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SOME INEQUALITIES ARISING FROM
VECTOR-VALUED DIRAC DELTAS

M. TRINIDAD MENARGUEZ and JOSE LUIS TORREA

Abstract.

A new vector-valued Dirac deltas technique is developed in order to obtain discrete inequalities.
One of them is the following:
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1. Introduction.

Development of vector-valued Harmonic Analysis has had important appli-
cations to classical operators in the last few years, see [GC, R de F], [R de F,
R, T], [R de F].

The vector-valued Harmonic Analysis philosophy is that, although the
proofs in the vector-valued case are, in general, not essentially different from
the classical ones, results that can be obtained as applications of this vector-
valued analysis are relevant. Besides this, there are results which, up to now,
may only be proved by this technique, see [R de F].

The purpose of this paper is to develop this philosophy in order to obtain
discrete inequalities.

One of the first inequalities (in fact equality) of this type is due to Loomis,
[L]; it states that for x;,x;,---,xy € Rand A > 0,

fren. -2}

where |E| means Lebesgue’s measure of E.
This estimate being exact, rather than an inequality, suggests that the re-
sult has been obtained through an algebraic proof, as it is in fact the case.
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Later on, Guzman, [G, Theorem 4.1.1 on p.75 ], using different techniques
proved that the weak type (1, 1) property for maximal convolution operators
is equivalent to the weak type (1, 1) property for these operators acting over
finites sums of Dirac deltas.

In the last years, Guzman’s Theorem was extended to more general situa-
tions, and it was used to obtain properties for maximal operators, as it can
be seen in [Ca], [T,V] and [M,S].

Our method here is to develop the vector-valued version of Guzman’s
Theorem (see Theorem 2.3 in the second section), and to apply it to different
vector-valued maximal operators in order to obtain classical type discrete
inequalities. In Section 3 the following results are proven:

(1.1) There exists a constant C > 0 such that for all N € N

TR

=1 jeZ
holds for all sequences {ar} and {bfc} withay € T= [—m, 7, bfc €C,jeZand
k=1,---,N (see Theorem (3.6)).
(1) If &(x) is a bounded integrable function in R" such that
= [P(x)dx = 0, satisfying conditions (3.13) and (3.14), there are some
constants Cy and C, such that
1/2
G
<
) >A < 3 N

(SR

o ([ (So-e)?) >

for all sequences {ak}f=1 with a; € R" (see Theorem (3.22)). .
(1.3) There is a constant C > 0 such that for all sequences {ax} and {&.}
with ax € R", b} € R, and 1 < q < oo, we have

o (S]] 5550

(see Remark (3.28)). B,(ax) represents as usual the ball centered in a; with
radius r.
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2. Technical Results.

Let R" be endowed with Lebesgue’s measure. Given a Banach space B we
shall call a vector-valued Dirac delta any expression of the type

f = b, b€ B, aeR"

where b is a vector of B, a is a point of R” and 4, is the standard Dirac delta
associated with a.

Let B and F be Banach spaces and T a linear operator acting on strongly
measurable functions f : R" — B, with compact support , such that

@) 1709 = [ Ken o).

Here, K is a strongly measurable function, K : R" x R" — #(B, F), and
Z(B, F) is the Banach space of bounded linear operators from B to F. For
the operators that we are going to consider, the integral in (2.1) is always
well defined.

If f=b6,, beB, aecR" isa vector-valued Dirac delta, we shall
define the action of T over f as

(22) 77 (x) = T(b@)(x) = K(x,0)()
For brevity, we shall write Tf(x) = [z K(x,y)f(y)dy and T(bé,)(x) =
K(x,a)b.

We denote by Liz(R"), p < oo, the Bochner-Lebesgue space consisting of
all B-valued (strongly) measurable functions f defined in R” such that

Wl = ([, |lf(x)||’édX)é< .

Similarly, the weak — L%(R") space is formed by all B-valued functions f
such that

supf]{x € R": |f(x)[|5 > 1} < oo.
t>0

We state now our main technical result.

