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TOEPLITZ ALGEBRAS AND INFINITE SIMPLE
C*-ALGEBRAS ASSOCIATED WITH REDUCED
GROUP C*-ALGEBRAS

SHUANG ZHANG"

Abstract

Assume that I" is the free product of an arbitrary number of finite cyclic groups and any free
group, and the generators of I" are g;,g>,.... Let I'; consist of the unit e of I" and all those re-
duced words of the form g,’-‘,‘ gf’j...gf;" where ny,ny, ..., n; are positive integers, and let R, be the
projection onto the subspace /2(I";) of />(I'). We prove that the C*-algebra C:(I', R, ) generated
by the reduced group C*-algebra C;I" and R, has either one or two non-trivial closed ideals
which are stable and of real rank zero. This construction results some purely infinite simple C*-
algebras.

1. Introduction.

Let &, be the free group on n generators (1 < n < +00), i.e., the free pro-
duct ZxZ =« ...xZx ... of ncopies of the group Z of all integers, and let I', be
N tseeaa?
n

the free product of some finite cyclic groups Z,, :=Z/n;Z, i.e.,

I'(m):= ?nl 2y, % ... %2y *..., where 2 <n <+400,2<m< 0.
m

The groups considered in this article are the free product
' =r,x%, or %,

The unit of I' is denoted by e, and the generators of I' are denoted by
{g1,82, .-, 8k, ...}. Each element of I' is a reduced word w := g;"g;"...g;* of
finite length I(w) := Z’;l |mj|; the word “‘reduced” means that all factors of
the forms gg~! and g~'g are canceled out. For any finite cyclic group Z,, we
make a convention that each element in Z,, is uniquely expressed by g7 for
some integer m with 0 <m < n; — 1. In this way each element in I" is un-
iquely represented by a reduced word of finite length.

* Partially supported by NSF grant DMS - 9225076 .
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Let {f; : g € I'} be a standard orthonormal basis of the Hilbert space />(I")
of all complex valued, square-summable sequences indexed by I'. Let
U: T'—%2(I*(I')) be the left regular representation of I' on #(I*(I")), de-
fined by U(g)fi := fy-1 for fy € I*(I"), where #(#) denotes the algebra of all
bounded operators on a Hilbert space #. Then U(g) is a unitary operator in
L(I2(I) for any g € I'. The reduced group C*-algebra C:I" is the norm
closure of the group ring C[I'] consisting of all linear combinations:
Z?:l OQ'U(h,‘), h; € I o;eC, and n € N.

The purpose of this article is to investigate the structure of the C*-algebra
generated by C;I" and the projection R, onto the subspace /*(I'}), denoted
by C(I',R;), and to investigate the structure of the Toeplitz algebra .,
generated by {R,U(g)R; :he I'\}, where I'; consists of e and all those
reduced words of the form g;"g/”..gi* (m; € N). Briefly speaking, 7, is
generated by some isometries and unitaries on /?(I"}), as the reader will see
later. The structures of 7, and C;(I', R;) depend on the generators of I
One of main results, Theorem 3.1, asserts that if I' =2, =%, where
2<ny < +4oo and 1 <n < +oo, then C;(I',R;) contains exactly two non-
trivial closed ideals, both are stable and of real rank zero; one is #z, gen-
erated by R,, and the other is .y which is *-isomorphic to the algebra %
consisting of all compact operators on /*(I'). Furthermore, the quotient al-
gebra S, /Fy is *-isomorphic to 0, ® A", where O,,, is the Cuntz algebra
generated by non isometries. This compares with the case when I' =%,
(2 < n < +00) that we studied in [48], for which C;(I", R;) has two stable,
nontrivial, closed ideals of real rank zero, whose quotient is *-isomorphic to
0, ® A . For all the following cases,

IN=F o, Lng* F ooy, (Lny %Ly *..) ¥ Fy
| —
m

(where 2 <m < +o00 and 1 < n < +00), the other main results, Theorem 4.1,
concludes that the C*-algebra C; (I, R;) contains only one nontrivial closed
ideal #g, generated by R, which is a non-unital, purely infinite, simple C*-
algebra. Thus, by our earlier result in [44], Fg, = Fx, @ A . Here a C*-al-
gebra is said to be simple, if {0} and itself are the only closed ideals. We re-
mind the reader that a unital simple C*-algebra is purely infinite if and only
if for any nonzero element X there exist two elements ¥ and Z such that
YXZ =1 ([16] and [29]), and that an arbitrary simple C*-algebra is purely
infinite and simple if and only if each nonzero projection is infinite and it has
real rank zero ([45,1.2]).

