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EXPOSED FACES OF THE UNIT BALL IN A
JBW�-TRIPLE 1

C. MARTIN EDWARDS and GOTTFRIED T. RUë TTIMANN

Abstract.

A tripotent in a JBW�-triple A is said to be �-¢nite if it does not majorize an uncountable or-
thogonal subset of tripotents in A. It is shown that every JBW�-triple is weak�-linearly generated
by its set of �-¢nite tripotents.
A JBW�-triple A is said to be �-¢nite if every tripotent in A is �-¢nite. Characterizations of �-

¢niteness of a JBW�-triple are given in terms of the geometry of the unit ball A1 and in terms of
lattice-theoretic properties of the partially ordered set of its tripotents. It is shown that �-¢nite-
ness of A is equivalent to each of the properties that every weak�-closed face of A1 is weak�-
exposed, that A1 has a weak�-exposed point, that A1 has a norm-exposed point, and that A has a
�-¢nite maximal tripotent. These results are applied to W�-algebras, to certain sub-JBW�-triples
of W�-algebras and to spin triples.

1. Introduction.

This paper presents a further investigation into the facial structure of the
unit balls in a Banach space and its dual. In previous papers the authors in-
vestigated the facial structure and identi¢ed certain classes of faces of the
unit balls in GL-spaces and their duals, in JBW-algebras and their preduals,
in GM-spaces and their duals and in JB-algebras and their duals [8], [9].
Many of the techniques developed and used in those papers do not easily
extend to the case where the Banach spaces in question are taken over the
complex ¢eld. Using di¡erent methods, in [10], the authors completed a
study of the facial structure of the unit ball in a JBW�-triple A and its pre-
dual A�. It was shown that every norm-closed face of the unit ball A�;1 of A�
is norm-exposed and that every weak�-closed face of the unit ball A1 of A is
weak�-semi-exposed. Moreover, the facial geometry of the unit balls A1 and
A�;1 is closely related to the algebraic structure of A. In fact, the complete
lattice of norm-closed faces of A�;1 is order isomorphic to the complete lat-
tice u�A�~consisting of the partially ordered set u�A� of tripotents in A with
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a greatest element adjoined, and the complete lattice of weak�-closed faces of
A1 is anti-order isomorphic to u�A�~.
This paper casts some light upon the identi¢cation of those JBW�-triples

which have the property that every weak�-closed face of their unit ball is
weak�-exposed. A tripotent in a JBW�-triple A is said to be �-¢nite if it does
not majorize an uncountable orthogonal subset of u�A�. It is a remarkable
fact that, not only do non-zero �-¢nite tripotents exist in every non-trivial
JBW�-triple, but also the set u��A� of �-¢nite tripotents in A weak�-linearly
generates A. A JBW�-triple is said to be �-¢nite if every tripotent in A is �-
¢nite. It is shown that a JBW�-triple A has the property that every weak�-
closed face of its unit ball A1 is weak�-exposed if and only if it is �-¢nite.
Somewhat surprisingly, it follows that either of these conditions is equivalent
to the condition that A contains a single maximal �-¢nite tripotent, to the
condition that A1 contains a single norm-exposed point, and to the condition
that A1 contains a single weak�-exposed point.
This paper is organized as follows. In ½2 de¢nitions are given, notation is

established, and certain preliminary results are proved. In ½3 the properties
of the set of �-¢nite tripotents in an arbitrary JBW�-triple are studied and in
½4 the main results are proved. In ½5 the results of ½4 are applied to W�-al-
gebras, certain sub-JBW�-triples of a W�-algebra and to other examples of
JBW�-triples. In particular, it is shown that a W�-algebra is �-¢nite as a
JBW�-triple if and only if it is �-¢nite as a W�-algebra, thereby leading to
several new characterizations of �-¢nite W�-algebras.

2. Preliminaries.

A Jordan �-algebra A which is also a complex Banach space such that, for all
elements a and b in A, ka�k � kak, ka � bk � kak kbk and kfa a agk � kak3,
where

fa b cg � a � �b� � c� � �a � b�� � cÿ b� � �a � c�
is the Jordan triple product on A, is said to be a Jordan C�-algebra [30] or
JB�-algebra [31]. A Jordan C�-algebra which is the dual of a Banach space is
said to be a Jordan W�-algebra [6] or a JBW�-algebra [31]. Examples of JB�-
algebras are C�-algebras and examples of JBW�-algebras are W�-algebras in
both cases equipped with the Jordan product

a � b � 1
2 �ab� ba�:

The self-adjoint part Asa of a JB�-algebra A is a JB-algebra and the self-ad-
joint part of a JBW�-algebra is a JBW-algebra [22]. For the properties of C�-
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algebras and W�-algebras the reader is referred to [27], [28] and for the al-
gebraic properties of Jordan algebras to [22], [24], [25], [26].
A complex vector space A equipped with a triple product �a; b; c� 7! fa b cg

from A� A� A to A which is symmetric and linear in the ¢rst and third
variables, conjugate linear in the second variable and satis¢es the identity

�D�a; b�;D�c; d�� � D�fa b cg; d� ÿD�c; fd a bg�
where � ; � denotes the commutator and D is the mapping from A� A to A
de¢ned by