THEOREM 2.3. Let R" be given, with the Lebesgue measure. Let B and F be
Banach spaces and let {T;}; be a family of linear operators as above, with
kernels K;:R" x R" — % (B,F), such that for every x € R" the function
1K (x, )| ¢(8,F) is locally integrable, and such that the operator

= [ K0y,
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is well defined for all B-valued strongly measurable bounded functions f with
compact support. Let T* be the maximal operator associated,

T'f(x) = sup T ()]l -

We assume that the kernels K; satisfy the following condition: for each j,
given £ > 0, there exists § > 0 such that for all y1,y, € R" with |y; — y2| < 6

(2.4) / 1K (5, 1) = Ky (6,92 Lyl < e

Then the following statements are equivalent:

(a) The operator T* is bounded from LL(R") into weak-L}(R").

(b) There exists a constant C >0 such that for all sequences {a;}\ and
{b}Y witha, € R", by € B, N € N and A > 0,

C N
X : sup <Y lblls:
J F k=1

Proor. We shall first prove (b) = (a): In order to prove that the maximal
operator T* is of weak type (1,1) it is enough to show that the truncated
maximal operators

N
I<j(xa ak)bk
k=1

Ti f(x) = sup I Tif ()|l

are uniformly of weak type (1,1). Moreover, by density of B-valued simple
functions in LL(R"), we only need to prove the inequality

N N
N C
{x: TM( E ka1k>(x) > )\} < By E “kaIk“LL
k=1 k=1

with C independent of M where by € B and I, are disjoint intervals in R".
Given € > 0 and f(x) = 3, bkxy,(x), we may suppose that the diameter of
each I is small enough so that for y;,y, € Iy the condition (2.4) is satisfied
for this € and for all K;,1 <j < M.
On the other hand, if we consider g = >, bx|lk|6,,, Where a; € Iy, by (b)
we have, for 0 < a < A,

[x s T3/ () > A} < {2 Tig(x) > A= o]+ [{x: Ty — )(x) > o}

_——Z”bk||5|1k|+|{x Ty(f - g)(x) > a}.

(2.5)

Then, by using Chebychev’s inequality, the definition of T; and Minkowski’s
inequality, we have
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o Ty -2 )<>>a}|<‘/{ o T~ D
x:T g)(x)>a

1/
<= I T;(f — g)(x)l pdx
{e T} (f~g) Z d

(x)>a} =

. J &
== i(x,y) — Kj(x, ax)) bidy|| pdx
@ STy (r-g)w>a) S Z g

1 M
<l / / 1K) (x, ) — Ky (x, @) bell pdxdy
I T;,(f-g)(x)>a}

jlk]

Q

1 M
= EZ /I - (I(Kj(x,y) — Kj(x, @)l ¢ o(8,F) | b || dxdy
=1 Yk

j=1k

<

M N
) /, ellbell .
T k

Jj=1 k=1

Q=

Note that we have used (2.4) in the last inequality.
Now, we observe that

D9 ) SANIEI

j—lkl

goes to zero when € — 0. Therefore, in order to prove (a) it is enough to take
the limit when o — 0. This finishes the proof of (b) = (a).
The proof of (a) = (b) is similar and we shall sketch it.
Given the linear combination ), b6, , we consider a family of disjoint
cubes O, such that a; € O and if y;,y2 € Ok, then the property (2.4) is sa-
tisfied for 1 <j < M. Now, we define the simple function

ZIQMXQ*

and then
N N
X: sup ZI(]‘(X, ag)bk|| > )\} = {x: Ty (Z bkéak> (x) > )\}
1M || k=1 F k=1

< |{x: Tyh(x) > X —a}| +

{x: Ty (kf:bkéak - h) (x) > a} .
=1
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Now, observing that

N
el = 3" 18ells,
k=1

the rest of the proof follows the same lines as (b) = (a).

