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POSITIVE DEFINITE KERNELS ON FREE PRODUCT
SEMIGROUPS AND UNIVERSAL ALGEBRAS

GELU POPESCU

Abstract

A method to construct positive definite operator-valued kernels on free product semigroups
amalgamated over the identity is presented. A complete description of the structure of positive
definite Toeplitz kernels on free products of semigroups is given.
In particular, these results leed to the generalized disc algebra an�G��; n � 2; 3; . . . ;1; and

the reduced C�-algebra C�r ��nG��, where G� is the unital semigroup of nonnegative elements of
an additive subgroup G of real numbers. The completely bounded (resp. contractive) re-
presentations of an�G��; n � 2; 3; . . . ;1; on a Hilbert space are characterized when G� is
commensurable.
As consequences, we obtain von Neumann type inequalities, isometric (resp. unitary) dila-

tions, for a large class of semigroups of operators on Hilbert spaces.

1. Introduction and preliminaries

Let P be a unital semigroup with neutral element e and let B�h� be the al-
gebra of all bounded operators on a Hilbert spaceh. A hermitian operator-
valued kernel on P is a map

K : P � P! B�h�
with the property that K��; !� � K�!; ��� ��; ! 2 P�. If

Xk
i;j�1
hK��i; �j�hj; hii � 0

for any k 2 N, for any h1; . . . ; hk 2h, and �1; . . . ; �k 2 P, then K is said to
be positive definite. A kernel K on P is called Toeplitz if K�e; e� � Ih and
K���; �!� � K��; !� for any �; �; ! 2 P.
Let Pi �i 2 I � f1; 2; . . .g� be unital semigroups and let P :� �Pi be the free

product semigroup amalgamated over the identity. For any hermitian op-
erator-valued kernels Ki : Pi � Pi ! B�h� �i 2 I�, we define a free product
kernel K :� �Ki on P such that K��; !� � K�!; ��� ��; ! 2 P� and
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K jPi�Pi
� Ki for any i 2 I :

We show in Section 2 that if Ki �i 2 I� are positive definite Toeplitz kernels
on semigroups, then the free product kernel K has the same properties. This
extends Bozejko's result concerning positive definite operator-valued func-
tions on free products of groups [B].
In Section 3, we study the structure of positive definite Toeplitz kernels on

semigroups, extending the Naimark dilation theorem ([N], [SzF]) to our set-
ting.
The results of these two sections are combined in order to obtain isometric

(resp. unitary) representations for free products of semigroups. Certain con-
sequences of these results are considered in the next sections.
Let G be a discrete subgroup of the additive group of real numbers and G�

be the unital semigroup of nonnegative elements of G. Let
fVi�s�gs2G� � B�k� �i � 1; 2; . . . ; n� be n orthogonal semigroups of iso-
metries, i.e.,

Vi�0� � Ik; Vi�s� t� � Vi�s�Vi�t�
for any s; t 2 G�; i � 1; 2; . . . ; n, and such that

V1�s�V1�s�� � � � � � Vn�s�Vn�s�� � Ik

for any s 2 G�nf0g. Here, n � 1; 2; . . . ;1 and by abusing notations, when
n � 1 we meen a sequence of semigroups. We denote by C��fVi�s�g the C�-
algebra generated by the isometries Vi�s�; i � 1; 2; . . . ; n; s 2 G�. This C�-
algebra has been studied by many authors in various particular cases. Co-
burn ([C1], [C2]) studied the C�-algebra generated by one isometry (this
corresponds to the case G� � N; n � 1) and Douglas [Do] proved that the
C�-algebra generated by one semigroup of isometries fV1�s�gs2G� is either a
quotient of C�Ĝ� or a generalized Toeplitz algebra. The case when
G� � N; n � 2; 3; . . . ;1, was studied by Cuntz [Cu]. In [D1], Dihn con-
sidered the case when G� is a countable dense subsemigroup of �0;1� and
n � 2; 3; . . . ;1.
The C�-algebras C��fVi�s�g�, with G� dense, are special cases of a family

of C�-algebras arising naturally from the Arveson-Powers-Robinson index
theory of semigroups of endomorphisms of type I factors ([Ar2], [D2]).
In Sections 4, 5, we study the closed nonselfadjoint algebra generated by

Vi�s�; i � 1; 2; . . . ; n; s 2 G�, where G� is commensurable and
n � 2; 3; . . . ;1.
Define the free product semigroup

