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PLURIHARMONIC MORPHISMS

E. LOUBEAU

Abstract

Pluriharmonic maps form an important class of harmonic maps which includes �holomorphic
maps. We study their morphisms, in particular the inter-relationships between (1,1)-geodesic,
pluriharmonic and �holomorphic maps. Then we characterise pluriharmonic morphisms be-
tween complex manifolds as �holomorphic maps. We make a special study of the situation
where the domain is Hermitian and the target is Ka« hler, pluriharmonic morphisms having an
extra property.

1. Introduction

One of the most important properties of harmonic maps is that, when map-
ping from a two-dimensional domain, the energy functional is invariant un-
der conformal changes of the metric on that domain. We can therefore talk
of harmonic maps from Riemann surfaces and their study has been prolific
(cf. [2,3]). As any Hermitian structure on a Riemann surface is Ka« hler, har-
monic maps from a Riemann surface are harmonic with respect to any
Ka« hler metric on the domain. Maps which generalise this property to higher
dimensions are called pluriharmonic maps. Harmonic morphisms between
Riemannian manifolds are maps which pull back germs of harmonic func-
tions to germs of harmonic functions. They were characterised independently
by B. Fuglede in [4] and T. Ishihara in [6] as horizontally weakly conformal
harmonic maps. A consequence of this result is that harmonic morphisms
pull back harmonic maps to harmonic maps as well.
Our aim is to generalise the idea of harmonic morphism to maps which

pull back pluriharmonic functions to pluriharmonic functions; we shall call
such mappings pluriharmonic morphisms. First, we recall some types of
Hermitian structures, concentrating on the geometrical interpretations of
their definitions. These results enable us to compare how and when the no-
tions of (1,1)-geodesic, pluriharmonicity and holomorphicity overlap. In
particular, we show that, for maps between Hermitian manifolds, the class
of �holomorphic maps is included in the class of pluriharmonic maps pre-
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cisely when the complex structure carried by the target manifold is Ka« hler.
We find that a necessary and sufficient condition for a map between complex
manifolds to be a pluriharmonic morphism is that it be a �holomorphic
map. Combining this characterisation of pluriharmonic morphisms with an
earlier result, we observe that pluriharmonic morphisms from Hermitian to
Ka« hler manifolds will pull back pluriharmonic maps to pluriharmonic maps.
I would like to thank J. C. Wood for painstakingly supervising this work

and I. Calinov and R. Pantilie for pointing out some mistakes.

2. Almost Hermitian manifolds.

Recall that an almost Hermitian manifold �M; J; g� is an even dimensional
manifold M2n equipped with an almost complex structure J and a Hermitian
metric g. On such a manifold we consider an adapted unitary frame
fe1; Je1; . . . ; en; Jeng. The complexified tangent space TCM splits into T �1;0�M
and T �0;1�M which are the eigenspaces of the endomorphism J with eigen-
values i and ÿi, respectively. We define f�j � 1��

2
p �ej ÿ iJej�gj�1;...;n to be a

unitary frame for T �1;0�M and f�| � 1��
2
p �ej � iJej�gj�1;...;n to be a unitary

frame for T �0;1�M. Let f�i; �{gi�1;...;n denotes the dual frame of f�i; �{g,
f�igi�1;...;n (resp. f�{gi�1;...;n) spans T �1;0��M (resp. T �0;1��M). We shall denote
by gi| the quantity g��i; �|�.
The fundamental 2-form ! is defined as:

! � i
2�

g���� ^��:�1�

Definition 1. An almost Hermitian manifold �M; J; g� is said to be:
1. (1,2)-symplectic if �d!�1;2 � 0, i.e. d!��; �; 
� � 0 for all �; �; 
 2

T �1;0�M.
2. Ka« hler if ! is closed, i.e. d! � 0 and the almost complex structure is

integrable.
3. cosymplectic if d�! � 0, where d� is the formal adjoint of d.