The classification of separable, purely infinite, simple C*-algebras has
been under attack in recent years ([21], [37] ,[38]). With this classification
problem in mind, we have lately put some efforts in dealing with the C*-al-
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gebras of the form C;(I", P), since for many other choices of the projection P
it is a purely infinite, simple C*-algebra (see [47]). Indeed, the class of C*-
algebras generated by C*I" and one projection Py, onto a subspace /2(£2), i.e.,
{Cx(I',Pg) : 2 C I'}, contains some new types of C*-algebras. However, it
remains a difficulty task to classify this class up to *-isomorphism.

2. Toeplitz operators and the Toeplitz algebra.

The article is essentially in a self-contained form. Most of the references in
the list are relevant materials but not needed. We start with the following
analyses on the construction of Toeplitz operators.

2.1 For each h € I" one defines a Toeplitz operator associated with R, by

Th = R+ U(h)R+

The Toeplitz algebra 7, associated with R, is generated by {T,: h € I',},
and the corner algebra associated with R, denoted by R.C*(I',R})Ry, is
generated by {7, : h € I'}.

To consider the structures of 7, and C;(I',R;), we start with the con-
struction of each Toeplitz operator Tj. Let us collect as follows some ob-
vious facts derived immediately from definition.

() Uk'=Uk")and T} =T, Vhe I.

(2) U(hihy) = U(hy)U(hy) for hy,hy € T

(3) For g € I' the projection U(g)*R,U(g) is onto the subspace *(gI;)
and the projection U(g)R, U(g)" is onto the subspace *(g~'T";).

fen fheglh, NIy

@ Tolfh) = Rifgn = {og ifhgglh,NT,.
metry in Z(/*(I';)) whose initial projection T;T, is onto the subspace
I*(gry,NnI,) and whose final projection T, T; is onto the subspace
Pg'rynry).

From now on the notation '} (k) is reserved for the subset of I', consist-
ing all reduced words of the form Ah;, where hh, is an irreducible product in
the sense that the last word of & of length one is not the inverse of the rst
word of h;. The notion R, denotes the projection onto the subspace
[>(I'(h)). Here we point out that I'y(h) # hI', does not hold in general.

Thus, T, is a partial iso-

2.2. PROPOSITION.

) I'y={e}ul(g) Ul (g2) V..U (gk)U....

(i) If g # g, then gil'1(g;) = I'1(gig))-

(iii) If the order n; of g; is infinite, then giT"} (g:) = I'1(g%).
iv) If the order n; of g; is finite, then g;I". = I'; furthermore,

gl (g ") =T \I'i(g) and g \Tu(gf™") = I'i(g).
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PrOOF. These facts are readily checked.

2.3. PROPOSITION.

(i) If a generator g; of I' is of finite order (i.e., g' =e for some
2 <n; < +00), then U(gi)Ry = R, U(g;). Consequently, if hy € T',, then Ty, is
a unitary operator on I>(I'y).

(i) If gi is of infinite order, then U(g;)R; # R, U(g;), and Ty, is a co-iso-
metry such that Ty Ty, = Ry, and T, T; = R,.

PrOOF. (i) Assume that g; is of finite order. To show R, U(g;) = U(g;)R,,
it is equivalent to show

gl'ycI'y and ggI'\I'y C '\ T.

