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PLURIHARMONIC MORPHISMS

E. LOUBEAU

Abstract

Pluriharmonic maps form an important class of harmonic maps which includes +holomorphic
maps. We study their morphisms, in particular the inter-relationships between (1,1)-geodesic,
pluriharmonic and tholomorphic maps. Then we characterise pluriharmonic morphisms be-
tween complex manifolds as +holomorphic maps. We make a special study of the situation
where the domain is Hermitian and the target is Kéhler, pluriharmonic morphisms having an
extra property.

1. Introduction

One of the most important properties of harmonic maps is that, when map-
ping from a two-dimensional domain, the energy functional is invariant un-
der conformal changes of the metric on that domain. We can therefore talk
of harmonic maps from Riemann surfaces and their study has been prolific
(cf. [2,3]). As any Hermitian structure on a Riemann surface is Kéhler, har-
monic maps from a Riemann surface are harmonic with respect to any
Kéhler metric on the domain. Maps which generalise this property to higher
dimensions are called pluriharmonic maps. Harmonic morphisms between
Riemannian manifolds are maps which pull back germs of harmonic func-
tions to germs of harmonic functions. They were characterised independently
by B. Fuglede in [4] and T. Ishihara in [6] as horizontally weakly conformal
harmonic maps. A consequence of this result is that harmonic morphisms
pull back harmonic maps to harmonic maps as well.

Our aim is to generalise the idea of harmonic morphism to maps which
pull back pluriharmonic functions to pluriharmonic functions; we shall call
such mappings pluriharmonic morphisms. First, we recall some types of
Hermitian structures, concentrating on the geometrical interpretations of
their definitions. These results enable us to compare how and when the no-
tions of (1,1)-geodesic, pluriharmonicity and holomorphicity overlap. In
particular, we show that, for maps between Hermitian manifolds, the class
of tholomorphic maps is included in the class of pluriharmonic maps pre-
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166 E. LOUBEAU

cisely when the complex structure carried by the target manifold is Kahler.
We find that a necessary and sufficient condition for a map between complex
manifolds to be a pluriharmonic morphism is that it be a +holomorphic
map. Combining this characterisation of pluriharmonic morphisms with an
earlier result, we observe that pluriharmonic morphisms from Hermitian to
Kaéhler manifolds will pull back pluriharmonic maps to pluriharmonic maps.

I would like to thank J. C. Wood for painstakingly supervising this work
and I. Calinov and R. Pantilie for pointing out some mistakes.

2. Almost Hermitian manifolds.

Recall that an almost Hermitian manifold (M, J,g) is an even dimensional
manifold M?" equipped with an almost complex structure J and a Hermitian
metric g. On such a manifold we consider an adapted unitary frame
{e1,Jey, ..., ey Je,}. The complexified tangent space T°M splits into TU-0) M
and TV M which are the eigenspaces of the endomorphism J with eigen-
values 7 and —i, respectively. We define {0; :\/%(ej —iJej)}_y , to be a
unitary frame for TUM and {6; = J5(¢;+iJe;)};; , to be a unitary
denotes the dual frame of {6;,6;},
by g5 the quantity g(6;,6;).
The fundamental 2-form w is defined as:

) _
(1) w:%gme’\/\@”.

DEFINITION 1. An almost Hermitian manifold (M, J,g) is said to be:

1. (1,2)-symplectic if (dw)'? =0, ie. dw(o,B,7) =0 for all a,8,v€
T M.

2. Kihler if w is closed, i.e. dw =0 and the almost complex structure is
integrable.

3. cosymplectic if d*w = 0, where d* is the formal adjoint of d.

REMARK 1. The names quasi-Kdihler or *0 and semi-Kdhler or almost semi-
Kihler are sometimes used for (1,2)-symplectic and cosymplectic, respectively
(cf. [10]). A list of sixteen different structures possible on an almost complex
manifold as well as their classification can be found in Gray and Hervella [5].

(1,2)-Symplectic and Kdhler manifolds can also be characterised in a more
geometrical way:

If we denote by V the Levi-Civita connection then an almost Hermitian
manifold (M, J,g) is (1,2)-symplectic if and only if

VyTWOM 170N vx e TOVM,
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whilst it is K&hler if and only if
VxTMOM Cc TUOM  vX € TM.