3. Applications.

A. Carleson’s maximal operator
Let S* be Carleson’s maximal operator of the Fourier partial sums

pv. [ 00|, xeT= [l

$*f(x) = sup
jez X—=)y

It is well known, see [C],[H], that this operator is bounded from L(T) into
LF(T), 1 < p < o0, and it is not of weak type (1,1).

It is clear that S* maps LP(T) into LP(T), 1 < p < oo, if and only if for all
finite subsets J of Z the operators

. e
sy =suplpv. [ Zofodb],  xeT=lom
jeJ xX—=y
are uniformly bounded from L7(T) into L(T).
On the other hand, given a finite subset J of Z if we consider the £>°(J)-
valued operator

iy
(1) 1) = { o [ s}
TX=Y jeJ
we have || 7 (x)||po sy = S3f(x); then, as a direct consequence of Carleson-
Hunt Theorem, 7; is bounded from L7(T) into L’;m( 7 (M, 1 < p < oo, with
operator norm independent of J.
The transpose operators defined by

(3.2) Us({g}jen)(x) = D_pv.

jeJ

'(y)dy

are uniformly bounded from L‘tf,( J)(T) into L7(T), 1 <p<oo, see [R de
F,R,T, II1.2].

Given a finite subset J of Z, the operators 7, and U; can be handled as
special cases of vector valued Calderon-Zygmund operators with variable
kernels; the kernel of T is
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(33) K= {75} ez e =e)
je

while the kernel of Uj is

ijx
(3.4) K = {55} ez@w.o=e0),
- jeJ
It is clear that, for |x — y| > 2|x — z|
(3.5) K5 (x, ) = Ky (2, )|y = 1K5 (3, X) = K5 (9, 2) ]
1 —
_ 1 ‘ <c |x z|2)
X—y z-=Y |x — y]

Then, the kernels K; satisfy the standard estimates of Calderon-Zygmund
kernels only in the first variable, while the K satisfy these estimates in the
second variable. By using these estimates and the Carleson-Hunt Theorem,
the general theory of vector valued Calderon-Zygmund operators can be
applied to these operators; in particular it can be proved that the operators
U, are uniformly bounded from Lj, (T) into weak-L'(T) and from
Ly (T, w) into weak-L!(T,w) for every weight w € 4;, see [R de F,R,T,
I11.2]. In fact, using the Rubio de Francia’s Extrapolation Theorem for A,-
weights, see [GC,R de F, p.448] it can be proved that Carleson’s Theorem is

equivalent to the inequality
>A})

({xGT
/|g, Yw(x)dx, w € 41,

i.e., the operators U; are uniformly bounded from Le' ) (T,w) into weak-
L'( ,w) for every weight w € 4.
We have the following

> pv. / e ~&()dy

Jje€Z

THEOREM 3.6. There exists a constant C >0 such that for all sequences
{ax} and {b,}, withar € T, b, € C,j€Zandk =1---N, we have

el ol

=1 jeZ
Proor. First of all it is clear that in order to prove the theorem it is en-
ough to prove that for any finite subset J of Z we have
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e s

=1 jeJ
with the constant C independent of J.
Now we observe that the last inequality is equivalent to the following in-

equality
Ch 5
x > Al < —Z 6xllr )
A S

with @y € T, b = {b} ey, bk € £1(J), k =1,---, N and K as in (3.4).
By using Fatou’s lemma, in order to prove (3.7) it is enough to prove that
for any v > 0, there exists a constant C, independent of v, such that the in-

equality
CX -
x: Al <D IBkllag,
=

holds for {a;}" ¢ T and {B}Y c ¢!(J). In other words, we need to prove a
uniform estimate over finite sets J C Z and v > 0, for the operators

=1 jEJ

N -
: Z K;(x, ar) by

k=1

(3.7)

N

Z K3 (x, ak)BkX{lx—akl>7} ()| >
k=1

elx

i(v)dy

x—y|>y Y — x

Us ({81} es)(x) = - /‘

acting over Dirac’s deltas.