�nG� :� G�1 � � � � � G�n ;
where G�i is an isomorphic copy of G� for any i � 1; 2; . . . ; n. Let an�G�� be
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the closed nonselfadjoint algebra on `2��nG�� generated by the operators of
left multiplication by elements of �nG�, and let C�r ��nG�� be the C�-algebra
generated by them. Notice that, in the particular case when
G� � Z� � f0; 1; 2; . . .g; an�Z�� is the noncommutative disc algebra an in-
troduced in [Po1] (see also [Po2]), and C�r ��nZ�� � C��S1; . . . ;Sn� is the ex-
tension through compacts of the Cuntz algebra on �n � 2� [Cu].
We prove in Section 5 thatan�G�� is the universal algebra generated by n

semigroups of contractions fTi�s�gs2G� � B�h� �i � 1; 2; . . . ; n� such that

T1�s�T1�s�� � � � � � Tn�s�Tn�s�� � Ih�1:1�
for any s 2 G�nf0g.
It is clear that a sequence of semigroups of contractions

t � fTi�s�gs2G� � B�h�; i � 1; 2; . . . ; n, satisfying (1.1), gives rise to a
contractive representation

�� : �nG� ! B�h�
by setting

�� �g� � T�g� � Ti1�ti1� � � �Tik�tik�
if g � ti1 � ti2 � � � � � tik 2 �nG�; with i1 6� i2 6� � � � 6� ik, i1; . . . ; ik 2 f1; 2; . . . ; ng,
and �� �0� � Ih. Let p��nG�� be the set of formal linear combinations of ele-
ments of �nG� with the obvious algebra structure. An element p 2 p��nG��
has the form

p �
X
finite

agg; ag 2 C; g 2 �nG�:

Define ~�� : p��nG�� ! B�h� by
~���p� �

X
ag�� �g�; p �

X
finite

agg:

We prove in Section 4 that if G� is commensurable, then the contractive re-
presentation �� admits a minimal isometric dilation, i.e., there is a Hilbert
space k �h and an isometric representation � : �nG� ! B�h� determined
by semigroups of isometries fVi�s�gs2G� � B�k�; i � 1; 2; . . . ; n, satisfying
the properties:
(i) V1�t�V1�t�� � � � � � Vn�t�Vn�t�� � Ik; for any t 2 G�nf0g;
(ii) �� �g� � Ph��g�jh; g 2 �nG�;
(iii) k � Wg2�nG� ��g�h:

Moreover, the minimal isometric dilation satisfying these properties is
uniquely determined up to an isomorphism. Using the results from Sections
2, 3, we extend this result to a more general setting.
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In Section 5, we prove the following extension of the von Neumann in-
equality ([vN], [Po1])

k~�� �p�k � kpkC�r ��nG�� � kpkC���nG�; p 2 p��nG��;�1:2�
where any polynomial p is viewed as an element of the reduced C�-algebra
C�r ��nG�� (resp. the full group C�-algebra C���nG�). Notice that in the par-
ticular case when G� � Z� we find the noncommutative von Neumann in-
equality proved in [Po1] (see also [Po2], [Po4]). Moreover, the inequality
(1.2) is extended to matrices.
Let us remark that all the results of this paper hold true for n � 1 in a

slightly adapted version.
In a subsequent paper we will study the generalized disc algebra an�G��

in a more general setting.

2. Positive definite kernels on free products of semigroups

Let P1;P2 be unital semigroups and let P :� P1 � P2 be the unital free pro-
duct semigroup amalgamated over the identity e. We can assume that
P1 \ P2 � feg. If x 2 Pnfeg, then it has the unique representation

x � �1;i1�2;i2 � � ��k;ik�2:1�
where �j;ij 2 Pijnfeg; ij 2 f1; 2g; ij 6� ij�1; j � 1; 2; . . . ; kÿ 1:
Let us introduce the block length function j j on the free product semi-

group P setting jej � 0 and jxj � k if x 2 P is of the form (2.1). For each
r � 1; 2; . . . ; jxj, let sr�x� be the rth factor in the representation (2.1) of x.
Notice that we have

x � s1�x�s2�x� � � � sjxj�x�:
Let Ki : Pi � Pi ! B�h� �i � 1; 2� be kernels such that Ki�!i; �i� �

Ki��i; !i�� for any !i; �i 2 Pi. In the following we will define a kernel

K : P � P! B�h�
such that K��; !� � K�!; ��� ��; ! 2 P� and K jPi�Pi

:� Ki �i � 1; 2�. If
x 2 Pnfeg has the representation (2.1) we define

K�e; x� :� Ki1�e; �1;i1� � � �Kik�e; �k;ik�
and

K�x; e� :� K�e; x�� � Kik��k;ik ; e� . . .Ki1��1;i1 ; e�:
Let !; � 2 Pnfeg be such that s1�!� 6� s1���. We have two subcases.
If fs1�!�; s1���g � Pi �i � 1; 2� we define
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K�!; �� :� K�s2�!� � � � sj!j�!�; e�Ki�s1�!�; s1����K�e; s2��� � � � sj�j����:
If fs1�!�; s1���g 6� Pi �i � 1; 2� then we set

K�!; �� :� K�!; e�K�e; ��:
Now, let !; � 2 Pnfeg be such that s1�!� � s1���. Let r be the maximum

natural number such that si�!� � si��� for any i � 1; 2; . . . ; r. Define

K�!; �� :�

K�sr�1�!� � � � sj!j�!�; sr�1��� � � � sj�j����; if r < minfj!j; j�jg
K�e; sr�1��� � � � sj�j����; if r � j!j < j�j
K�sr�1�!� � � � sj!j�!�; e�; if r � j�j < j!j
Ih; if r � j!j � j�j:

8>>><>>>:
Since K jPi�Pi

� Ki �i � 1; 2� and Ki�!i; �i� � Ki��i; !i�� for any !i; �i 2 Pi,
one can see that the kernel K , defined above, has the property
K�!; �� � K��; !�� for any !; � 2 P. Notice also that if Ki �i � 1; 2� are
Toeplitz kernels, then K is also a Toeplitz kernel. The kernel K is denoted by
K1 � K2 and called the free product of K1 and K2.
Let S1;S2 be two sets such that S1 \ S2 � fx0g, and let K1;K2 be kernels

on S1;S2, respectively, such that K1�x0; x0� � K2�x0; x0� � I . Following [B],
we define a kernel K on S1 [ S2 in the following way:
(1) K jSi�Si � Ki �i � 1; 2�;
(2) (Markov property) For si 2 Si �i � 1; 2�

K�s1; s2� :� K�s1; x0�K�x0; s2� and K�s1; s2� � K�s2; s1��:
The kernel K is denoted by K1 �Mx0 K2 and called the Markov product of K1

and K2.
Let us recall an important result of Bozejko [B] that will be used in what

follows.

Lemma 2.1 (Bozejko). If K1;K2 are positive definite kernels on S1;S2, re-
spectively, and Ki�x; x� � I for all x 2 S1 [ S2, then the Markov product
K � K1 �Mx0 K2 is also a positive definite kernel.

Theorem 2.2. Let Pi �i � 1; 2� be unital semigroups. If Ki : Pi � Pi !
B�h� are positive definite kernels and Ki��i; �i� � Ih for any �i 2 Pi, then the
free product K1 � K2 is a positive definite kernel on P1 � P2.

Proof. Since P :� P1 � P2 is the free product semigroup amalgamated
over the identity e, we can assume that P1 \ P2 � feg. Consider the follow-
ing sets: X0 � P1; Y0 � P2; and for any k � 1; 2; . . . ;
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X2kÿ1 �
[

�i2P1nfeg
�i2P2nfeg

f�1�1�2 � � ��kÿ1�kP2g;

X2k �
[

�i2P1nfeg
�i2P2nfeg

f�1�1�2 � � ��k�kP1g

Y2kÿ1 �
[

�i2P1nfeg
�i2P2nfeg

f�1�1 � � ��kÿ1�kP1g;

Y2k �
[

�i2P1nfeg
�i2P2nfeg

f�1�1�2 � � ��k�kP2g:

Define also X � S1j�0 Xj and Y � S1j�0 Yj . Notice that P1 � P2 � X [ Y and
X \ Y � feg. If x 2 Xnfeg and y � Ynfeg then s1�x� 6� s1�y�, s1�x� 2 P1 and
s1�y� 2 P2. According to the definition of K :� K1 � K2, we infer that