Figure 1 on page 3 (based on that in [10]) shows how those different
structures intersect one another, in particular that an integrable (1,2)-sym-
plectic manifold is Kéhler.

cosymplectic

Figure 1. Intersection of the structures

The following standard proposition interprets the above definitions in
terms of the metric g and the Christoffel symbols I} with respect to a uni-
tary frame.

PrROPOSITION 1. [8] An almost Hermitian manifold (M7 J,g) is

1. integrable if and only if]“_ =0 Va,\p=1,.

2. (1,2)-symplectic if and only sz” =0 Va,\p.

3. Kdhler if and only if J is lntegrable (equiv. F =0 Va,\p),and(1,2)-
symplectic (equiv. 1'@A =0 Va,\p)ie if and only if the only possibly non-
zero Christoffel symbols are I',, and F -

4. cosymplectic if and only zfg“’\F“ 4 0forall € {l,...,n}.

3. Pluriharmonic Morphisms.

Let N" be an almost Hermitian manifold with a local adapted frame
(V1,97,...,9,,95) and X" a Riemannian manifold with local coordinates
(wi,...,w,). We denote by V the Riemannian connection on X and by
Nr€, and ¥I'¢, the Christoffel symbols on N and X

DEFINITION 2. A map ¢ from an almost Hermitian manifold N” to a
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Riemannian manifold X" is called (1,1)-geodesic (see [3]) if the (1,1)-part of
the second fundamental form of ¢, (‘f’quS)(l’l), is zero, i.e.:

(2) Ndp(Z, W) =0 vz, W e TWON,

where ?V is the pull-back connection on T*M ® ¢~ TX.
Using the frame adapted to the almost complex structure on TN,
Equation (2) can be written:

c 4
030" = NT50cd™ + X I7,0i67 056" = 0
VA4 e{l,...,r} and Vi, j € {l,...,n},

where we use the notations

dcp?  for de?(9c) and  gpd  for  d(de? (9:)) (V).
If we suppose N to be a Hermitian manifold with local complex coordinates
Ly ..., ", "} then locally ¢ satisfies:
82¢A 8¢)A
11G —— NP T

(11G) 0y'0yi 7 9yc RS oyt 9y

VA e{l,...,r} and Vi,j € {1,...,n}.

J L
. 00708t

ProposITION 2. [3] 4 (1,1)-geodesic map from an almost Hermitian mani-
fold to a Riemannian manifold is harmonic.

DEeFINITION 3. A smooth map from a complex manifold N” to a Rie-
mannian manifold X" satisfying:

(4) vOd'g =0
is called a pluriharmonic map ([12]), where

d'¢=dp ,

T(l ,0) N7

and
(VDT )NZ, W) =V (d'p(W)) —d p(B;W)  NZ,W € THON".

A map is a pluriharmonic map if and only if its restriction to any holo-
morphic curve is harmonic (see [9, Prop. 1.1]).
We remark that:

V(0‘1>d'¢ -0 v(l.o)dl/d) =0.
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The expression for the left-hand side of (4) in a local frame is:
(VOVd'9)(95,9;) =
(050" + X I7,01¢” 050" ) 4.
Hence the equation for pluriharmonicity of a map is
(PH) 00" + X, 0,7 050" = 0
vAe{l,...;r}and Vij e {l,... ,n}.

REMARK 2. In local frames, the difference between pluriharmonic maps
and (1,1)-geodesic maps is the extra terms of the type V Fg8c¢’ , which ap-
pear for (1,1)-geodesic maps.

If we suppose N” to be a Kidhler manifold, then by Proposition 1.3, those
terms disappear and the notions of (1,1)-geodesic maps and pluriharmonic
maps coincide.

A pluriharmonic map on a complex manifold N is harmonic with respect
to any Kéhler metric on N and within this viewpoint can be seen as an ex-
tension of the notion of harmonic maps on surfaces (see Udagawa [12, 13]).

Using Proposition 1 and the expressions of (1,1)-geodesic, pluriharmonic
and +holomorphic maps in adapted frames, we study when those three dif-
ferent concepts coincide.

DEFINITION 4. By local we shall mean defined on an open subset.

PrOPOSITION 3. Let N" and X" be Hermitian manifolds, then the condition
that all (local) +holomorphic maps from N" to X" be pluriharmonic is equiva-
lent to X" being Kdhler. In particular, holomorphic functions on a Hermitian
manifold are always pluriharmonic.

Proor. The equation for a pluriharmonic map is:
Pty 097 00"
) = FJL - = — 0
0y 0y ay' oyl
VA e {1,1,....r,;7} and Vi, j € {1,...,n}.