In order to do this, we need to show that the operators Uy, satisfy the
conditions in Theorem 2.3, that is, U;, are uniformly bounded from
Lj,,(T) into weak-L'(T) and their kernels

ijx

y—x

Ky, () = { X{IX—yI>'r}}.

JES Y

verify condition (2.4). The following lemma shows condition (2.4) for Kj .:

LemMma 3.8. For each pair (J,7), given € > 0, there exists § > 0 such that for
all y1, y» with |y; — 3| <6,

/T ||K;,7(an’1) - K;,y(xa.YZ)“y([lu)’c)dx <’ €.

ProOF. Let € >0 be fixed, and let y;, y, be such that y; <y, and
y2 —y1 <. As L(£1(J),C) =2 £*(J), we have
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(39) /T 1KG (5, 91) = K (5,22l 0y 00
=/sup
T jeJ

1 1
- TV — xX“x_y'|>7}(x’yl) _y2 _ xX{IX—,Vz|>7}(X,J’2)

y2= 1 Y2+ 1
_ / BN / BN /
n-y 2 — x| ity Iy — x| A

where A represents the complementary set of (y; — v,y2 + 7).
As |y1 — x| and |y, — x| are bigger than v in (y; +7v,y2+7)UA and
(y1 = v,¥2 — ) U 4, respectively, we finally have

elx el
— X —
Vi ___xX{[x y||>'y}( vyl) V2 —x

dx

X{[x—yal>7} (X, ¥2)

dx

1 1

yi—Xx y2—x

dx,

2 ly2 = »|
39)  <Zlp- +/———————~—dx§C “ .
B9 =5brmnlt |, s Gl

Then taking 6 = min(Ci7 ,7) the lemma is proven.

Now, we shall see that the operators Uy, are uniformly bounded from
L), o (T) into weak-L!(T). We consider the ¢*(J)-valued operators

T () = { [ xefyyﬂy)dy} ,

Jjedy

and let M be the Hardy-Littlewood maximal operator. It is clear that, by
using (3.5) and Jensen inequality, we have, for 1 < g < oo,

“TJ,xf(x)Hew(J) - M(“TJf”zw(J))(x)

1

<3 T ey = 1T

1
<3 [ T 0 = T @l

5
e e )
- f(v)dy

_1 /
T Jlz-x<3
1
.1 / T3 X3,09) (@)l w2
v Jlz-x<3

dz
£2(J)
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1 / / 1
< -
Y Jz=x|<3 J |x—yl>y X —
[ I ew) @z )
¥ Jemniss (%) o(J)

Now, by Carleson’s Theorem and (3.5) again we finally have that (see
[R.de F, G-C, on p. 204] for a similar argument)

(3.10) “Tj.xf(x)uewu) < ClM(”TJf||£°°(J))(x) + M f (x),
where M,f (x) = (M|f|?)(x))s.

The last inequality combined with Carleson’s Theorem and the fact that
Hardy-Littlewood maximal operator is bounded from L7(T) into L7(T), with
1 < p < oo, gives the uniform boundedness of the operators 7., from L/(T)
into L., (T), with 1 < p < co.

By duality we obtain that the transpose operators

(v)ldydz

yx
Usy({8j}jen)( /| (v)dy

ie7 Jlx-y>r Y~ x&

are uniformly bounded from Lj, 5(T) into LP(T), with 1 < p < co. The ker-
nels K of Uy, satisfy, for any y,z€ T

/ 1K (%,9) = K o (6, 2) e 0y
[x=y|>2|y—z|

/Ix—yl>2ly—2I X
<.
[x=y|>2ly-2|
1 1
P — —dx
+/Ix-y!>2ly -7 |x — y| +/Ix—y|>2ly ZI |x~z|

[x=y>7>|x—z| [x=z|>y>|x—

SC+—1-/ dx+1/ dx < C.
Y Jix—z|<y Y Jx—yl<y

—y|>'y}(x,y) - (X,Z) dx

1 1

X—y x-z

dx
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Then the kernels Kj | of operators Uy, satisfy a uniform Hormander type
condition in the second variable. This fact tells us that operators Uj, are
uniformly bounded from L}, ( J)(T) into weak-L!(T) (see [ R.de F,R,T, IIL.2)).
Therefore we can apply Theorem 2.3 and the proof of Theorem 3.6 is fin-
ished.