D�a; b�c � fa b cg;
is said to be a Jordan�-triple. A subspace B of a Jordan�-triple A is said to be
a subtriple if fBBBg is contained in B and is said to be an inner ideal if
fBABg is contained in B. When A is also a Banach space such that D is
continuous from A� A to the Banach space B�A� of bounded linear opera-
tors on A, and, for each element a in A, D�a; a� is hermitian with non-nega-
tive spectrum and satis¢es

kD�a; a�k � kak2;
then A is said to be a JB�-triple. A JB�-triple which is the dual of a Banach
space is called a JBW�-triple. Examples of JB�-triples are JB�-algebras and
examples of JBW�-triples are JBW�-algebras both with respect to the triple
product above. The second dual A�� of a JB�-triple A is a JBW�-triple.
An element u in a JBW�-triple A is said to be a tripotent if fu u ug is equal

to u. The set of tripotents in A is denoted by u�A�. Notice that the weak�-
closure of the linear hull of u�A� coincides with A. For each tripotent u in
the JBW�-triple A, the weak�-continuous conjugate linear operator Q�u� and
the weak�-continuous linear operators Pj�u�, j � 0; 1; 2, are de¢ned, for each
element a in A, by

Q�u�a � fu a ug; P2�u� � Q�u�2;
P1�u� � 2�D�u; u� ÿQ�u�2�; P0�u� � I ÿ 2D�u; u� �Q�u�2:

The linear operators Pj�u�, j � 0; 1; 2, are projections onto the eigenspaces
Aj�u� of D�u; u� corresponding to eigenvalues j=2 and

A � A0�u� � A1�u� � A2�u�
is the Peirce decomposition of A relative to u. For i; j; k � 0; 1; 2, Ai�u� is a
weak�-closed subtriple of A such that fAi�u�Aj�u�Ak�u�g � Aiÿj�k�u� when
i ÿ j � k � 0; 1, or 2, and f0g otherwise, and

fA2�u�A0�u�Ag � fA0�u�A2�u�Ag � f0g:
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Notice that A0�u� and A2�u� are inner ideals in A. With respect to the sepa-
rately weak�-continuous product �a; b� 7! a � b � fa u bg and the norm-pre-
serving involution a 7! ay � fu a ug, A2�u� is a JBW�-algebra with unit u. For
details the reader is referred to [1], [3], [4], [5], [7], [10], [12], [13], [14], [15],
[16], [17], [19], [20], [23].
A pair u; v of elements in u�A� is said to be orthogonal, denoted by u ? v,

if v is contained in A0�u�. It can be seen that ? is a symmetric relation on
u�A�. A subset M in u�A� is said to be orthogonal if, for every pair u, v of
tripotents in M with u 6� v, u ? v. For two elements u and v in u�A�, write
u � v if fu v ug � u or, equivalently, if vÿ u is a tripotent orthogonal to u.
Let A be a JBW�-algebra and let p�A� be the collection of the self-adjoint

idempotents, the projections, in A. Clearly, p�A� is a subset of u�A�. More-
over, for elements p, q in p�A�, p � q if and only if p � q � p and p ? q if and
only if p � q � 0.
Basic properties of the two binary relations introduced above are sum-

marized below. In the sequel we shall make frequent use of these.

Theorem 2.1. Let A be a JBW�-triple, let u�A� be the collection of tripo-
tents in A and let ? and � be the binary relations de¢ned above. Then:
(i) The relation � is a partial ordering on u�A� and 0 is the least element in

u�A�.
(ii) For an element u in u�A�, u ? u if and only if u is equal to 0.
(iii) If u and v are elements in u�A� such that u ? v, then u _ v exists and is

equal to u� v.
(iv) If u and v are elements in u�A� such that u � v, then there exists a un-

ique element w in u�A� such that w ? u and u _ w is equal to v.
v) If u, v and w are elements in u�A� such that u � v and v ? w then u ? w.
(vi) Let �u
�
2ÿ be a family of elements in u�A�. Then V
2ÿ u
 exists.
(vii) Let �u
�
2ÿ be an increasing net in u�A�. Then W
2ÿ u
 exists.
(viii) Let �u
�
2ÿ be a family of elements of u�A� such that

W

2ÿ u
 exists

and let u be an element of u�A�. If, for all 
 in ÿ, u
 ? u then
W

2ÿ u
 ? u.

Proof. See [4] and [23].

It is easily seen that u�A� has a greatest element if and only if A coincides
with f0g. It is an immediate consequence of Theorem 1 that the partially
ordered set u�A� contains maximal elements and that every tripotent in A is
majorized by a maximal element.

Corollary 2.2. Let A be a JBW�-triple, let u be a tripotent in A and let
�0; u� be the order interval fv 2 u�A� : 0 � v � ug. Then, with respect to the
restricted ordering, �0; u� forms a complete lattice with least element 0 and
greatest element u. The supremum and in¢mum of any non-empty subset of

290 c. martin edwards and gottfried t. ru« ttimann



{orders}ms/98711/edwards.3d -17.11.00 - 13:58

�0; u� act as supremum and in¢mum, respectively, in the partially ordered set
u�A�.
Proof. This follows directly from Theorem 2.1.

Theorem 2.3. Let A be a JBW�-triple and let u�A� be the partially ordered
set of tripotents in A. Let M be an orthogonal subset of u�A� and let Mf be the
collection of ¢nite subsets of M upward directed by set-inclusion. Then the su-
premum

W
u2M u of M exists in u�A� and is equal to the weak�-limit of the

weak�-convergent increasing net �Wu2N u�N2Mf .

Proof. See [4] or [23].