For a holomorphic map this reduces to the following equation:

0P OPP - _ ..
X d
s 3 3y =0 Vv4Ae{l,1,...,r,7} and Vi,j € {1,...,n},

()

By choosing holomorphic maps with prescribed first derivatives at a point,
Equation (5) shows that XFflﬁ =0 VA,m,p, so that, by Proposition 1, X is
(1,2)-symplectic and so Kéhler.
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The converse statement comes directly from the definitions.
Now we compare (1,1)-geodesic and +holomorphic.

PROPOSITION 4. Let N" and X" be Hermitian manifolds, then the condition
that all (local) £holomorphic maps from N to X be (1,1)-geodesic is equivalent
to the condition that N" and X" be Kdihler.

PrOOF. We equip N” with the local coordinates (y!,y!,...,", 7).
Let ¢ : N* — X" be a holomorphic map, i.e.
¢’

We recall that ¢ is a (1,1)-geodesic map if and only if:
2 4 A 4 J 9L
(6) OO _wpel0 L xp 0000
Ay’ 9y Y oy© Iy’ 9y
VA e {1,1,...,r,7} and Vije {1,...,n}.

As we supposed ¢ to be holomorphic, Equation (6) is equivalent to:

¢! A" 0P .
Nk Xl _
_ Fﬁ@T,k [ oy 8)/770 Vie{l,...,r} and Vi,j € {1,...,n},

(7)

The proof consists of three steps: first we show that NF% =0 Vij,k such
that k # i or k # j, then we establish that XanI—, =0 VI ,m,p, and finally we

prove that NF% =0 Vij, k. We work at a point of N.
Step 1) Fix the indices /,i and j. Equation (7) is:

8¢>/ 0P OP’
_Npk 9P xp 9P 09
T gyk "7 Ayl Dyl 0

so choosing a holomorphic map ¢ such that % = (5;’,(’0 with kg £ i or kg #j
(possible if n > 1), (7) becomes:

N ko _
sz_()’

which proves Step 1. We remark that if » = 1, any Hermitian metric on N is
Kéhler (cf. [7]) so "T's =0 Vi,j, k.

Step 2) Consider Equation (7) when i # j. In this case, whichever value k
takes, either k # i or k # j. Because of Step 1) (and the remark for n = 1),
with those indices, (7) reads:

DY O’
Xpl =2 “2
mp ay, 8)/]
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Fix my, py and choose ¢ holomorphic such that %‘; ? = (5%'”" + 6?;-[” . For this
map Equation (7) yields
XFI

mopo

:07

and this shows Step 2).
Step 3) Because of Step 2) Equation (7) now reads:

¢!
N 1k —

oM _

Choosing a holomorphic map such that BT = 6%5‘] proves that

NI =0 Vko,i,j
and in particular that
Npk
I'z=0 Vk,

ending Step 3). This proves that if £holomorphic maps are (1,1)-geodesic
then X" and N" must be (1,2)-symplectic manifolds and therefore Kéhler.
The converse assertion is clear from the definitions of (1,2)-symplectic
manifolds, (1,1)-geodesic and +holomorphic maps.

We now give an example where the notions of (1,1)-geodesic and plur-
itharmonic are distinct.

ExamMPLE 1. The Hopf manifold (cf. [7, Vol. II]) is defined as
H = (C"—={0}/A)) (n>1), where Ay is the group generated by the trans-
Sformation z — Xz, A€ C—{0,1}.

H is diffeomorphic to S' x S\ and is a compact Hermitian manifold
equipped with the metric

Its fundamental Kdhler form (2 is
—i _ i}
N=— dz NdZ.
UDD - j;
The manifold H is not Kdihler since its first Betti number by(H) is equal to
bl(S1 X Szn*l) which is 1, whereas the Betti numbers by, of a Kdihler mani-
fold are even.
A simple computation shows that
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1
Fg:z |Z |2 (6112 —(5l'kZ/)
— 1 —
Flj:2|z|2(5,]z (Sij)
therefore
2 _

0z10z1 79k T U gk

¢ 1 99 0¢ o 09
Bzi827+2|z|2[ =R =R 4 <Zka e azk)

If ¢ is a (1,1)-geodesic function on H then
P 00 09

* T =0 Vi,j=1,...
) 0710z~ T 9zk 7 gk b= Do lt
In the case where ¢ is holomorphic Equation (™), for i # j, becomes:
99
=0
82’ ’

showing that ¢ has to be constant.
We have shown

PROPOSITION 5. Any local +holomorphic (1,1)-geodesic function on H is
constant.