REMARK 3.11. We believe that the inequality (3.10) is interesting by itself
when working with Carleson operator; in fact, taking the supremum on -~y
and J we can observe that, for 1 < g < oo the following inequality is proven

/I 1)y

x—y|>y X — Y

sup
nezy

< CIM(S*f)(x) + CaMf(x).

We may finally observe that Theorem 3.6 can be written in the form of the
following corollary; this indicates in which sense Theorem 3.6 generalizes the
Loomis (in)-equality.

COROLLARY 3.12. Let A(T) be the space of functions f, f : T — C, such that
the  Fourier-series of f converges absolutely, i.e., AM={:T—

C: Ifllgm = 2nz—w lf ()] < 00}. There exists a constant C such that for all
sequences {ax} with ax € T, for all By € A(T), k=1,---,N, and for A > 0 we

have
{x : > )\}
B. %-functions.

Let &(x) be a bounded integrable function on R" such that
&(0) = [ &(x)dx = 0, and let us assume that, for some 0 < § < , it satisfies

N N
Bk(x) C
<= B .
,;ak—x < Ak};ll llacry

(3.13) |6(x)| < Cmin(|x|™", |x| ™), x € R"
and
(3.14) / B(x+ k) — B(x)|dx < Clh®,  heR".

Then, the operators

1
2

910 = 3 12, *f(x)lz)

and
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a5 = ([ e reor )

are bounded in I”(R"), 1 < p < oo, and of weak type (1,1), see [GC,R de F],
V 5. As usual &, denotes the dilation of &: &,(x) = t~"®(%).

Now, we consider the families of Hilbert-valued (¢* and L?((0,00),4))
operators

Tof (x) = {Sy xf(x)}}_y
and
Suf (%) = {®, %S (%) }rep -

The operators Tu (resp. Sy) are bounded from L7(R") into Lf,(R"),
1 <p<oo, and from L'(R") into weak-L},(R"), (resp. from LP(R") into

L’iz(ﬂ)(R”), 1 < p < o0, and from L!(R") into weak-L}‘Z(ﬂ)(R”)). Moreover

(3.15) 9f (x) = sup [|7nf (%)l

and
Af(x) = sup |Suf ()| 2.
MeN

The kernels of the operators Ty are functions Ky(x,y) : C — £2 such that
(3.16) Ky (x, )X = {@y (x — )AL, XeC.

On the other hand, the kernels of Sy are the functions Ly(x,y) : C — L*(%)
such that

Ly(x,p)A = {D:(x — y)’\}te[xli,M]-
These kernels satisfy the lemma:

LemMMA 3.17. For each M, given € > 0, there exists § >0 such that if
1 =2l <6

(3.18) /R" 1 Knt (%, 1) = Km(x,¥2) || ¢ (c 2)dx < €

and

(3.19) J Vb 31) = Lar, 32y < e
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PrROOF. As Z(C,£?) = £2, in order to prove (3.18) we must estimate the

integral
M 3
/(/Z [P (x — y1) — Py(x —y2)|2) dx
=M

But changing variables and using (3.14) we have

/|q>y(x—y1>—%(x—yz>|dx=/m(x—(yl ~ 32)) - By (x)ldx

- (o2 o

/‘qs y2 di(x)ldx<C‘yl yz[,

then, for § sufficiently small we obtain (3.18).
On the other hand, as #(C, L*(%)) = L*(4), we have