Let u�A�~be the union of the set u�A� and the one point set fu1g and
extend the partial ordering � to u�A�~by de¢ning u � u1 for all elements u
in u�A�~. Then, by Theorem 2.1, u�A�~is a complete lattice referred to as the
lattice of tripotents in A.
Let V be a complex vector space and let C be a convex subset of V . A

convex subset E of C is said to be a face of C provided that, if
tx1 � �1ÿ t�x2 is an element of E, where x1 and x2 lie in C and 0 < t < 1,
then x1 and x2 lie in E. An element x in C is called an extreme point of C if
the subset fxg is a face of C. Let � be a locally convex Hausdor¡ topology
on V and let C be �-closed. Let f� �C� denote the set of all �-closed faces of
C. Both ; and C are elements of f� �C� and the intersection of an arbitrary
family of elements of f� �C� again lies in f��C�. Hence, with respect to the
ordering by set inclusion,f� �C� forms a complete lattice. A subset E of C is
said to be a �-exposed face of C if there exists a �-continuous linear func-
tional f on V and a real number t such that, for all elements x in C n E,
Re f �x� is less than t and, for all elements x in E, Ref �x� is equal to t. An
element x is called a �-exposed point of C if the subset fxg is a �-exposed
face of C. Let e� �C� denote the set of �-exposed faces of C. Clearly, e� �C� is
contained in f��C� and the intersection of a ¢nite number of elements of
e� �C� again lies in e� �C�. Moreover, both ; and C belong to e��C�. Also
notice that a �-exposed point of C is an extreme point of C. The intersection
of an arbitrary family of elements of e� �C� is said to be a �-semi-exposed
face of C. Let s��C� denote the set of �-semi-exposed faces of C. Clearly
e� �C� is contained in s��C� and the intersection of an arbitrary family of
elements of s� �C� again lies in s� �C�. Hence, with respect to the ordering
by set inclusion s��C� forms a complete lattice and the in¢mum of a family
of elements of s��C� coincides with its in¢mum when taken in f��C�.
When V is a complex Banach space with dual space V� the abbreviations

n and w� will be used for the norm topology of V and the weak� topology of
V �, respectively. For each subset E of the unit ball V1 in V and F of the unit

exposed faces of the unit ball in a jbw*-triple 291



{orders}ms/98711/edwards.3d -17.11.00 - 13:58

ball V �1 of V� let the subsets E 0 and F0 be de¢ned by

E 0 � fa 2 V �1 : a�x� � 1 8x 2 Eg; F0 � fx 2 V1 : a�x� � 1 8a 2 Fg:
Notice that E lies in sn�V1� if and only if �E 0�0 coincides with E, F lies in
sw� �V �1 � if and only if �F0�0 coincides with F and the mappings E 7! E 0 and
F 7! F0 are anti-order isomorphisms between the complete lattices sn�V1�
and sw� �V �1 � and are inverses of each other. The reader is referred to [8], [9],
[10] for details.
Let A be a JBW�-triple with predual Banach space A�. The tripotents in A

are contained in the unit ball A1 of A. Given a tripotent u in A then, by the
above, fug0 is a norm-exposed face of the unit ball A�;1 of A� and fug0 0 is a
weak�-semi-exposed face of the the unit ball A1 of A. Notice that, for each
element u in u�A�, the convex subsets fug0 � A�;1 and fug0 � A�� 1 are a¤-
nely equivalent to the normal state space and the state space, respectively, of
the JBW�-algebra A2�u�. We de¢ne fu1g0 to be the set A�;1.
The following results play an important role in the course of these in-

vestigations.

Theorem 2.4. Let A be a JBW�-triple with predual Banach space A�. Then
the mapping u 7! fug0 is an order isomorphism from the lattice of tripotents
u�A�~in A onto the complete lattice fn�A�;1� of norm-closed faces of the unit
ball A�;1 of A�.

Proof. See [10], Theorem 4.4.

Theorem 2.5. Let A be a JBW�-triple with predual Banach space A�. Then
the mapping u 7! fug00 is an anti-order-isomorphism from u�A�~onto the com-
plete latticefw� �A1� of weak�-closed faces of the unit ball A1 of A. Moreover,
for every element u in u�A�,

fug00 � u� A0�u� \ A1 :

Proof. See [10], Theorem 4.6.

Corollary 2.6. Let A be a JBW�-triple and let u be a tripotent in A. Then
the subset fug0 0 is the smallest weak�-closed face of A1 containing u.

Proof. Let F be a weak�-closed face containing u. By Theorem 2.5, there
exists an element v in u�A� such that F coincides with fvg0 0. Then, clearly,

fug0 0 � fvg0 0 0 0 � F :

Let A be a JBW�-triple with predual Banach space A�. By [19], Proposi-
tion 2, for every element x in A�, there exists a unique tripotent e�x� in A
such that x lies in A�;2�e�x�� and the restriction of x to A2�e�x�� is a faithful
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normal positive linear functional on the JBW�-algebra A2�e�x��. The tripo-
tent e�x� is called the support of x. It has been shown in [10], Lemma 3.6,
that the support e�x� of an element x in A� is the least tripotent in A such
that x�e�x�� is equal to kxk. If x is of norm one then the face fxg0 0 of A1

coincides with the face fe�x�g0.

3. The Set of �-Finite Tripotents.

Let A be a JBW�-triple and let u�A� be the collection of tripotents in A. A
tripotent u in A is said to be �-¢nite if u does not majorize an uncountable
orthogonal subset of tripotents in A. The collection of �-¢nite tripotents in A
is denoted by u��A�. Clearly, 0 lies in u��A�. If u is an element in u��A�
then the order interval �0; u� is contained in u��A�.
A JBW�-triple A is said to be �-¢nite if every tripotent u in A is �-¢nite.

Clearly, a weak�-closed subtriple of a �-¢nite JBW�-triple is a �-¢nite JBW�-
triple in its own right.

Proposition 3.1. Let A be a JBW�-triple. Then A is �-¢nite if and only if
every orthogonal subset of tripotents in A is at most countable.