The first inclusion is trivial by the definition of I',. Let & be any reduced
word in '\ I';.. Then 4 contains a factor of the form gj’1 for some generator
g; of infinite order. If 4 is an irreducible product gj?'hl for some reduced
word Ay, then gihe '\ I'y. If h is an irreducible product of the form
gkhlgj"hz for some reduced words /; and /; and a generator g, then g4 is
again in I'\ I';. Thus, the second inclusion also holds. If Ay € I',, write
ho = g;,8j,.--.g;, for some generators of I' with finite order. Then
U(ho) = U(g;)U(gj,)---U(g),), and hence Ty, = R U(ho)Ry =Ty Ty, ...
Ty, » which is a unitary operator on [*(I'y).

(ii) If g; is of infinite order, then g;7'h € I'\ I'y and gi(g;'h) =h e I'; as
long as 4 is a reduced word in ', starting with another generator different
from g;. Thus, />(I"\ I'}) is not a reduced subspace of U(g;). By definition
T, T, is the projection onto the subspace I>(g:.I'y). Since g;,I"y = I',(g) in
case g; is of infinite order, one sees that Ty Ty, = Ry,.»

2.4. PROPOSITION. Let h € I'. Then T), # 0 if and only if h can be uniquely
written as an irreducible product W' hoh"~', where hy € I';, and W ,h" € Iy such

that the last words of W' and h" with length one are some generators of infinite
order whenever W' # e, W' # e.

Proor. First, each reduced word 4 € I' can be written uniquely as a pro-
duct g;'g;”...g;* for some generators g;,gs,...,8;, Where g; #g;  for
1 <j <k -1, and all n; are integers. By our convention, n; > 0 whenever g;
is a generator of finite order. Our attention will be on the powers of those
generators of infinite order in the above product. If all g; , ..., g;, are of finite
order, then & = hy, and hence T} # 0. Assume that there is at least one gen-
erator involved is of infinite order. Select all generators of infinite order in
the ordered tuple (g;,, g, -, &), With the order kept, and write them as an
ordered tuple (g,-” ,g,}z,...,g,-”) (where j; < j, < ... <jj). Clearly, the assertion
of this proposition is equivalent to the following: T # 0 if and only if the
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signs of the corresponding powers n;,,n;,...,n;, as an ordered tuple, have
patterns +, +, ..., + (for the case h = W' hy; i.e., B = e), or —, —, ..., — (for the
case h = hoh";ie., h =e), or +,+,...,+,—, ..., — (for the case h = K hoh"™';
i.e., W' # e and A" # e). These patterns are exactly all possibilities for which
h~'I', NIy # 0, that is, the final projection of T}, is non-zero.

2.5. PROPOSITION.

() If T # 0, write h = K'hoh"™" as in Proposition 2.4, then Ty, = T}, Ty, Ty,
which is a partial isometry whose final projection is T}, Ty and whose initial
projection is T, Ty, ; both are independent of hy € I';.

(i) If by € 'y, write h = g;'g}>...g;* for some generators gi,,giy, ---, &, then
Ty = (Tg.k )nk '--(Tg,z )nz (Tg,l )m .

PROOF. (i) Obviously, Ty m-1 = RLU(K') U(ho)U(K')R,. It is easily seen
by definition that
Ry UK Ulho)(I — R)U(K)R, = 0.

Thus, T, = T}, Th, Ty; here we use the fact that U(ho)R; = R, U(hg). It is
obvious that T, is a partial isometry.

(i) For each generator g; of I' one has R,U(g)R; =0 (where
R} =1 — Ry). Thus, with respect to the decomposition R & Ri = I one can
write U(g;) as a 2 x 2 matrix

(ricthor. wivieon:)
Ry U(g)Ry R U(g)R; )
It follows that T,, = Ty Ty, and hence (by induction)

Th] = Tg::l g:'zz"'g:f = (Tg'k )nk ...(T’g‘2 )n2 (71&I )nl .

2.6. PROPOSITION.

(i) If h € I'y, then h can be uniquely written as an irreducible product of the
Sform h = (hi1gy,)(hagy,)-..(higy, ) ho, where all g, , 8, ..., 81, are generators of I’
of infinite order, and hy, hy, ha, ..., by are elements of T';.

(tii) T;,Jg,j T,jj g = R, and T,;‘J ¢ T;,/g,] = Rh,g,j . Consequently, Ty is a co-iso-
metry.