[ ) = LGl e

M
- / (/ (@u(x — 1) — Bi(x — )| —) dx
R* \J1/M
L dt :
=/”(// |D:(x — (1 — »2)) — Pu(x) 7) dx
<c(/ /M |@,(x — )—@(x)ﬁﬂalx)%(zlyt)g
B <ol Jym g ' t

1/2 M 4
([ ) (o L=t
|x|>2[y| Ix|>2ly] J1/M t

=I+1.
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In the last expresion, we have written y = y; — y; and we have used Holder’s
inequality for 8 > 0.
If we use the fact that & is bounded, and (3.14), we have:

}
(3.20) I< c( / ” /1 /': B(x - y) - @(x)@dx) i
([ o) - oco]has)

]
Ml a 2
yl dt 3 (a+n)/2
<C . 1 C .
< (/VM zl+a> > < Cumlyl

On the other hand, by (3.13) we have
1

2 2
n<cly™ / =l —-) —45(5)‘ NG LN
Ixi>2lyl J1/M d 4
3
Y 2 n+4 dt
< -3 — ) — 2 —
byl ( ( M>£4'>(x ) = o) 1] dx) t)
l

~C|yr1( (1) )

But [&(x —2) — &(x)| < Clx|™ ™ < e|x| L) 7P2 when |x| > 2
(by (3.13)), and therefore by (3.14) we have

(=) o] (5) =)

J(t) < C
(1) ot

and then

(3.21) I < CulyfF 2.

Combining the inequalities (3.20) and (3.21) we complete the proof of
(3.19) and Lemma (3.17).

This lemma allows us to obtain the following theorem:
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_ THEOREM 3.22. Let ¢(x) be a bounded integrable function in R" such that
D(0) = [B(x)dx = 0, satisfying conditions (3.13) and (3.14). Then, there are
some constants Cy and C, such that

N 172

) <

Jj=—00

oo (N 2dr v C
. 2
x: (/0 (kz:lét(x—ak)> 7) >Ap <N

N

> D

N
Z Dy (x — ar)
k=1

and

for all {ak},l(\;l,ak e R".

PROOF. Since % maps L!(R") into weak-L!(R) then, by (3.14), we have

C
[{xsup [ Taf ()l > A < —Xl-llf”u» A>0.

Therefore, by using Lemma (3.17), we can apply Theorem (2.3) and we get

{x : sup > )\}
M 2

if we choose Ay = 1, k =1,---, N, through the action of Kjs (see (3.16)) and
the monotone convergence theorem, we obtain the first part of the theorem.

The proof of the second part is analogous, using the operator A and the
kernels Lyy.

N
ZKM(X, ax) M
=1

C. U.M.D. Banach lattices and Hardy-Littlewood maximal operator.
In this section X will denote a Banach lattice of measurable functions in a o-
finite measure space (2, dw). As usual, | - | will denote the absolute value in
X: |x| = sup{x, —x}, which, as a function in {2, has the obvious definition:
|x|(w) = |x(w)|. We shall identify L (R"), 1 < p < oo, with a lattice of func-
tions f(¢)(w) = f(t,w), t € R",w € §2, see [ R de F 2].

Given any operator T bounded in L”(R"), non-necessarily linear, we can
define its extension in

XQIP(R) ={Y bipi: bi € X, € (R")}

finite

in the following form

Tf(t,w) =T (,w)(t), fEXRL'(R"), teR" we .



316 M. TRINIDAD MENARGUEZ AND JOSE LUIS TORREA

We shall say that T extends in L% (R") if there exists a constant C such that
HTf”L';((R") < C||Tf||L';{(R")’ fe€X®L(R");

then 7 can be extended to general f € L% (R") by a limit process.
If Re, k=1,---,n, is a Riesz transform, i.e.,

RO =pv. [ candyl ™10 =)y

then it is well known that Ry extends in I, (R") if and only if X € UM.D.
(the class of spaces which have the unconditionality property for martingale
differences), see [Bk], [B] and [R de F 2].