Proof. Let A be �-¢nite and let M be an orthogonal subset of tripotents.
By Theorem 2.3, the supremum of M exists in u�A� which is clearly an up-
per bound of M. Therefore the subset M is at most countable. The converse
is immediate.

Theorem 3.2. Let A be a JBW�-triple with predual Banach space A�. A
tripotent u in A is �-¢nite if and only if there exists an element x in A� the
support e�x� of which coincides with u.
Proof. Let u be a non-zero element in u��A�. Then every orthogonal

subset of self-adjoint idempotents in the JBW�-algebra A2�u� is at most
countable. By [8], Theorem 4.6, A2�u� then admits a faithful normal state x.
Since A2�u� is a weak�-closed inner ideal in A, by [12], Theorem 2.5, the
functional x has a unique extension to a weak�-continuous linear functional
~x of norm one on A. Since ~x�u� is equal to 1 it follows that e�~x� � u and
therefore, by [10], Lemma 2.4, e�~x� is a self-adjoint idempotent in A2�u�.
Since

x�e�~x�� � ~x�e�~x�� � 1

and x is faithful on A2�u� we conclude that e�~x� is equal to u.
Conversely, let x be an element in A� of norm one. By de¢nition, xjA2�e�x��sa

is a faithful normal state on the JBW-algebra A2�e�x��sa. Let M be a non-
empty orthogonal subset of tripotents majorized by e�x�. Then the elements
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of M are idempotents in A2�e�x��sa and therefore, by [8], Theorem 4.6, the
set M is at most countable.

Corollary 3.3. Let A be a JBW�-triple and let A1 be its unit ball. Let u be
a tripotent in A. Then the following conditions are equivalent.
(i) The tripotent u is �-¢nite.
(ii) Every weak�-closed face containing u is weak�-exposed.
(iii) The weak�-closed face of A1 generated by u is weak�-exposed.

Proof. (i) ) (ii): Let F be a weak�-closed face of A1 containing u. By
Theorem 2.5, there exists a tripotent v such that fvg0 0 coincides with F . It
follows that v � u and, consequently, that v is �-¢nite. By Theorem 3.2, there
exists an element x in A�;1 such that v is equal to the support e�x� of x. Then

F � fvg0 0 � fe�x�g0 0 � fxg0

and therefore the face F is weak�-exposed.
(ii) ) (iii): This is straightforward.
(iii) ) (i): If u is di¡erent from zero then fug0 0 di¡ers from A1. By Cor-

ollary 2.6 and the hypothesis, there exists an element x of norm one in A�
such that

fug0 0 � fxg0 � fe�x�g0 0 :
Therefore, by Theorem 2.5, u is equal to e�x� and, by Theorem 3.2, it follows
that u is �-¢nite.

Theorem 3.4. Let A be a JBW�-triple. Let u�A� be the partially ordered set
of tripotents and let u��A� be the set of �-¢nite tripotents in A. Then:
(i) Let �un� be a sequence in u��A�. If the supremum

W1
n�1 un of this se-

quence exists then the element
W1

n�1 un lies in u��A�.
(ii) Every element u in u�A� is the supremum of an orthogonal subset of

u��A�.
Proof. (i) We may assume that the elements in the sequence are non-

zero. By Theorem 1, there exists a sequence �xn� of elements of norm one in
A� such that un is equal to e�xn�. Let

ym �
Xm
n�1

1
2n

xn :

Then �ym� is a Cauchy sequence in A� which converges to an element x in
A�;1.
Now suppose that the supremum

W1
n�1 un exists. Then, by Theorem 2.5,
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n_1
n�1

un
o
0 0 �

\1
n�1
fung0 0 �

\1
n�1
fe�xn�g0 0 �

\1
n�1
fxng0 � fxg0 :

By Corollary 3.3 and Corollary 2.6, it follows that
W1

n�1 un is a �-¢nite tri-
potent.
(ii) If u is a non-zero tripotent then fug0 is a non-empty subset of A�;1. Let
M be a maximal orthogonal set of elements in fe�x� : x 2 fug0g. By Theorem
2.3, it follows that

W
v2M v exists. Moreover,

W
v2M v � u. By Theorem 2.1

(iv), there exists a tripotent w such that_
v2M

v ? w ; u � w _
_
v2M

v :

If w is a non-zero tripotent then there exists an element y in A�;1 which lies in
fwg0 and therefore lies in fug0. Since e�y� � w, by Theorem 2.1 (iv), it follows
that e�y� ?M thereby violating the maximality of M.

Corollary 3.5. Let A be a JBW�-triple and let u��A� be the collection of
its �-¢nite tripotents. Then

A � linu��A�w
�
:

Proof. This follows from Theorem 3.4 and Theorem 2.3.

Lemma 3.6. Let A be a JBW�-triple.
(i) Let B be a weak�-closed subtriple in A. Then

u��A� \ B � u��B� :
(ii) Let J be a weak�-closed inner ideal in A. Then

u��A� \ J � u��J� :
Proof. The proof of (i) is immediate. To prove (ii) let u be an element in

u��J� and let M be an orthogonal subset of u�A� such that M � u. Then, by
[7], Lemma 2.1, M is a subset of J and, thus, M is at most countable.
Therefore the tripotent u lies in u��A� \ J.
Corollary 3.7. Let A be a JBW�-triple.
(i) Let B1, B2 be weak�-closed subtriples in A such that u��B1� is contained

in u��B2�. Then B1 is contained in B2.
(ii) Let J1, J2 be weak�-closed inner ideals in A. Then u��J1� is contained in

u��J2� if and only if J1 is contained in J2.
Proof. These follow from Corollary 3.5 and Lemma 3.6.