Remark 1. The names quasi-Ka« hler or �0 and semi-Ka« hler or almost semi-
Ka« hler are sometimes used for (1,2)-symplectic and cosymplectic, respectively
(cf. [10]). A list of sixteen different structures possible on an almost complex
manifold as well as their classification can be found in Gray and Hervella [5].
(1,2)-Symplectic and Ka« hler manifolds can also be characterised in a more

geometrical way:
If we denote by r the Levi-Civita connection then an almost Hermitian

manifold �M; J; g� is (1,2)-symplectic if and only if

rXT �1;0�M � T �1;0�M 8X 2 T �0;1�M;
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whilst it is Ka« hler if and only if

rXT �1;0�M � T �1;0�M 8X 2 TM:

Figure 1 on page 3 (based on that in [10]) shows how those different
structures intersect one another, in particular that an integrable (1,2)-sym-
plectic manifold is Ka« hler.

Figure 1. Intersection of the structures

The following standard proposition interprets the above definitions in
terms of the metric g and the Christoffel symbols ÿ I

JK with respect to a uni-
tary frame.

Proposition 1. [8] An almost Hermitian manifold �M; J; g� is
1. integrable if and only if ÿ�

�� � 0 8�; �; � � 1; . . . ; n.
2. (1,2)-symplectic if and only if ÿ�

��
� 0 8�; �; �.

3. Ka« hler if and only if J is integrable (equiv. ÿ�
�� � 0 8�; �; �), and (1,2)-

symplectic (equiv. ÿ�
�� � 0 8�; �; �) i.e. if and only if the only possibly non-

zero Christoffel symbols are ÿ�
�� and ÿ

�
��
.

4. cosymplectic if and only if g��ÿ�
�� � 0 for all � 2 f1; . . . ; ng.

3. Pluriharmonic Morphisms.

Let Nn be an almost Hermitian manifold with a local adapted frame
�#1; #1; . . . ; #n; #n� and Xr a Riemannian manifold with local coordinates
�$1; . . . ; $r�. We denote by r the Riemannian connection on X and by
NÿC

AB and XÿC
AB the Christoffel symbols on N and X

Definition 2. A map � from an almost Hermitian manifold Nn to a

pluriharmonic morphisms 167
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Riemannian manifold Xr is called (1,1)-geodesic (see [3]) if the (1,1)-part of
the second fundamental form of �, ��rd���1;1�, is zero, i.e.:

�rd��Z;W� � 0 8Z;W 2 T �1;0�N;�2�
where �r is the pull-back connection on T�M 
 �ÿ1TX .
Using the frame adapted to the almost complex structure on TN,

Equation (2) can be written:

@i |�
A ÿ Nÿ

C
i |@C�

A � Xÿ
A
JL@i�

J@|�
L � 0

8A 2 f1; . . . ; rg and 8i; j 2 f1; . . . ; ng;
where we use the notations

@C�
A for d�A�#C� and @i|�A for d�d�A�#i���#|�:

If we suppose N to be a Hermitian manifold with local complex coordinates
fy1; y1; . . . ; yn; yng then locally � satisfies:

@2�A

@yi@y|
ÿ NÿC

i|
@�A

@yC
� XÿA

JL
@�J

@yi
@�L

@y|
� 0�11G�

8A 2 f1; . . . ; rg and 8i; j 2 f1; . . . ; ng:

Proposition 2. [3] A (1,1)-geodesic map from an almost Hermitian mani-
fold to a Riemannian manifold is harmonic.

Definition 3. A smooth map from a complex manifold Nn to a Rie-
mannian manifold Xr satisfying:

r�0;1�d 0� � 0�4�
is called a pluriharmonic map ([12]), where

d 0� � d�
����
T �1;0�Nn

;

and

�r�0;1�d 0���Z;W� � �rZ�d 0��W�� ÿ d 0��@ZW� 8Z;W 2 T �1;0�Nn:

A map is a pluriharmonic map if and only if its restriction to any holo-
morphic curve is harmonic (see [9, Prop. 1.1]).
We remark that:

r�0;1�d 0� � 0, r�1;0�d 00� � 0:
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The expression for the left-hand side of (4) in a local frame is:

�r�0;1�d 0���#|; #i� �
@i |�

A � XÿA
JL@i�

J@|�
Lÿ �
$A:

Hence the equation for pluriharmonicity of a map is

@i |�
A � XÿA

JL@i�
J@|�

L � 0(PH)