REMARK 3. Since H is Hermitian, any (non-constant) tholomorphic
function on H is pluriharmonic, therefore local pluriharmonic functions ex-
ist.

Finally we compare (1,1)-geodesic maps and pluriharmonic maps on Her-
mitian manifolds and the situation is what the last two propositions suggest:

PrROPOSITION 6. Let N" be a Hermitian manifold and X" a Kdhler manifold,
then the condition “‘a map from N" to X", is a (local) (1,1)-geodesic map if and
only if it is pluriharmonic’’ is equivalent to N being Kdhler.

Proor. The definitions of (1,1)-geodesic map and pluriharmonic map for
¢ : N" — X" coincide when:
PRrROOF.

1
9) Nrg%zo VIe{l,1,....r,F} Vije{l,...,n}.
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As X" is Kihler, +holomorphic maps from N” to X" are pluriharmonic
(Proposition 3). We choose ¢ holomorphic and such that

8¢A _ cAa
W — YCky>

then Equation (9) reads:
N ko _ ..
ry=0 vije{l,...,n}

Since this holds for any kg =1,...,n, N is (1,2)-symplectic and so Kihler
since integrable.

REMARK 4. In Propositions 3, 4 and 6 the need for the integrability of the
complex structures on N” and X" is in the use of n linearly independent ho-
lomorphic functions as “test functions”, the existence of these being equiva-
lent to the integrability of the structures.

ProOPOSITION 7. [9] Let (N,J,g) be a Hermitian manifold and (X, h) an al-
most Hermitian manifold. Then (N,J,g) is cosymplectic if and only if any
pluriharmonic map ¢ : (N,J,g) — (X, h) is harmonic.

DErINITION 5. We shall call ¢ a pluriharmonic morphism if it pulls back
(local) pluriharmonic functions to (local) pluriharmonic functions, i.e. for all
functions ¢ satisfying V®d'¢ = 0 we have

VO (¢ o) =0.

REMARK 5. Since a complex-valued function is pluriharmonic if and only
if its real and imaginary parts are real-valued pluriharmonic functions, we
can choose to consider, in the above definition, real-valued or complex-va-
lued functions.

LEMMA 1. Let N be a complex manifold. Given p € N and any constants
(CA)A:I,T,M,nﬁ and (CAB)A,B:lA,T,m,n,ﬁ,typeA:typeB such that Cqp = Cpy, there ex-
ists a (complex-valued) pluriharmonic function, h, defined on a neighbourhood

of p satisfying (g—’ﬁ )= Cy and 0}.‘2,25'},3 ) = Cyp.

PrOOF. We choose complex local coordinates (y',y',...,1",)") in a
neighbourhood of the point p € N.

We shall look for pluriharmonic functions; in this case, without loss of
generality we can take N = C" and X = C. This is then easy, for example:

ha) =D Gy 33 Gy + 3 G+ Y Gy,
= = =1

n7=1
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where the C;, GG and C;;, G5 are complex constants, is pluriharmonic, since it
is the sum of a holomorphic function and an anti holomorphic function, and
has the prescribed first and second derivatives.

PrOPOSITION 8. Let v be a smooth map from a complex manifold M to a
complex manifold N. Then v is a pluriharmonic morphism if and only if it is a
+holomorphic map.

PrROOF. Let i : M — N be a pluriharmonic morphism, then it must satisfy
VO (¢ o) (Z, W) =0

for all Z, W e TM9 M and all local pluriharmonic functions ¢ : N — C.
We first compute the chain rule for the operator V14’
Recall that:

d,(d) © 1/’) = d(¢ © 7/})|T<1v0)M =dpo dw|r<l-0>M =dg¢o d/w

Hence
VO ($ o) (Z, W) =
PN (d (P o) (W) —d' (¢ o) (I W) =
PN (dp o dY(W)) —dg o d'p(dzW) =
("V a0 (W) + do (V7 (dw (W) = d o d' v (D W) =
(Vd) (d"W(Z), dy(W)) +dg["V7(dp(W)) — d'p(0;W)] =
[qub(d”w, d'p) +do (vw‘l)d’w)} Z,W).