Theorem 3.8. Let A be a JBW�-triple and let B be a weak�-closed subtriple
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of A. Then B is an inner ideal if and only if, for every element u in u��B�, the
weak�-closed subtriple A2�u� is contained in B.
Proof. Let u be any tripotent in B. By Theorem 3.4 (ii) and Theorem 2.3,

there exists an increasing net �u
�
2ÿ in u��B� which converges to u in the
weak�-topology. Since, for all elements 
 in ÿ, u
 � u it follows that �u
�
2ÿ

is an increasing net of self-adjoint idempotents in the JBW�-algebra A2�u�.
By [22], 4.1.3, it follows that this net converges to u in the strong topology of
the JBW�-algebra A2�u�. The Jordan multiplication in A2�u� being jointly
strongly continuous on norm-bounded sets, by [22], Lemma 4.19, for every
element a in A2�u�, the net �fu
 a u
g�
2ÿ converges in the strong topology of
A2�u� and, hence, in the weak�-topology of A to the element fu a ug. Since
A2�u
� is an inner ideal in A, by the hypothesis, it follows that the net
�fu
 a u
g�
2ÿ and, therefore, the element fu a ug lies in B. Finally, the ele-
ment a which is equal to fufu a ugug is contained in B.
It has been shown that, for every tripotent u in B, A2�u� is contained in B.

By [7], Lemma 2.1, B is an inner ideal in A. The converse is an immediate
consequence of the same lemma.

4. The Main Results.

Let A be a JBW�-triple with predual Banach space A�. Let x be an element in
A� of norm one and let e�x� be its support. By [2], Proposition 1.2, the
mapping �x : A� A! C de¢ned, for elements a, b in A, by

�x�a; b� � x�fa b e�x�g�
is a positive sesquilinear form on A satisfying the Cauchy-Schwarz inequality

j�x�a; b�j2 � �x�a; a��x�b; b� :
The following result can be extracted from [2].

Lemma 4.1. Let A be a JBW�-triple and let x be an element in A� of norm
one. Let �x be the sesquilinear form on A de¢ned above. Then, for elements a in
A,

�x�a; a� � 0

if and only if a lies in A0�e�x��.
Proof. Let a be an element in A such that �x�a; a� is equal to 0. For i

equal to 0, 1 or 2, denote the element Pi�e�x���a� by ai. By the hermiticity of
�x and the Peirce rules,
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�x�a; a� � �x�a2 � a1; a2 � a1� � 2Re�x�fa2 � a1 a0 e�x�g��
� x�fa0 a0 e�x�g�

� �x�a2; a2� � 2Re�x�fa2 a1 e�x�g�� � �x�a1; a1� :
Therefore

x�fa2 a2 e�x�g� � x�fa1 a1 e�x�g� � 0 :

The element a2 � a2 y, which is equal to fa2 a2 e�x�g, lies in the positive cone
of the JBW�-algebra A2�e�x��. Since the restriction of x to A2�e�x�� yields a
faithful state on A2�e�x�� it follows that a2 is equal to 0. On the other hand,
by [19], Lemma 1.5, fa1 a1 e�x�g is also a positive element in A2�e�x�� and
therefore equal to zero. It follows from the same lemma that a1 is zero. The
converse is immediate.
We shall need the following result.

Lemma 4.2. Let A be a JBW�-triple and let u be a �-¢nite tripotent in A. Let
v be a tripotent in A such that

A2�v�sa \ A0�u� � f0g :
Then v is �-¢nite.

Proof. Let u be a non-zero �-¢nite tripotent. Then, by Theorem 3.2, there
exists an element x of norm one in A� such that e�x� is equal to u.
Now let v be a tripotent satisfying the condition above. Let M be a non-

empty orthogonal subset of non-zero tripotents in A majorized by v. Then M
is contained in A2�v�sa. Let N be a non-empty ¢nite subset of M. Then

0 �
X
w2N

�x�w;w� � �x
�X
w2N

w;
X
w02N

w0
�
� 1 :

Therefore the increasing real net �Pw2N �x�w;w��N2Mf is bounded and,
hence, converges in R. It follows that there exists a subset L of M which is at
most countable such that, for all elements w in M n L, �x�w;w� is equal to
zero. By Lemma 2 and the hypothesis, we conclude that M n L is empty.

Corollary 4.3. Let A be a JBW�-triple and let u be a �-¢nite tripotent in
A. Let J be a weak�-closed inner ideal in A such that every non-zero tripotent
in J is not orthogonal to u. Then J is �-¢nite.

Proof. Let v be a tripotent in J. By [7], Lemma 2.1, A2�v� is a subset of J.
By hypothesis, the weak�-closed subtriple A2�v� \ A0�u� contains no non-
zero tripotent and therefore coincides with f0g. By Lemma 4.2, it follows
that v is a �-¢nite tripotent.

exposed faces of the unit ball in a jbw*-triple 297



{orders}ms/98711/edwards.3d -17.11.00 - 14:01

The following result gives a characterization of �-¢nite JBW�-triples in
terms of the geometry of the unit ball and in terms of the partially ordered
set of the tripotents.

Theorem 4.4. Let A be a JBW�-triple with unit ball A1. Then the following
conditions are equivalent.
(i) Every weak�-closed face of A1 is weak�-exposed.
(ii) Every extreme point of A1 is weak�-exposed.
(iii) There exists a weak�-exposed point in A1.
(iv) Every weak�-closed face of A1 is norm-exposed.
(v) Every extreme point of A1 is norm-exposed.
(vi) There exists a norm-exposed point in A1.
(vii) Every maximal tripotent in A is �-¢nite.
(viii) There exists a �-¢nite maximal tripotent in A.
(ix) The JBW�-triple A is �-¢nite.