K�x; y� � K�x; e�K�e; y� � K jX�X �Me K jY�Y �x; y�:
Notice that this relation also holds if x � e or y � e. If we can prove that the
kernels K jX�X and K jY�Y are positive definite, then, according to Lemma
2.1, the kernel K is positive definite.
Let us prove now that K jX�X is positive definite. For each m � 0; 1; 2; . . .

consider Zm �
Sm

j�0 Xj. Since X �
S1

m�0 Zm and Z0 � Z1 � � � � it is enough to
prove that KjZm�Zm

is positive definite for any m � 0; 1; 2; . . ..
We proceed by induction. Notice that K jZ0�Z0

� K jP1�P1
� K1 is positive

definite. Assume that KjZm�Zm
is positive definite and let us prove that

K jZm�1�Zm�1 is positive definite.
Suppose that m � 2kÿ 1 is fixed (the proof is similar in the case when

m � 2k). Notice that K jZ2k�Z2k
is positive definite if and only if K j�n��n

is
positive definite for any n � 1; 2; . . ., where

�n :� Z2kÿ1
[ [n

r�1
�
�r�
1 �

�r�
1 � � ���r�k ��r�k P1

 !
;�2:2�

and �
�r�
i 2 P1nfeg; ��r�i 2 P2nfeg; i � 1; 2; . . . ; k; r � 1; 2; . . . ; n, are fixed

such that

�
�r1�
1 �

�r1�
1 � � ���r1�k �

�r1�
k 6� ��r2�1 �

�r2�
1 � � ���r2�k �

�r2�
k ;

if r1; r2 2 f1; 2; . . . ; ng and r1 6� r2.
We proceed by induction over j � 0; 1; . . . ; n. Assume that K j�j��j

is posi-
tive definite for a fixed j such that 0 � j � nÿ 1, where �0 � Z2kÿ1. We will
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show that K j�j�1��j�1 is positive definite. Notice that �j \ fyj�1P1g � yj�1,
where

yj�1 � ��j�1�1 �
�j�1�
1 � � ���j�1�k �

�j�1�
k ;

and �j�1 � �j [ fyj�1P1g. Since K�yj�1!; yj�1�� � K1�!; �� for any !; � 2 P1,
it follows that K jfyj�1P1g�fyj�1P1g is positive definite. Let us prove now that

K j�j�1��j�1 � K j�j��j
�Myj�1 K jfyj�1P1g�fyj�1P1g;�2:3�

that is,

K��j; yj�1p1� � K��j; yj�1�K�yj�1; yj�1p1��2:4�
for any �j 2 �j and p1 2 P1. We have two cases:
(i) �j 2 Z2kÿ1;
(ii) �j � yrp01, where yr � ��r�1 ��r�1 � � ���r�k ��r�k ; 1 � r � j and p01 2 P1.

Case (i). We further divide the proof into two subcases:
(a) s1��j� 6� s1�yj�1p1�;
(b) s1��j� � s1�yj�1p1�.
Subcase (a). Since fs1��j�; s1�yj�1�g � P1nfeg, according to the definition

of K , we have

K��j; yj�1p1�
� K�s2��j� � � � sj�j j��j�; e�K1�s1��j�; s1�yj�1��K�e; s2�yj�1� � � � sjyj�1j�yj�1�p1�
� K�s2��j� � � � sj�j j��j�; e�K1�s1��j�; s1�yj�1��K�e; s2�yj�1� � � �

sjyj�1j�yj�1��K�e; p1�
� K��j ; yj�1�K�e; p1�
� K��j ; yj�1�K�yj�1; yj�1p1�:

Therefore, the relation (2.4) holds in this subcase.
Subcase (b). Notice that j�j j � 2k and 2k � jyj�1p1j � 2k� 1. Let q be the

maximum natural number such that si��j� � si�yj�1p1� for any i � 1; 2; . . . ; q.
This shows that

�j � s1��j� � � � sq��j� � sq�1��j� � � � sj�j j��j�
and

yj�1P1 � s1��j� � � � sq��j� � sq�1�yj�1� � � � sjyj�1j�yj�1�p1
with fsq�1��j�; sq�1�yj�1�g � Pi for some i � 1; 2, and sq�1��j� 6� sq�1�yj�1�.
Using the definition of K, we have
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K��j; yj�1p1� � K�sq�1��i� � � � sj�j j��j�; sq�1�yj�1� � � � sjyj�1j�yj�1�p1�:
On the other hand, this is equal to