PROOF. (i) is trivial. (ii) is also straightforward. In fact,
% _— *
Thjg,j Th,g/j =Ty, T, T;,‘J Té"; = Ry,
1k — % % —_ _—
T,,ngl Thg, = T; Tg’j Tg, Th, = T;,‘j Rg,j T, = R;,!g,j .

Clearly, T, T; = Ry, and T;T), = Ry; i.e., Ty is a co-isometry.
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2.7. COROLLARY. The  Toeplitz  algebra I,  coincides  with
R, C}(I',R\)Ry; both are generated by {T), : h € I' .}, and in turn, by {Ty,}.

PROOF. By the fact each nonzero Toeplitz operator T} can be written as a
product Tj, Ty, T}y, where ho, k', k" are in I, one sees that the corner algebra
is also generated by {7}, : h € I'; } as 7, is. Furthermore, Proposition 2.5(ii)
asserts that each element T) € {7}, : h € I',.} is a product of Toeplitz opera-
tors in {7, } where {g;} is the set of all generators of I.

2.8. REMARK. Proposition 2.3 and Corollary 2.7 combined tell the fol-
lowing:

(a) If I' = # , then 7, is generated by a sequence {7, } of isometries.

(b) If I' is any other group among the ones considered in this article, then
7 + is generated by some isometries and unitaries, these isometries are Ty,
where g; are of infinite order and these unitaries are T, where g; is of finite
order.

2.9. PROPOSITION The closed ideal S g, of C:(I',Ry) generated by R, is
nontrivial.

ProoF. We proved in [48] that the projection Py, onto the subspace /2(12)
(where {2 C I') generates a nontrivial closed ideal of C; (I, Py,) if and only if
there is no finite subset {A, hy, ..., hn} of I" such that |J{_, /2 = I'. Clearly,
there is no finite subset {A,hy,...,hn} of I' such that | J;_, i = I'. Thus,
4 r. 1s non-trivial.

+

3. The case I’ = Z,, x % .

In [48] we have dealt with the case ' = %, for 2 < n < +o00. As a result,
C:(I', R,) contains exactly two nontrivial (closed) ideals, the ideal 2" (?(I"))
of all compact operators and the ideal .# g, generated by R, ; both are stable
C*-algebras with real rank zero and Sg, /A (I?(I')) = 0, ® #". The struc-
tures of C;(I', Ry) for other cases turn out to be different. We will apply two
different techniques to deal with the following separate cases :

W) I'=2, %« F,, where 2 <ny < +oo and 1 <n < +o0.

(i) '=F .

(i) I' =2, * F .

(iv) I' = (Zp, % Zp, * ...) x F,, where 2 <m < 400 and 1 < n < 4o00.

| T A —

m
V) I'=(Zy, %Zpy % ..) ¥ F .
S

m
In this section we consider the case (i), I' = Z,, * &, where 1 < n < +o0.



92 SHUANG ZHANG

Assume that gy is the generator of Z,,, and gy, g2, ..., g, are the generators of
F .
The structure of C7(I', Ry ) is summarized as in the following theorem:

3.1. THEOREM. Assume I' = Z,, x ¥, where 1 <n < 4oo. Then the follow-
ing hold:

(i) The Toeplitz algebra J . contains only one nontrivial closed ideal
which is *-isomorphic to A'.

(i) T 1/ FIo = Opyn, where Oy the Cuntz algebra with non generators.

(i) C;(I', R.) contains a chain of exactly two nontrivial closed ideals which
are stable and of real rank zero,; one is ¥ generated by Qo which is *-iso-
morphic to A, and the other is S g, generated by R, which is *-isomorphic to
T+ @ A'; furthermore, g, [ I = 0@

(iv) RR(Fg,) = RR(J ;) =0.

Before proving Theorem 3.1 we state the following immediate corollary.

3.2. COROLLARY. Assume that I' is as in Theorem 3.1. Then the following
short sequences are exact:

0—Fp,—C/(I,Ry)—C;I'—0,
0—SFy—T —0pyn—0,

0—SF—Ir, —0,n @ A —0.
We now turn to the proof of Theorem 3.1.