Proof. The eight implications (i) ) (ii), (ii) ) (iii), (iii)) (vi), (i)) (iv),
(iv) ) (v), (v) ) (vi), (ix) ) (vii) and (vii) ) (viii) are straightforward.
(vi) ) (viii): We may assume that A is di¡erent from f0g. Suppose that u

is a norm-exposed point in A1. Then u is an extreme point of the unit ball A1

and therefore, by Theorem 2.4, a maximal tripotent in A. Moreover, there
exists an element x of norm one in the Banach space dual A� of A such that
fxg0 coincides with fug. A straightforward modi¢cation of [10], Lemma 2.3,
shows that the restriction of x to A2�u� is a state on the JBW�-algebra A2�u�.
Let v be a tripotent in A such that v � u and suppose that x�v� is equal to
zero. Then the tripotent uÿ v lies in fxg0 and consequently v is equal to 0.
Therefore, for all tripotents v with 0 < v � u, x�v� > 0. Now let M be a

non-empty orthogonal subset of non-zero tripotents for which u is an upper
bound. Let N be a non-empty ¢nite subset of M. Then

0 �
X
w2N

x�w� � x
�X
w2N

w
�
� 1 :

Hence the increasing real net �Pw2N x�w��N2Mf is bounded and therefore
converges. It follows that M is at most countable. Consequently, the max-
imal tripotent u is �-¢nite.
(viii) ) (ix): Let u be a �-¢nite maximal tripotent. It follows that A0�u� is

equal to f0g. Therefore, by Lemma 4.2, every tripotent in A is �-¢nite.
(ix) ) (i): By Theorem 2.5, every non-empty weak�-closed face of A1

contains a tripotent of A. By Corollary 3.3, every weak�-closed face of A1 is
weak�-exposed.
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5. Applications and Examples.

It is clear that every ¢nite-dimensional JBW�-triple is �-¢nite. The ¢rst ex-
ample of a JBW�-triple to be considered, which is not necessarily ¢nite-di-
mensional, is that of a W�-algebra A, for the properties of which the reader
is referred to [27] and [28]. The triple product of elements a, b and c in the
W�-algebra A is given by

fa b cg � 1
2 �ab�c� cb�a�:

For the proof that, with this triple product, the W�-algebra A does indeed
form a JBW�-triple the reader is referred to [29]. The set of partial isometries
in A coincides with the set u�A� of tripotents in A. For u and v in u�A�,
u � v if and only if uv�u � u and u ? v if and only if uv� � v�u � 0. Let p�A�
denote the set of self-adjoint idempotents, the projections, in A. By [10],
Lemma 2.4, the set p�A� coincides with the order interval �0; 1� of u�A�,
where 1 is the multiplicative unit in A. Observe that, for elements p and q in
p�A�, p � q if and only if pq � p and p ? q if and only if pq � 0. By Cor-
ollary 2.2, p�A� is a complete lattice. Moreover, for elements u and v in
u�A�, u ? v if and only if uu� ? vv� and u�u ? v�v. For details of these results
the reader is referred to [18].
A W�-algebra A is said to be �-¢nite if every orthogonal subset of p�A� is

at most countable [28]. The results of ½4 lead to the following theorem.

Theorem 5.1. Let A be a W�-algebra with unit ball A1. Then the following
conditions are equivalent.
(i) Every weak�-closed face of A1 is weak�-exposed.
(ii) Every extreme point of A1 is weak�-exposed.
(iii) There exists a weak�-exposed point in A1.
(iv) Every weak�-closed face of A1 is norm-exposed.
(v) Every extreme point of A1 is norm-exposed.
(vi) There exists a norm-exposed point in A1.
(vii) Every maximal partial isometry in A is �-¢nite.
(viii) There exists a �-¢nite maximal partial isometry in A.
(ix) Every partial isometry in A is �-¢nite.
(x) The unit 1 in A is �-¢nite.
(xi) A is �-¢nite.
(xii) A admits a faithful normal state.
(xiii) A admits a faithful state.

Proof. The equivalence of the conditions (i) - (ix) follows from Theorem
4.4. The implications (ix) ) (x) and (x) ) (xi) are straightforward.
(xi) ) (xii): This follows from [8], Theorem 4.6.
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(xii) ) (xiii): This is obvious.
(xiii) ) (x): This follows by standard arguments and the fact that p � 1

implies that p lies in p�A�.
(x) ) (viii): Notice that, by direct computation, A0�1� coincides with f0g.

Therefore 1 is a maximal element in u�A�.
The following result, presented in [21], appears as a corollary of Theorem
5.1.

Corollary 5.2. The following conditions on the W�-algebra B�H� of
bounded operators on the Hilbert space H are equivalent.
(i) H is separable.
(ii) The unit ball in B�H� contains a norm-exposed point.
(iii) Every extreme point of the unit ball in B�H� is norm-exposed.
The results of ½4 can be applied to various sub-JBW�-triples of a W�-al-

gebra A. Let � be a �-anti-automorphism of A of order two and let �� denote
the adjoint mapping on the dual A� of A. Then �� is a positive linear iso-
metry from A� onto itself and therefore restricts to an a¤ne automorphism
of the state space of A. Since the predual A� of A is unique, �� restricts to a
positive linear isometry from A� onto itself which again restricts to an a¤ne
automorphism of the normal state space of A. Let H�A; �� denote the subset
of A consisting of �-invariant elements of A. Then H�A; �� is a sub-JBW�-
triple of A and is also a JBW�-algebra with multiplication de¢ned, for ele-
ments a and b in H�A; ��, by

a � b � 1
2 �ab� ba�:

When restricted to H�A; �� the triple product of elements a, b and c in
H�A; �� coincides with the Jordan triple product

fa b cg � a � �b� � c� � �a � b�� � cÿ b� � �a � c� :
It is clear that the dual H�A; ��� of H�A; �� can be identi¢ed with the closed
subspace H�A�; ��� of A� consisting of ��-invariant elements and the predual
H�A; ��� of H�A; �� can be identi¢ed with the closed subspace H�A�; ��� of
A� consisting of ��-invariant elements.
Recall that the JBW�-algebra H�A; �� is said to be �-¢nite if every ortho-

gonal subset of the complete lattice p�H�A; ��� of self-adjoint idempotents
in H�A; �� is at most countable. An element e in p�H�A; ��� is said to be �-
¢nite if the JBW�-algebra H�eAe; �jeAe� is �-¢nite. The results of ½4 lead to
the following theorem.

Theorem 5.3. Let A be a W�-algebra, let � be a �-anti-automorphism of A
of order two, let H�A; �� be the JBW�-algebra and sub-JBW�-triple of A con-
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sisting of �-invariant elements of A and let H�A; ��1 be the unit ball in
H�A; ��. Then the following conditions are equivalent.
(i) Every weak�-closed face of H�A; ��1 is weak�-exposed.
(ii) Every extreme point of H�A; ��1 is weak�-exposed.
(iii) There exists a weak�-exposed point in H�A; ��1.
(iv) Every weak�-closed face of H�A; ��1 is norm-exposed.
(v) Every extreme point in H�A; ��1 is norm-exposed.
(vi) There exists a norm-exposed point in H�A; ��1.
(vii) Every maximal element in u�H�A; ��� is �-¢nite.
(viii) There exists a �-¢nite maximal element in u�H�A; ���.
(ix) Every element in u�H�A; ��� is �-¢nite.
(x) The unit 1 in u�H�A; ��� is �-¢nite.
(xi) H�A; �� is �-¢nite.
(xii) A admits an ��-invariant normal state, faithful on H�A; ��.
(xiii) A admits an ��-invariant state, faithful on H�A; ��.
Proof. The equivalence of the conditions (i)-(ix) follows from Theorem

4.4. The implications (ix) ) (x) and (x) ) (xi) are straightforward, (xi) )
(xii) follows from [8], Theorem 4.6 and (xii) ) (xiii) is immediate. The im-
plication (xiii) ) (x) follows from the fact that, if p is an element of
u�H�A; ��� such that p � 1 then p lies in p�H�A; ���. Notice that, by direct
computation, A0�1� coincides with f0g. As a result, 1 is a maximal element in
u�H�A; ���, thereby proving the ¢nal implication (x) ) (viii).

Recall that a W�-algebra the centre of which consists of complex multiples
of its identity 1 is said to be a W�-factor. Let e and f be elements of the
complete lattice p�A� of projections in the W�-factor A. Then eAf is a sub-
JBW�-triple of A and is in fact an inner ideal in A. For a discussion of the
properties of such inner ideals the reader is referred to [11].

Theorem 5.4. Let A be a W�-factor and let e and f be projections in A.
Then the JBW�-triple eAf is �-¢nite if and only if at least one of the projec-
tions e, f is �-¢nite.

Proof. Suppose that e is �-¢nite and let M be an orthogonal set of partial
isometries in eAf . Then the set fuu� : u 2Mg is an orthogonal set of projec-
tions in A such that, for all u in M, uu� � e. Since e is �-¢nite the set is at
most countable and, therefore, M is also at most countable. A similar proof
shows that if f is �-¢nite then so also is eAf .
Suppose now that eAf is �-¢nite and let M and N be orthogonal sets of

non-zero projections in A, such that, for all p in M, p � e, and, for all q in N,
q � f . Then, for all p in M and q in N, pAq is a sub-JBW�-triple of eAf .
Observe that, if pAq � f0g, then, by [28], Proposition 1.10.7, either p or q is
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zero, yielding a contradiction. Therefore, pAq is non-zero and there exists a
non-zero partial isometry upq in pAq such that

upqupq � � p � e; upq �upq � q � f :

Observe that, for p1 and p2 in M with p1 6� p2 and q1 and q2 in N with
q1 6� q2, since p1 ? p2 and q1 ? q2, the partial isometries up1q1 and up2q2 are
orthogonal. Since eAf is �-¢nite it follows that at least one of the sets M or
N is at most countable and, as a consequence, at least one of the projections
e or f must be �-¢nite.

The next example considered is that of a spin triple. Let H be a complex
Hilbert space and let a 7! a be a conjugation on H. For elements a, b and c
in H, let

fa b cg � ha; bic� hc; biaÿ ha; cib;
where ha; bi denotes the inner product in H of the elements a and b. Then,
using the results of [26], H is a JBW�-triple with respect to the norm, which
is equivalent to the Hilbert space norm, given by

kak2 � ha; ai � �ha; ai2 ÿ jha; aij2�12:
This JBW�-triple is said to be a spin triple. Observe that the set of non-zero
tripotents in H consists of the elements u in H such that hu; ui � 0 and
hu; ui � 1

2 along with those elements u in H for which u � �u, where � is a
complex number of unit modulus, and hu; ui � 1. The set of tripotents or-
thogonal to a tripotent u for which hu; ui � 1

2 consists of tripotents of the
form �u, where � is a complex number of unit modulus. There are no non-
zero tripotents orthogonal to a tripotent u for which hu; ui � 1. It follows
that every orthogonal subset of non-zero elements of H consists of at most
two elements, thereby leading to the following result.

Theorem 5.5. A spin triple H is a �-¢nite JBW�-triple.