If we choose Z, W to be the vectors 5?,, 0‘1 of the canonical frame of 70 Af:

g 0
v _
(10) d((b w) (327 821) -
96 [0 e 0 0t
yC |0z10z7 L9zt 9z
nn 8wAa—wB 82¢ NI-wC % _
821 o1 |9y49yB 4B 9yC

A,B=1,

% (921/JC N awAa—wB a2¢
0y€ 0z10z1 9z Oz dy40yB

The “if” part of the proposition follows from (10), since if ¢/ is holomorphic
then
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81/10‘81/)5_ B
821.%—0 Voc,ﬂ—l,...,n
2,/,C
;)ngzj vC=1,1,...,n7

Conversely, by Lemma 1 we can choose various different values for ‘M’ and
0) oyA (4 and B of the same type) at a glven point:
If we take 5 Ba —=0forall 4,B and 2 dy( = 0 for all C except for [y (we will

suppose ad‘f) = 1) then Equation (10) becomes:
82 1(]
vy,
071077

for all lhye{l,1,...,n ﬁz} If we take ¢ such that ;—@ 0 for all
ce{l1,...,nn} and 0y”6 =0 for all 4, B but for ag, B € {1,...,n} (we
will suppose that Do = 1), Equation (10) becomes:

0 )y 9y 90 Dy"‘(]
81/}’30 Yo
(12) 0zl Oz ’
which we obtain for all ag, Gy =1,...,n,i,j=1,...,m.
Either (i) for alla =1,...,n, and all i
aw(! B
ozl
or (ii) there exist ag and iy such that:
8wao
, 0
0zl 7
Then Equation (12) shows that:
oY
—=0
oz ’

foralla=1,...,nand all i.

Therefore at each point p € M, v is either antiholomorphic or holo-
morphic.

We shall use an argument of Siu [11] to prove that 1 is either holomorphic
or antiholomorphic on the whole of M.

Let

U={peM | dp)=0}
V={_{peM | oy(p) =0}
As
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vuvV =M,

either (3 # 0 or IS # (. Suppose that 13 £ () and let ¥ be the largest connected
open subset of M included in V.

If M =V then 1 1s holomorphic. Assume that M # V. Let p be a bound-
ary point of V. Let W be an open connected neighbourhood of p in M such
that:

1. there exists a holomorphic coordinate system (z') on some open neigh-
bourhood of W,

2. there exists a holomorphic coordinate system (w®) on some open
neighbourhood of 1(W).

Since 1 satisfies Equation (11):
821/}(1
(13) 0zi0z1
Vae{l,...,r} and Vi,j € {1,...,n}.

Applying the operator d; to the trace of (13) yields:

a0 a9 <e(Sloel s+ 3

JJ

62 ,(pnn
0210z

oyt
0z

82 wJ
7kdz1

)

where MA = -2 Zi,/’ g’%j)gﬁ and C is a positive constant.
Set
8 QU
v =ud+ lV
azk k

Then Equation (13) means that:

2
‘MAu;g

2 2 2 2
Z{’grad(u?)’ +‘grad(v§’)’ +’u§" +‘v§" }
By

on W. Applymg Aronszajn s umque contmuatlon Theorem [1] shows that
since u_e = vj =0on WnNV then u_ = v_ =0 on W.But V was supposed to
be max1mal therefore 1 is holomorphlc

The anti-holomorphic case is similar.

PROPOSITION 9. A pluriharmonic morphism from a Hermitian manifold to a
Kdhler manifold pulls back (local) pluriharmonic maps to (local) pluriharmonic
maps.

PrOOF. Let ©: M — N be a pluriharmonic morphism (i.e. a zholo-
morphic map) and ¢ : N — P a pluriharmonic map. Since N is Kéhler, ¢ is a
pluriharmonic map.
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The map ¢ o v is pluriharmonic if

VO (poy)Z,W)=0 vZ,WeTWOM.

(15) VOYd (poy)(Z, W) =

do oV Nd'Y(Z, W) + Vdo(d(Z), dp(W)) =
as shown in Proposition 8

Vdo(dv(Z), (W) =

Va2 O dE()) = do (¥ 1y (W)

Suppose that ¢ is holomorphic then diy)(W) € TUON, therefore

dg(dv(W)) = d'¢(dip(W))

and, as the bundle 7Y N — N is holomorphic,

de@)dw( W)= 8dw(7)d1/}( w).

Therefore the right-hand side of (15) can be written

VOV (dp(Z), dp(W),

which vanishes since ¢ is pluriharmonic.

1

2

3.
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