3.3. LeMMA. Let Qg be the projection onto the subspace spanned by
JerSz0) ...,];nofl and P, be the projection onto the subspace I*(I'y(gi)U
Fy(g2)U. UT,(gn)), where 1 < n < 4oc0. Then

() Po=3 T; Ty, Qo€ T4, Ry = P+ 300" U(gh) PU(gh) + Q.

(ii) I, is generated by {Tgégf 0<i<ny—1,1<j<n}U{Ty} and

(iii) the closed ideal % of I . generated by Qy is *-isomorphic to A .

Proo¥. (i) First, Ty Ty, = Ry, is a projection in 7, for any 1 <k <n.
Hence P, =) ;_ Ry, € 7. Clearly, R, — P, = Rg0 + P(e), where P(e) is
the one dimensional projection onto the subspace spanned by f, (R, and
P(e) may not in 7 ;). It is easily seen that

Iy = (Ui 'y (gr) U1 (go) U{e}
= (Up_ T4 (g)) U (U 'gh Uiy T (gx)) U {e, 80,85 -85 -

Then Ry = P, + 3" U(gh)*P,U(g}) + Qo. It follows that Qp € 7 ,. The
conclusion (ii) follows from Proposition 2.5 and (iii) is obvious.
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3.4. Proor of Theorem 3.1. (i) has been proved in Lemma 3.3 (ii).
(i1) For any X € 7, let X denote the image of X in the quotient algebra
7 +/Fo. Since J , is generated by the following set

{TgﬁgJ:OSkSno—l, 1 <j<n}U{T,},
of course J , /.# is generated by the set
{ngg,ZOSkSno—l, lgjgn}u{fgo},

We further claim, for the special case I'=Z,, * #, only, that I /4 is
generated by the following set of ngn isometries:

{Tgf)gl:OSkSno—l, 1 <j<n}

In fact, one has

ho—

Z Tg‘g/ Tg‘( &
k=0 j=
no— 1 n
- T Tg*k |nggk0-|gl
k=0 j=1
=T§0(R+ Qo)

the last equality is due to the following:

no—1 n n—1 n
Ry — Q= /; Z Ty, Tete, = ; zl: Tyory Tk ig)
—0 = 0 =

note here g() = g"o 1 . Thus, T* ( + — Qo) is in the *-algebra generated by
{Tgs :0<k<m—1,1<j<n).

It follows that Tgo is in the *-algebra generated by {Tgﬁgr :0<k<ny—-1,
1 <j < n}. Therefore, 7, /.# is generated by

T OSkSnO—LlSanv
08

and hence, is *-isomorphic to Oy, ([17]).

(iii) Clearly, the closed ideal # of C;(I",Ry) generated by Qq is stably
isomorphic to #,. Thus, .# = #". The closed ideal #, generated by £, is
stably isomorphic to 7 (i.e., Fg, ® A = T . @ K. Since T 4/ F¢ = Opyp,
one can show that #g, /¥ = O,, ® A by using exactly the same argument
as in the proof of [48, Lemma 3.3]. Furthermore, again by exactly the same
arguments as in the proof of [47, 3.5 and 3.7], one can show that
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SR, 2 IR, QA . It is clear that £, and .# are the only two nontrivial
closed ideals of C;(I', Ry).
(iv) Using a general lifting result ([7,3.14] and [45,2.4]), we conclude that

RR(7 ;) =0 and RR(#g,) =0,
based on the fact RR(0,,,) = 0 ([44]).

4. The other cases.

In this section we will investigate, by using a different technique, the struc-
ture of C(I',R;) for the remaining cases, i.e., I" is any of the following
groups

F ooy Lng * F ooy, Ly Ly %)% Fpy (Lny % Ly % ...) % F
N —— —— | —
m m

where 2 <m < 4+ooand 1 <n < +o0.