K�sq�1��j� � � � sj�j j��j�; sq�1�yj�1� � � � sjyj�1j�yj�1��K�e; p1�
� K��j; yj�1�K�yj�1; yj�1p1�;

which proves that the relation (2.4) holds in subcase (b), therefore in case (i).
Case (ii). We divide the proof into two subcases:
(�) s1�yr� 6� s1�yj�1�;
(�) s1�yr� � s1�yj�1�.
Subcase (�). Since fs1�yr�; s1�yj�1�g � P1 and jyrj � jyj�1j � 2k, we have

K��j; yj�1p1� � K�yrp01; yj�1p1�
� K�s2�yr� � � � s2k�yr�p01; e�K1�s1�yr�; s1�yj�1��K�e; s2�yj�1� � � � s2k�yj�1��K�e; p1�
� K�yrp01; yj�1�K�e; p1�
� K��i; yj�1�K�yj�1; yj�1p1�:
Therefore, the relation (2.4) is satisfied.
Subcase (�). Since yr 6� yj�1, there exists 1 � q � 2kÿ 1 such that

si�yr� � si�yj�1� for any i � 1; 2; . . . ; q, and sq�1�yr� 6� sq�1�yj�1�. Assume that
q � 2kÿ 2. Since fsq�1�yr�; sq�1�yj�1�g � P1 (resp. P2) if q is even (resp. q is
odd) we have

K��j; yj�1p1� � K�yrp01; yj�1p1�
� K�sq�1�yr� � � � s2k�yr�p01; sq�1�yj�1� � � � s2k�yj�1�p1�
� K�sq�2�yr� � � � s2k�yr�p01; e�K�sq�1�yr�; sq�1�yj�1��K�e; sq�2�yj�1� � � �

s2k�yj�1�p1�
� K�yrp01; yj�1�K�e; p1� � K�yrp01; yj�1�K�yj�1; yj�1p1�
� K��j; yj�1�K�yj�1; yj�1p1�;

proving that the relation (2.4) holds. The case q � 2kÿ 1 can be treated si-
milarly. This completes the proof of subcase (�) and also case (ii). Summing
up the above results, we conclude that the relation (2.3) is true. Since the
kernels K j�j��j

and K jfyj�1P1g�fyj�1P1g are positive, using Lemma 2.1, we infer
that K j�j�1��j�1 is positive definite. The induction argument shows that
K j�n��n

is positive definite for any n � 1; 2; . . .. This shows that K jZ2k�Z2k
is

positive definite and completes our inductive argument to prove that
K jZm�Zm

is positive definite for any m � 0; 1; 2; . . .. According to the remarks
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considered at the beginning of this proof, we infer that KjX�X is positive
definite.
Similarly, one can prove that K jY�Y is positive definite. Since

K � K jX�X �Me K jY�Y ;
using Lemma 2.1 again, we deduce that K is positive definite on P1 � P2.
This completes the proof.

Corollary 2.3. Let Pi �i � 1; 2� be unital semigroups. If Ki : Pi � Pi !
B�h�, Ki�e; e� � Ih, are positive definite Toeplitz kernels, then the free pro-
duct K1 � K2 is a positive definite Toeplitz kernel on P1 � P2.

Let Gi; i 2 I � f1; 2; . . .g; be groups and G � �i2IGi be the free product
group. Consider ui : Gi ! B�h� such that ui�e� � Ih. We define the free
product function u :� �i2I ui in the following way. If x 2 G; x 6� e and x has
the unique representation

x � a1;i1 � � � ak;ik ;
where aj;ij 2 Gij and ij 6� ij�1; j � 1; . . . ; kÿ 1, then we set

u�x� �
Yk
i�1

uij �aj;ij �;

and u�e� � Ih. Let us recall that a function f : G! B�h� is positive definite
if the kernel Kf �y; x� � f �yÿ1x� is positive definite in the sense of Section 1.

Corollary 2.4 (Bozejko). Let Gi �i 2 I� be groups. If ui : Gi ! B�h�,
ui�e� � Ih, are positive definite functions, then the free product function
u � �i2I ui is positive definite on the free product group G � �i2IGi.

Proof. According to Corollary 2.3, it is enough to prove that the kernel
Ku is equal to the free product kernel of Kui�i 2 I�, i.e., Ku � �Kui in the sense
of the definition given in the beginning of this section. This is a straightfor-
ward computation, so we omit it.

Let us consider some examples of positive definite kernels on semigroups.