8A 2 f1; . . . ; rg and 8i; j 2 f1; . . . ; ng:

Remark 2. In local frames, the difference between pluriharmonic maps
and (1,1)-geodesic maps is the extra terms of the type NÿC

i| @C�
I , which ap-

pear for (1,1)-geodesic maps.
If we suppose Nn to be a Ka« hler manifold, then by Proposition 1.3, those

terms disappear and the notions of (1,1)-geodesic maps and pluriharmonic
maps coincide.
A pluriharmonic map on a complex manifold N is harmonic with respect

to any Ka« hler metric on N and within this viewpoint can be seen as an ex-
tension of the notion of harmonic maps on surfaces (see Udagawa [12, 13] ).

Using Proposition 1 and the expressions of (1,1)-geodesic, pluriharmonic
and �holomorphic maps in adapted frames, we study when those three dif-
ferent concepts coincide.

Definition 4. By local we shall mean defined on an open subset.

Proposition 3. Let Nn and Xr be Hermitian manifolds, then the condition
that all (local) �holomorphic maps from Nn to Xr be pluriharmonic is equiva-
lent to Xr being Ka« hler. In particular, �holomorphic functions on a Hermitian
manifold are always pluriharmonic.

Proof. The equation for a pluriharmonic map is:

@2�A

@yi@y|
� XÿA

JL
@�J

@yi
@�L

@y|
� 0

8A 2 f1; 1; . . . ; r; rg and 8i; j 2 f1; . . . ; ng:
For a holomorphic map this reduces to the following equation:

XÿA
mp
@�m

@yi
@�p

@y|
� 0 8A 2 f1; 1; . . . ; r; rg and 8i; j 2 f1; . . . ; ng;�5�

By choosing holomorphic maps with prescribed first derivatives at a point,
Equation (5) shows that XÿA

mp � 0 8A;m; p, so that, by Proposition 1, X is
(1,2)-symplectic and so Ka« hler.
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The converse statement comes directly from the definitions.

Now we compare (1,1)-geodesic and �holomorphic.

Proposition 4. Let Nn and Xr be Hermitian manifolds, then the condition
that all (local) �holomorphic maps from N to X be (1,1)-geodesic is equivalent
to the condition that Nn and Xr be Ka« hler.

Proof. We equip Nn with the local coordinates �y1; y1; . . . ; yn; yn�.
Let � : Nn ! Xr be a holomorphic map, i.e.

@�i

@y|
� 0 8i � 1; . . . ; r; 8j � 1; . . . ; n:

We recall that � is a (1,1)-geodesic map if and only if:

@2�A

@yi@y|
ÿ NÿC

i|
@�A

@yC
� XÿA

JL
@�J

@yi
@�L

@y|
� 0�6�

8A 2 f1; 1; . . . ; r; rg and 8i; j 2 f1; . . . ; ng:
As we supposed � to be holomorphic, Equation (6) is equivalent to:

ÿNÿ k
i|
@�l

@yk
� Xÿ l

mp
@�m

@yi
@�p

@y|
� 0 8l 2 f1; . . . ; rg and 8i; j 2 f1; . . . ; ng;�7�

The proof consists of three steps: first we show that Nÿ k
i| � 0 8i; j; k such

that k 6� i or k 6� j, then we establish that Xÿ l
mp � 0 8l;m; p, and finally we

prove that Nÿ k
i| � 0 8i; j; k. We work at a point of N.

Step 1) Fix the indices l; i and j. Equation (7) is:

ÿNÿ k
i|
@�l

@yk
� Xÿ l

mp
@�m

@yi
@�p

@y|
� 0;

so choosing a holomorphic map � such that @�
A

@yI � �AlIk0 with k0 6� i or k0 6� j
(possible if n > 1), (7) becomes:

Nÿ k0
i| � 0;

which proves Step 1. We remark that if n � 1, any Hermitian metric on N is
Ka« hler (cf. [7]) so Nÿ k

i| � 0 8i; j; k.
Step 2) Consider Equation (7) when i 6� j. In this case, whichever value k

takes, either k 6� i or k 6� j. Because of Step 1) (and the remark for n � 1),
with those indices, (7) reads:

Xÿ l
mp
@�m

@yi
@�p

@y|
� 0:
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Fix m0; p0 and choose � holomorphic such that @�M

@yI � �Mm0
Ii � �Mp0

Ij . For this
map Equation (7) yields

Xÿ l
m0p0 � 0;

and this shows Step 2).
Step 3) Because of Step 2) Equation (7) now reads:

Nÿ k
i|
@�l

@yk
� 0:

Choosing a holomorphic map such that @�
M

@yI � �Ml0
Ik0

proves that

Nÿ k0
i| � 0 8k0; i; j

and in particular that

Nÿ k
kk
� 0 8k;

ending Step 3). This proves that if �holomorphic maps are (1,1)-geodesic
then Xr and Nn must be (1,2)-symplectic manifolds and therefore Ka« hler.
The converse assertion is clear from the definitions of (1,2)-symplectic
manifolds, (1,1)-geodesic and �holomorphic maps.

We now give an example where the notions of (1,1)-geodesic and plur-
iharmonic are distinct.

Example 1. The Hopf manifold (cf. [7, Vol. II]) is defined as
H � C n ÿ f0g=��� � �n > 1�, where �� is the group generated by the trans-
formation z 7! �z; � 2 Cÿ f0; 1g.
H is diffeomorphic to S1 � S2nÿ1, and is a compact Hermitian manifold

equipped with the metric

ds2 � 1Pn
k�1 zkzk

Xn
j�1

dzj 
 dz|:

Its fundamental Ka« hler form 
 is


 � ÿi
�
Pn

k�1 zkzk

Xn
j�1

dzj ^ dz|:

The manifold H is not Ka« hler since its first Betti number b1�H� is equal to
b1�S1 � S2nÿ1� which is 1, whereas the Betti numbers b2n�1 of a Ka« hler mani-
fold are even.
A simple computation shows that
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ÿ k
i | �

1
2 j z j2 �ijzk ÿ �ikzj

ÿ �
ÿ k
i | �

1
2 j z j2 �ijzk ÿ �jkz{

� �
therefore

@2�

@zi@z|
ÿ ÿ k

i|
@�

@zk
ÿ ÿ k

i|
@�

@zk
��8�

@2�

@zi@z|
� 1
2 j z j2 zj

@�

@zi
� z{

@�

@z|
ÿ �ij

X
k

zk
@�

@zk
� zk

@�

@zk

� �" #
:

If � is a (1,1)-geodesic function on H then

@2�

@zi@z|
ÿ ÿ k

i|
@�

@zk
ÿ ÿ k

i|
@�

@zk
� 0 8i; j � 1; . . . ; n:����

In the case where � is holomorphic Equation ����, for i 6� j, becomes:

zj
@�

@zi
� 0;

showing that � has to be constant.

We have shown

Proposition 5. Any local �holomorphic (1,1)-geodesic function on H is
constant.

Remark 3. Since H is Hermitian, any (non-constant) �holomorphic
function on H is pluriharmonic, therefore local pluriharmonic functions ex-
ist.

Finally we compare (1,1)-geodesic maps and pluriharmonic maps on Her-
mitian manifolds and the situation is what the last two propositions suggest:

Proposition 6. Let Nn be a Hermitian manifold and Xr a Ka« hler manifold,
then the condition ``a map from Nn to Xr, is a (local) (1,1)-geodesic map if and
only if it is pluriharmonic'' is equivalent to N being Ka« hler.

Proof. The definitions of (1,1)-geodesic map and pluriharmonic map for
� : Nn ! Xr coincide when:
Proof.

NÿC
i|
@�I

@yC
� 0 8I 2 f1; 1; . . . ; r; rg 8i; j 2 f1; . . . ; ng:�9�
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As Xr is Ka« hler, �holomorphic maps from Nn to Xr are pluriharmonic
(Proposition 3). We choose � holomorphic and such that

@�A

@yC
� �A�Ck0 ;

then Equation (9) reads:

Nÿ k0
i| � 0 8i; j 2 f1; . . . ; ng:

Since this holds for any k0 � 1; . . . ; n, N is (1,2)-symplectic and so Ka« hler
since integrable.