4.1. THEOREM. Assume that I' = F o, or Lyy ¥ F o, OF (L, ¥ Ly, % ...) * F p,
| S —

m
or (Zn, 2y, % ...) x F o, where m > 2 but 1 < n < +o0 is arbitrary. Then
| —
m

(1) 7, is a purely infinite simple C*-algebra (and hence RR(J ) =0), and

(i) C}(I',Ry) contains only one nontrivial closed ideal .# g, which is gener-
ated by R, and *-isomorphic to T . @ A" (and hence, is a stable, purely in-
finite, simple C*-algebra).

4.2. COROLLARY. Assume that I' is as in Theorem 4.1. Then the *-iso-
morphism g =9 . ® A induces a short sequence:

Two reduced words h,h, € I' are said to be comparable, if either
hy € I'(hy), denoted by h; < hy, or hy € I'(h;), denoted by hy < Ay (cf.
[47,4.1]). If neither h; < hy nor h; < hy, we say that A, and A, are incompar-
able. Obviously, h; and h; are incomparable if and only if I'(h;) N I'(hy) = 0.

To prove Theorem 4.1, we first prove two key lemmas.

4.3. LEMMA. Assume that I is as in the statement of Theorem 4.1. If hy, h;,
..., hy are distinct reduced words in I'y, and ki, kj, ...,k are distinct reduced
words in I'\ I'y, then there exists a reduced word h € I';. satisfying the fol-
lowing conditions:

(i) hih, hzh, e, hyh € r,,

Gi) kihkoh, .. kphe '\ Ty,

(iii) hyh, hoh, ..., hyh are mutually incomparable, and
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(iv) all h,hh, hsh, ... hyh end with a geﬁerator of infinite order.

PROOF. Case 1. I' = (Z,, xZp, % ...) * F p, OF (L, % Ly, % ...) ¥ F 5.
N— S———

m m
Assume that g; is of infinite order, g, and g3 are any two distinct generators
of finite order. If ny € N is chosen to be large enough, all 4(g2g3)" g1,
hy(g283)"g1, ..., and hy(g283)™g1 are in I'y and end with g, and all
ki(2283)"g1, k2(g283)"g1, ..., and k. (g2g3)" g1 are still in "\ I, since each
k; contains at least one factor of the form g;! for some generator g; of in-
finite order that cannot be canceled with (g,g3)™g; for any ny.

We will further find a reduced word /4’ in I'y such that & := (g2g3)"g 1/ is
an irreducible product satisfying all the conditions (i), (ii), (ii1) and (iv). Here
we notice that h;(g2g3)" g1, ha(g2g3)"g1l, ..., hw(g2g3)™g1h remain in 'y
and k) (g2g3)"g1H, kahy(g283) g1k, ..., kw(g2g3)™g1H remain in I'\ I, for
any irreducible product of the form (g.g3)™ g1/

The lemma is trivial in case n' = 1, since h:= (g,g3)"g) is as wanted.
Consider the case n’ =2 (we will need the arguments later for the general
situation). If hi(g2g3)™g1 and hy(gg3) g1 are incomparable, set
h:= (g2g3)™g1, as wanted. If hj(g2g3)™g1 is comparable with h;(g.g3)"g1,
then

either /1(g2g3)"g1 < h2(g283)"g1  or  hy(g283)"g1 < hi(g283)"g1-

We need only to consider one case, say h(g223)"g1 < h2(g283)" g1, since a
symmetric argument applies to the other. Write the following irreducible
product:

hi(2283)"81 = ha(2283)" 2187 g2 -8} (8283)" 81,

where g, ,...,g; are some generators of I'. Let g; be a generator of I" such
that g; # g;,, then h1(g283)"g12:¢1 and h2(g2g3)"g1gig1 are incomparable. Set
h:= (g223)™g18ig1, as desired. In any case, for 4, and h, we can choose a
reduced word & € I', that ends with g, and satisfies all the conditions (i), (ii),
(iii) and (iv).