Any U.M.D. space X is reflexive, see [A]; therefore, if X is a U.M.D. lat-
tice of functions, then X satisfies the Fatou’s property, see [L-T], i.e.:

Everytime we have a sequence of functions {x,} C X, such that x,(w) >0
Sfor a.e. w, x,(w) /" x(w) for a.e. w and also sup, ||x,||y < oo, then we have
x € X and ||x||y = limy, ||x4|| y-

It is a simple consequence of Lebesgue’s monotone convergence theorem
for scalar functions that the space L% (R") has the Fatou’s property provided
X has this property.

We consider now the Hardy-Littlewood maximal operator in R™:

/ o

where t,y € R" and B,(t) = {y: [y — t| < r}.
For a U.M.D. Banach lattice X, we shall consider also its X-valued ex-
tension,

Mf(1) = sup—
r>0 I

Mf(1) = sup-—

r>0 "

/ Sy, tyeR"

with | f B (, (y)dy| denoting the absolute value in X; equivalently

Mf(t,w)—sup t,yeR", wef

/ S, w)dy|,

It is well known, see [R de F 2], that if X € U.M.D. then M maps L% (R")
into L% (R"), 1 < p < co. By Fatou’s property this is equivalent to the uni-
form boundedness of the operators

2] s
m e

M_]f(t,W) = sup
reJ
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from L% (R") into L% (R"), 1 < p < oo, for any finite subset J of R. Applying
a vector-valued Calderon-Zygmund technique this is finally equivalent to the
uniform boundedness of the operators M from L} (R") into weak-L} (R"),
see [GC,M,T]. This says that the X (¢°(J))-valued operators

(3.23) T,(f) t)—{ / o dy}

are uniformly bounded from L} (R") into weak- LX([w y(R"), where by

X(£*(J)) we denote the space of sequences {b = {b,} : b, E X,r e J} with
norm

||B||X(£°°(J)) = || sup |b/|l x-
reJ

The operators 7; have kernels Kj(t,y): X — X (£*°(J)) with the action
defined by

(3.24) K;(t,y)(b) = {rl"XB"Y)(I)b} K beX.

LemMA 3.25. For each finite subset J of R, given e > 0, there is a 6 > 0 such
that if |y1 — y2| < 6 then

A" |Ks (8, 1) = KJ(t,yZ)H_y(X'X(goo(J)))dt < €.
ProoF. Since the action of K(¢,y) over X is diagonal we have

1K 031) = Kot 32 et

1
< [
R" reJ

rn

1
XBr()’I)(t) - FXBr(,Vz)(t) dt.

Now, a standard computation shows that we can choose é such that for
|y1 — 2| < 6 the last expresion is less than .
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THEOREM 3.26. Let X be a U.M.D. Banach lattice. Then, there is a constant
C > 0 such that for all sequences {ay} and {by} with ay € R", by € X, we have

CN
{ Z X5,(ay) (Db >A} <5 llbllx-
X k=1

PrOOF. Since the operators T are uniformly bounded from L} (R") into
weak-L} ;) (R"), we have

(3.27) sup

r>0

C
He T3 () xeoy) > AH < X“f“L;?

then by Lemma (3.25) we can apply Theorem (2.3) and we have that there is
a constant C > 0 such that

N C N
t: ZKJ(t,ak)bk Xz 1Bl 5
k=1 X(l’°°(J)) k=1
this is to say
{ zN: 1 Ci
ti||sup| ) —Xga)(Obk||| > )\} << D bkl
red (51" * ¥ o=

Now, as X satisfies Fatou’s Property, we have that

cX
Z XB,ak) ||| > A S'XZ”bk“x-
k=1

The proof is finished by observing that
Z X8,(a) (D)br(w) .

Z XB (ax) bk (UJ

k_

sup
reQ* |y

sup
reQ*t

= sup

REMARK 3.28. For X = /4,1 < g < o0, we get (1.3).
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