A ¢nal example of a JBW�-triple is a complex Hilbert space H endowed
with the triple product de¢ned, for elements a, b and c in H, by

fa b cg � 1
2 �ha; bic� hc; bia�:

The set of non-zero tripotents in H consists of elements u of H such that
hu; ui � 1. There are no non-zero tripotents orthogonal to such an element u.
This leads to the following result.

Theorem 5.6. Let H be a complex Hilbert space endowed with the triple
product de¢ned above. Then H is a �-¢nite JBW�-triple.

302 c. martin edwards and gottfried t. ru« ttimann



{orders}ms/98711/edwards.3d -17.11.00 - 14:03

REFERENCES

1. T. J. Barton, T. Dang, G. Horn,Normal representations of Banach Jordan triple systems,
Proc. Amer. Math. Soc. 102 (1987), 551^555.

2. T. Barton, Y. Friedman, Grothendieck's inequality for JB�-triples and applications, J. Lon-
don Math. Soc. 36 (1987), 513^523.

3. T. J. Barton, R. M. Timoney, Weak� continuity of Jordan triple products and its applications,
Math. Scand. 59 (1986), 177^191.

4. M. Battaglia, Order theoretic type decomposition of JBW�-triples, Quart. J. Math. Oxford 42
(1991), 129^147.

5. S. Dineen, Complete holomorphic vector fields in the second dual of a Banach space, Math.
Scand. 59, (1986), 131^142.

6. C. M. Edwards, On Jordan W�-algebras, Bull. Sci. Math. 2e se¨rie 104, (1980), 393^403.
7. C. M. Edwards, K. McCrimmon, G.T. Ru« ttimann, The range of a structural projection, J.

Funct. Anal. 129 (1996), 196^241.
8. C. M. Edwards, G. T. Ru« ttimann, On the facial structure of the unit balls in a GL-space and

its dual, Math. Proc. Camb. Philos. Soc. 98 (1985), 305^322.
9. C. M. Edwards, G. T. Ru« ttimann, On the facial structure of the unit balls in a GM-space and

its dual, Math. Z. 193, 597-611 (1986).
10. C. M. Edwards, G. T. Ru« ttimann, On the facial structure of the unit balls in a JBW�-triple

and its predual, J. London Math. Soc. 38 (1986), 317^332.
11. C. M. Edwards, G. T. Ru« ttimann, Inner ideals in W�-algebras. Mich. Math. J. 36 (1989),

147^159.
12. C. M. Edwards, G. T. Ru« ttimann, A characterization of inner ideals in JB�-triples, Proc.

Amer. Math. Soc. 116 (1992), 1049^1057.
13. C. M. Edwards, G. T. Ru« ttimann, Structural projections on JBW�-triples, J. London Math.

Soc. 53 (1996), 354^368.
14. C. M. Edwards, G. T. Ru« ttimann, Compact tripotents in bi-dual JB�-triples, Math. Proc.

Camb. Philos. Soc. 120 (1996), 155^173.
15. C. M. Edwards, G. T. Ru« ttimann, Smoothness properties of the unit ball in a JB�-triple, Bull.

London Math. Soc. 28 (1996), 156^160.
16. C. M. Edwards, G. T. Ru« ttimann, Peirce inner ideals in Jordan�-triples, Journal of Algebra

180 (1996), 41^66.
17. C. M. Edwards, G. T. Ru« ttimann and S. Vasilovsky, Inner ideals in exceptional JBW�-tri-

ples, Michigan Math. J. 40 (1993), 139^152.
18. C. M. Edwards, G. T. Ru« ttimann and S. Vasilovsky, Invariant inner ideals in W�-algebras,

Math. Nachr. 172 (1995), 95^108.
19. Y. Friedman, B. Russo, Structure of the predual of a JBW�-triple, J. Reine Angew. Math.

356 (1985), 67^89.
20. Y. Friedman, B. Russo, The Gelfand-Naimark theorem for JB�-triples, Duke Math. J. 53

(1986) 139^148.
21. R. Grzas¨lewicz, Exposed points of the unit ball of l�H�, Math. Z. 193 (1986), 595^596.
22. H. Hanche-Olsen, E. StÖrmer, Jordan Operator Algebras, Pitman, London 1984.
23. G. Horn, Characterization of the predual and the ideal structure of a JBW�-triple, Math.

Scand. 61 (1987), 117^133.
24. N. Jacobson, Structure and representation of Jordan algebras, (Amer. Math. Soc. Collo-

quium Publication 39). American Mathematical Society, Providence 1968.
25. O. Loos, Jordan pairs, Lecture Notes in Math. 460, 1975.
26. E. Neher, Jordan triple systems by the grid approach, Lecture Notes in Math. 1280, 1987.
27. G.K.Pedersen, C�-algebras and their automorphism groups, London Mathematical Society

Monographs 14, Academic Press, London ,1979.

exposed faces of the unit ball in a jbw*-triple 303



{orders}ms/98711/edwards.3d -17.11.00 - 14:04

28. S. Sakai, C�-algebras and W�-algebras, Springer Berlin, Heidelberg, New York, 1971.
29. H. Upmeier, Symmetric Banach manifolds and Jordan C�-algebras, North Holland, Am-

sterdam, New York, Oxford, 1985.
30. J. D. M. Wright, Jordan C�-algebras, Michigan Math. J. 24 (1977), 291^302.
31. M. A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Camb. Philos.

Soc. 84 (1978), 263^272.

THE QUEEN'S COLLEGE
OXFORD
UNITED KINGDOM

UNIVERSITY OF BERNE
BERNE
SWITZERLAND

304 c. martin edwards and gottfried t. ru« ttimann