We now consider the general situation by induction on #’ for each fixed n”.
Applying the above arguments for the case n' =2 to h,(g2g3)™g1 and
hi(g2g3)" g1, one gets a reduced word h] such that h(g.g3)™gi#| and
hw(g2g3)™g1h) are incomparable, and #| ends with g;. Applying the same
argument to h,(g2g3)"g1h) and hy(g2g3)" g1k}, one gets a reduced word &,
such that 4 ends with gy, and hy(g2g3)" g1k} h; and ha(g2g3) g1k K, are in-
comparable. Furthermore,

hy(g283)" g1k Hy and  hy(g283)" g1k hy
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remain incomparable, since the product (g,g3)™ g1/} /), is irreducible. Repeat
this process #' — 1 times, one gets an irreducible product kg := hih)..h),_,
such that Ay ends with gy, and h,(g2g3)" g1k is incomparable with each of

hi(g2g3)"g1hy, ha(g283)" g1y, s hw—1(8283)"g1hg.

By the inductive assumption, there exists a reduced word %y such that A
ends with g;, and

hi(g283)"g1hoho, ha(g283)"g1hoho, ... hw-1(g283)" g1hho

are mutually incomparable. Since (g.g3)"gihgho is  irreducible,
hw(2283)"g1hyho remains incomparable with each h;(g.g3)"gihgho for
1 <i<n —1. Set h:=(g2g1)"gihyho. Then h satisfies all the conditions (i),
(i1), (iii), and (iv).

Case 2. I' = F o, OT Ly * F .

In this case one can take a generator g of I" with an infinite order such that
g and g~! is not a factor of any h; and k; for 1 <i<n' and 1 <j <n”. Then
hig™ and k;jg™ are irreducible products for any nmp >1, 1 <i<#', and
1 <j < n". Using the same arguments as in the above case 1 (just replace
2283 by g everywhere), one can find a reduced word 4 € I', such that
h = g™} satisfies all the conditions (i), (ii), (iii), and (iv).

4.4. LEMMA. Assume that I' is as in the statement of Theorem 4.1. If
X = ijzl aka(/l)Tk(jZ)"'Tk(jm,) € 9’+, where {k(]l) 1 Sj <m, 1 < 1< mj}
is a subset of I' and Tyj1) Ti2)--- Tk(m,) # 0 for 1 <j < m, then for any € >0
there exists a projection Q € J  satisfying that following conditions:

) |1 Xl = [|X]| — e

(il) XQX* generates a finite dimensional *-subalgebra of X7 . X*.

PrOOF. Since the proof is almost exactly the same as the one for [47,5.1],
we only sketch the main ideas as follows and leave the details to the reader.

To get such a projection Q, we start with a vector £ = Z;":"l Bifn, where
h; € I'; such that

€l <1 and X)) > [[X]| —e
Observe that Tk(jl)Tk(jZ)"'Tk(]'m,)(ﬁl,) # 0 if and only if Tk(jl)--~Tk(jm,)(fl1,) #0
for 1 < I < m;, again if and only if k(jl) " ...k(jm;) ""h; € 'y for 1 <1< m;. If

Tk(jl)Tk(jZ)---Tk(jm,)(ﬁl,) 7& 0, then Tk(jl)Tk(jZ)-'-Tk(/m,)(ﬁt,) =fk,"h,, where kj de-
notes the reduced word obtained by simplifying the product
k(jm;)..k(j2)k(j1). Write
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X© = (X b,

kT 1

Then

IXOIF =>"0" i),
,

krh

where the sum Zk 1y, 18 indexed by all different resulting reduced words from
the products ki 'h; for which T, k(1) Tk(,z) TG (f,) # 0 (ie., all those pro-
ducts ki hy satlsfymg ki'hy = k;'h; give only one term which is indexed by
1h) and the sum Z, aj,ﬁ,, is indexed by pairs (i,j;) such that
k,'h —kj“h,-.
Apply Lemma 4.3 to the following set

Woi={hi:1 < i <mo} U (U (kG ™" o k(my) s 1 <1< my}).

Some elements of #7y are in I', and some are not. We get a reduced word
h € I'y satisfying the following conditions:

(a) {hih:1<i<my}C I, and any two elements in this set are in-
comparable,

(b) k()" ..k(jm;)""hh € T, if and only k(jl)~"..k(jm;)"h; € Ty,

(c) all elements in {h,hh, haoh, ..., hy,,h} end with the same generator g; of
infinite order, and

(d) all elements in {kj“]h,-h 1 <i<my,1 <j<m}NI, are mutually in-

comparable.

