (Ealy,,:v + py) are equivalent, then there is
some we W(g, a,,) satisfying (y]p, )" = &y, and w(v + py) = v + p. But since
v + pa is strictly dominant w = Id and therefore also £; =~ &,.

Now recall the definition of A-norm of a K-type and the definition of 1-lowest
K-type of a (g, K)-module from [17] Definition 5.4.1 (called lambda-lowest
there).

LEmMMA 7.3. Let G/H be split. Then all the K-types in A(G/H) have the same
A-norm.

ProOF. Letée MMH Let P, = M,,A,,N,, be the Langlands decomposition of
a minimal parabolic subgroup of G contained in P. Then M,, c M and 4 < 4,,.
Welook at a* asasubspaceof a¥. Let Ae p + (a/a nh)%. Thenv = 4 + pyeakis
strictly dominant (p,, is given by the minimal parabolic subgroup M n P,, of M).
Put y = £|u,,. Then y is irreducible. Since G/H is split, M, = H. Thus (M,,), « H
and y is (M,).-spherical. Since M,,/(M,,), is an abelian group, y must be
one-dimensional and x|, e trivial. The A-norm of a minimal K-type of I (x:v)
can be calculated from x|, )e = &lar,, e (use [17] Theorem 6.6.15, Lemma 6.6.12,
Theorem 6.5.9a) and b) and Lemma 6.5.6), giving a value independent of &. In the
proof of Theorem 7.2 we saw that Ip(¢:4) and Ip (J:v) have the same minimal
K-types. This finishes the proof.

This Lemma implies that if £ e MM"H and § is any K-type occuring in Ip(¢: 1),
then ¢ is a minimal K-type of Ip({: A) if and only if 6 € A(G/H). Using Theorem 7.2
we immediatly get

COROLLARY 7.4. Suppose G/H is split and let Aep + (ajanbh)%. Then
Jiip(A) : Ip(A)s = I5(A)s is bijective for all 6 € A(G/H).

Using the connection between the asymptotics of 2 F (F € 2(B)) and standard
intertwining operators, given in §5 we are now in the position to prove the
following proposition. It is the main result of this section.

PROPOSITION 7.5. Suppose G/H is split and H is essentially connected. Let
Ae —(p + (a/anb)*%). Then 2,: D(B)s — & ,(G/H); is bijective for all € A(G/H).
Thus if f € &,(G/H);s then there exists a unique F € 9(B);, with #,F = f.

Proor. By Theorem 6.6 the dimension of the spaces 2(B); and & ,(G/H); are
equal. We thus only have to show the injectivity of 2, when restricted to 2(B);.
But this follows immediately from Theorem 5.7 and Corollary 7.4.
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COROLLARY 7.6. Suppose G/H is split and H is essentially connected. Let
re —(p + (a/an b)}). The (K-finite) image of P, is equal to the W(g)-submodule of
&:(G/H)g generated by & ,(G/H) 4, (the linear subspace of & ,(G/H)x generated
by &,(G/H);, with 6 € A(G/H)).

CoRrOLLARY 7.7. Suppose G/H is split and H is essentially connected. Let
Ee MMM and je —(p + (a/anh)%). Then the multiplicity of Jp(&: —2) in the
composition series of & ,(G/H) is equal to
(25) dg = Wil ™1 3, dim ppe oot

weW

PrOOF. Put V = Jp(¢: —4). By Corollary 7.6 the multiplicity of V in & ;(G/H)
is equal to the multiplicity in the image of ;. By Theorem 7.2 b) the multiplicity
of V in the image of 2, is equal to the multiplicity of ¥V in op, _;. By Lemma 3.4
this multiplicity is equal to Wy, ~* times the sum (over we W) of the multi-
plicities of V in Ip(—wv). For we W and ye MM~H,.(y: —wl) is equivalent to
Ip(x*~': —A). By Theorem 7.2 c¢) V occurs in Ip+(x: —w2) if and only if y is
equivalent to &". Therefore the multiplicity of V in Ip(—wv) is equal to
dim V¥~ = dim V;*~'™~H™ proving the corollary.

We saw in the proof just given that for vep + (a/anb)% 1p(&:v) embeds
de-times into (op, ,, Z(B)). We can thus construct a space V() and a monomor-
phism

(26) S:: DK : &) Q V() — Z(B).

intertwining 7p ;. , ® I and op,, (I denoting the trivial representation on V(é)).
I will now give a construction of V() and S,. This space is easily seen to be
isomorphic to the space also called V(&) in (eq. (5) of) [3] (used there to represent
the intertwining operators from Ip(¢:v) to &(G/H) for “generic” v). Let
W = Ng(a® and let V(¢) be the space of functions T W — V; satisfying

i) T(w)e V7 " Moi? e W,

ii) TOvm) = &(m)~ ' T(W), we W, me Zg(a®).

iii) T(@w) = T(W), we W, ie Ngu(a®).

For felp(¢:A)and Te V(&) let S{f ® T):K x W — Cbe defined by
So(f ® T)(k,w) = <T(W),f(kw)), keK,weW.

Here W e W is any representative of w. i) above guarantees that S( f® T)is well
defined. One easily sees that Si(f ® T)e 2(B) and that S; intertwines np ¢, @ [
and op,,. (This follows from the definition of ap, , and the well known fact that
ROW): Ip(E 1 v) = Ip-(E7 : wy) is an intertwining operator, R(#) denoting righttran-
slation by w.) For ve —(p + (a/anb)}) let

[
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Py DK :E)® V() — £(G/H)

be defined by Z;: (f @ T) = 2,(S(f @ T)). Let P Ip(¢: —v) ® V(E) - £(G/H)
denote the map Z(f ® T) = 2, (f | K® T)f €lp(l: —v) and T e V(). Then
2. is an inertwining operator. The space V() has dimension d, (given by (25).
Corollary 7.7 and the discussion above now immediatly gives.

THEOREM 7.8. Suppose G/H is split and H is essentially connected. Let
Ee MM~ gnd Je —(p + (a/a N b)%) and suppose V is a submodule of & ;(G/H).
Then the following are equivalent

a) Jp(&: —A) is a unique irreducible quotient of V.

b) There exists a Te V() such that V = Pe(Ip((: —4) ® CT).

CT in b) is uniquely determined.

The image of 2, ;(Ae —(p + (a/anb)*%)) can now be characterized as the
maximal submodule of &,(G/H) having Jp({, — 4) as its only irreducible quotient.

COROLLARY 7.9. Suppose G/H is split and H is essentially connected. Let
le —(p + (a/anb)%). Let V be an irreducible submodule of & ;,(G/H) and assume
there is some fe V and we W such that lim a**~Yf(xa™') does not vanish

apw—

identically for x € G. Then there exist a T € V() unique up to a constant such that
V=2 —2)®CT).

PrOOF. By the subrepresentation theorem for G/H (due to T. Oshima, see [6]
Théoréme 1 or [16] Theorem 4.6) V is isomorphic to a submodule of I5(¢ : — 1) for
some € MM"H, Since Ae —(p + (a/a nbh)%)Jp(¢: — A) is the unique irreducible
submodule of I3(¢: — ). The corollary now follows from Theorem 7.8.
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