Remark 4. In Propositions 3, 4 and 6 the need for the integrability of the
complex structures on Nn and Xr is in the use of n linearly independent ho-
lomorphic functions as ``test functions'', the existence of these being equiva-
lent to the integrability of the structures.

Proposition 7. [9] Let �N; J; g� be a Hermitian manifold and �X ; h� an al-
most Hermitian manifold. Then �N; J; g� is cosymplectic if and only if any
pluriharmonic map � : �N; J; g� ! �X ; h� is harmonic.
Definition 5. We shall call  a pluriharmonic morphism if it pulls back

(local) pluriharmonic functions to (local) pluriharmonic functions, i.e. for all
functions � satisfying r�0;1�d 0� � 0 we have

r�0;1�d 0�� �  � � 0:

Remark 5. Since a complex-valued function is pluriharmonic if and only
if its real and imaginary parts are real-valued pluriharmonic functions, we
can choose to consider, in the above definition, real-valued or complex-va-
lued functions.

Lemma 1. Let N be a complex manifold. Given p 2 N and any constants
�CA�A�1;1;...;n;n and �CAB�A;B�1;1;...;n;n;typeA�typeB such that CAB � CBA, there ex-
ists a (complex-valued) pluriharmonic function, h, defined on a neighbourhood
of p satisfying @h

@yA�p� � CA and @2h
@yA@yB�p� � CAB:

Proof. We choose complex local coordinates �y1; y1; . . . ; yn; yn� in a
neighbourhood of the point p 2 N.
We shall look for pluriharmonic functions; in this case, without loss of

generality we can take N � C n and X � C. This is then easy, for example:

h�z� �
Xn
i�1

Ciyi � 1
2

Xn
i;j�1

Cijyiyj �
Xn
{�1

C{y{ � 1
2

Xn
{;|�1

C{|y{y|;
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where the Ci;C{ and Ci;j;C{| are complex constants, is pluriharmonic, since it
is the sum of a holomorphic function and an anti holomorphic function, and
has the prescribed first and second derivatives.

Proposition 8. Let  be a smooth map from a complex manifold M to a
complex manifold N. Then  is a pluriharmonic morphism if and only if it is a
�holomorphic map.

Proof. Let  : M ! N be a pluriharmonic morphism, then it must satisfy

r�0;1�d 0�� �  ��Z;W� � 0

for all Z;W 2 T �1;0�M and all local pluriharmonic functions � : N ! C.
We first compute the chain rule for the operator r�0;1�d 0.
Recall that:

d 0�� �  � � d�� �  �jT �1;0�M � d� � d jT �1;0�M � d� � d 0 :
Hence

r�0;1�d 0�� �  ��Z;W� �
�� rZ d 0�� �  ��W�� � ÿ d 0�� �  � @ZW

ÿ � �
�� rZ d� � d 0 �W�� � ÿ d� � d 0 @ZW

ÿ � �
�rd 00 �Z�d�
� �

d 0 �W�� � � d�  rZ d �W�� �ÿ �ÿ d� � d 0 @ZW
ÿ � �

rd�� � d 00 �Z�; d 0 �W�ÿ �� d�  rZ d �W�� � ÿ d 0 @ZW
ÿ �� � �

rd� d 00 ; d 0 � � � d� r�0;1�d 0 
� �h i

�Z;W�:

If we choose Z;W to be the vectors @
@zi;

@
@zj of the canonical frame of T �1;0�M:

r�0;1�d 0�� �  � @

@z|
;
@

@zi

� �
��10�

@�

@yC
@2 C

@zi@z|
� NÿC

JL
@ J

@zi
@ L

@z|

� �
�

Xn;n
A;B�1;1

@ A

@zi
@ B

@z|
@2�

@yA@yB
ÿ NÿC

AB
@�

@yC

� �
�

@�

@yC
@2 C

@zi@z|
� @ 

A

@zi
@ B

@z|
@2�

@yA@yB

The ``if'' part of the proposition follows from (10), since if  is holomorphic
then
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@ �

@zi
@ �

@z|
� 0 8�; � � 1; . . . ; n

@2 C

@zi@z|
� 0 8C � 1; 1; . . . ; n; n:

Conversely, by Lemma 1 we can choose various different values for @�
@yC and

@2�
@yB@yA (A and B of the same type) at a given point:
If we take @2�

@yB@yA � 0 for all A;B and @�
@yC � 0 for all C except for l0 (we will

suppose @�
@yl0
� 1) then Equation (10) becomes:

@2 l0

@zi@z|
� 0;

for all l0 2 f1; 1; . . . ; n; ng. If we take � such that @�
@yC � 0 for all

C 2 f1; 1; . . . ; n; ng and @2�
@yB@yA � 0 for all A;B but for �0; �0 2 f1; . . . ; ng (we

will suppose that @2�
@y�0@y�0

� 1), Equation (10) becomes:

@ �0

@z|
@ �0

@zi
� 0;�12�

which we obtain for all �0; �0 � 1; . . . ; n; i; j � 1; . . . ;m.
Either (i) for all � � 1; . . . ; n; and all i:

@ �

@zi
� 0

or (ii) there exist �0 and i0 such that:

@ �0

@zi0
6� 0:

Then Equation (12) shows that:

@ �

@z{
� 0;

for all � � 1; . . . ; n and all i.
Therefore at each point p 2M,  is either antiholomorphic or holo-

morphic.
We shall use an argument of Siu [11] to prove that  is either holomorphic

or antiholomorphic on the whole of M.
Let

U � p 2M j @ �p� � 0f g
V � p 2M j @ �p� � 0

� 	
:

As
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U [ V �M;

either
�
U 6� ; or �V 6� ;. Suppose that �V 6� ; and let eV be the largest connected

open subset of M included in V .
If M � eV then  is holomorphic. Assume that M 6� eV . Let p be a bound-

ary point of V . Let W be an open connected neighbourhood of p in M such
that:
1. there exists a holomorphic coordinate system �zi� on some open neigh-

bourhood of W ,
2. there exists a holomorphic coordinate system �w�� on some open

neighbourhood of  �W�.
Since  satisfies Equation (11):

@2 �

@zi@z|
� 0�13�

8� 2 f1; . . . ; rg and 8i; j 2 f1; . . . ; ng:
Applying the operator @k to the trace of (13) yields:

M�
@ �

@zk

� ����� ���� � C
X
i;j

@2 �

@zi@z|

���� �����X
j;L

@ L

@z|

���� �����X
j;J

@2 J

@zk@z|

���� ����
 !

;�14�

where M� � ÿ2Pi;j g
i| @2

@zi@z|
and C is a positive constant.

Set

@ �

@zk
� u�

k
� iv�

k
:

Then Equation (13) means that:

M�u�
k

��� ���2� M�v�
k

��� ���2� C0
X
�;j

grad�u�| �
��� ���2� grad�v�| �

��� ���2� u�|
��� ���2� v�|

��� ���2� �
on W . Applying Aronszajn's unique continuation Theorem [1] shows that
since u�| � v�| � 0 on W \ eV then u�| � v�| � 0 on eW . But eV was supposed to
be maximal therefore  is holomorphic.
The anti-holomorphic case is similar.

Proposition 9. A pluriharmonic morphism from a Hermitian manifold to a
Ka« hler manifold pulls back (local) pluriharmonic maps to (local) pluriharmonic
maps.

Proof. Let  : M ! N be a pluriharmonic morphism (i.e. a �holo-
morphic map) and � : N ! P a pluriharmonic map. Since N is Ka« hler,  is a
pluriharmonic map.
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The map � �  is pluriharmonic if

r�0;1�d 0�� �  ��Z;W� � 0 8Z;W 2 T �1;0�M:

But

r�0;1�d 0�� �  ��Z;W� ��15�
d� � r�0;1�d 0 �Z;W� � rd��d �Z�; d �W�� �

as shown in Proposition 8

rd��d �Z�; d �W�� �

rd �Z�d��d �W�� ÿ d� rd �Z�d �W�
� �

:

Suppose that  is holomorphic then d �W� 2 T �1;0�N, therefore

d��d �W�� � d 0��d �W��
and, as the bundle T �1;0�N ! N is holomorphic,

rd �Z�d �W� � @d �Z�d �W�:
Therefore the right-hand side of (15) can be written

r�0;1�d 0��d �Z�; d �W��;
which vanishes since � is pluriharmonic.
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