Set & = 3" Bifun; then [|€']] = [|€]|. Observe that k;'h; = k;'h;, if and
only if k; 'hh = k;j 'h;, h. Then the above condition (b) warrants

IX(EDI = 1X Il

By the condition (a) above one sees that Ru s, Rih, ---, Ry, n are mutually or-
thogonal projections in 7 ,, and furthermore, all these projections are
equivalent to R,, by the condition (c) above, and in turn, equivalent to R,. It
is obvious that R, is a subprojection of the initial projection of
Tk(il)Tk(jZ)"-Tk(jm,) whenever Tk(jl)Tk(jZ ~~~Tk(}'m,)(ﬁ1.) 7é 0. Set

O=Ryh DO Ry, @ ... ® Ry, 1

’"O

Then Q € 7, satisfies the two conditions (i) and (ii) required. In fact,
1XQll > IX () = 1X]| — €,

and the condition (d) above implies that XQX* is in a finite dimensional *-
subalgebra of X7 , X*. For more details the reader is referred.to the proof
of [47,5.1].



98 SHUANG ZHANG

4.5. PROOF OF THEOREM 4.1. (i) To show 7, := R, C/(I,R{)R; is a
purely infinite simple C*-algebra, we prove by definition [16] that the norm
closure of 47 . A contains a projection equivalent to R, for each nonzero
positive element 4 € .. We use the same argument as in the proof of
[47,5.2]; here is a sketch of the main ideas.

Without loss of generality, we assume that || 4|| = 1. Let € € (0,1). By the
construction of J , there exists an element X = Z;”: 1 24 Ty Ti) -+ Thmy)
such that

€
A-X||<=.
14— x| <5
By Lemma 4.4 there exists projection Q € 7 , satisfying:
(i) [1XQll = [|X]| - €/3; and
(i) XQX* generates a finite dimensional C*-subalgebra of the hereditary
C*-subalgebra (X7, X*)”. Now the following estimates are in order:

[XQX" — AQA™|| < ||(X — A)QX7|| + |[4Q(X™ — A7) <e.

Take the largest eigenvalue p of XQX™* with the corresponding spectral pro-
jection P € .. Then
25

xox* x) -5’ d
p=1x0x°| > (IX-5) > 32, an

|uP' — PAQA*P'|| = |PXQX*P — PAQA*P|| < e.
It follows that

1P -Lpagap)<£<3%
7 w25

Then P’AQA*P' is an invertible element in P'7 | P, Set
W= (P AQA"P) (404" ).

Then W € 7, and WW* = P’ It follows that W*W is a projection in the
norm closure of 47 | A* which equivalent to P’. By the construction of Q
one sees that R, is equivalent to a subprojection of P'.

(i) We now show that £ _is *-isomorphic to 7, ® A ". Clearly, #g, is
generated by J ., and thus S, @ ¥ =7, ® A by [6,2.8]. Since 7, is a
purely infinite, simple C*-algebra, the stabilization I, ® A" is also a purely
infinite, simple C*-algebra. Thus, £, is a purely infinite simple C*-algebra.
Observe that fx, is a non-unital separable C*-algebra. Then .#z, must be
stable by our result in [44], asserting that a o-unital, purely infinite, simple
C*-algebra is either unital or stable. Therefore, Fr, @7 . ® A

Now Ci(I',Ry)/#r, = C;I" which is a simple C*-algebra by a result in
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[33]. We conclude that .#, is the only nontrivial closed ideal of C!(I", R, ).
We conclude this note with the following problem:

4.6. PROBLEM. Calculate Ky, K, and Ext of 7 , in case

b

P=F o, Lg* F oo, (Lny %Ly %)% Fyy (Lpy %2y % ...) ¥ F o
| S ————

m m

where2 <m < +ooand 1 < n < +o0.
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11.

12.

13.
14.
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16.
17.

18.

19.
20.
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