Example 2.5. Let N � f1; 2; . . .g be the additive semigroup of natural
numbers and T 2 B�h�. Define the kernel KT : N�N! B�h� by

KT �n;m� �
Tmÿn ; if m > n
T �nÿm ; if m < n
Ih ; if m � n:

8<:
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It is well-known that KT is positive definite if and only if T is a contraction
(see [SzF]).

Example 2.6. Let R� be the additive unital semigroup of positive real
numbers and let � � fT�t�gt�0 � B�h� be a strongly continuous semigroup
of contractions. Define K� : R� � R� ! B�h� by

K� �t; s� �
T�sÿ t� ; if s > t

T�tÿ s�� ; if s < t
Ih ; if s � t:

8><>:
The Toeplitz kernel K� is positive definite [SzF].

Example 2.7. Let F�n be the unital free semigroup on n generators:
s1; . . . ; sn. Consider T1; . . . ;Tn 2 B�h� and set T�!� :� Ti1 � � �Tik for any
! � si1 � � � sik , and T�e� � Ih. Let K�T1;...;Tn� : F�n � F�n ! B�h� be the Toe-
plitz kernel defined by

K�T1;...;Tn���; !� �
T��� ; if ! � �� for some � 2 F�n
T���� ; if � � !� for some � 2 F�n
0 ; otherwise.

8><>:
It was proved in [Po3] that K�T1;...;Tn� is positive definite if and only if the
operator matrix �T1; . . . ;Tn� is a contraction. Let us remark that

K�T1;...;Tn� 6� KT1 � � � � � KTn :

The following example shows that one can define many different positive
definite Toeplitz kernels on the unital free semigroup on n generators.

Example 2.8. Let n; n1; n2; . . . ; nk 2 f1; 2; . . .g such that n � n1 � n2 � . . .�
nk, and consider fTijgi�1;2;...;k

j�1;2;...;ni
� B�h� satisfying the relation

Ti1T �i1 � � � � � TiniT
�
ini � Ih; i � 1; 2; . . . ; k:

According to Corollary 2.3, the Toeplitz kernel

K � K�T11;...;T1n1 � � � � � � K�Tk1;...;Tknk �

is positive definite on F�n .
Other examples of positive definite Toeplitz kernels on free semigroups

are considered in [Po3], [Po4], and also in Section 4.

3. The structure of positive definite Toeplitz kernels

Let P be a unital semigroup and let K : P � P! B�h� be an operator-
valued kernel such that K�e; e� � Ih. An isometric representation of P on a
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Hilbert space k is a function V : P! B�k�, where values are isometric
operators on k, and such that V�e� � Ik, V�xy� � V�x�V�y� for any
x; y 2 P. We will denote such a semigroup of isometries by fV�x�gx2P. We
say that K has a Naimark dilation if there is a Hilbert space k �h and
fV���g�2P a semigroup of isometries onk such that

K��; !� � PhV����V�!�jh for any �; ! 2 P;�3:1�
where Ph is the orthogonal projection ofk ontoh. The Naimark dilation
is called minimal ifk � W�2P V���h.

Definition 3.1. Let K : P � P! B�h� be an operator-valued kernel. We
say that
(i) K is �-Toeplitz �� 2 P� if

K���; �!� � K��; !�(T� �
for any �; ! 2 P;
(ii) K is Toeplitz if it is �-Toeplitz for any � 2 P;
(iii) K is �-bounded �� 2 P� if there exists M� > 0 such thatX

�;!2P
hhK���; �!�h!; h�i �M�

X
�;!2P
hhK��; !�h!; h�i(M� �

for any finitely supported sequence fh�g�2P inh;
(iv) K is bounded if it is �-bounded for any � 2 P;
(v) K is uniformly bounded if it is bounded and

sup
�2P

M� <1:

Notice that if K is Toeplitz, then it is also uniformly bounded.

In what follows we extend the Naimark dilation theorem to our setting.
The proof is modeled on the ideas of the classical result [N] and also [Po3].

Theorem 3.2. Let P be a unital semigroup and let K : P � P! B�h� be an
operator-valued kernel such that K�e; e� � Ih. Then K is a positive definite
Toeplitz kernel if and only if it admits a minimal Naimark dilation, that is,
there is a Hilbert space k �h and fV���g�2P a semigroup of isometries on
k such that

K��; !� � PhV����V�!�jh for any �; ! 2 P;
andk � W�2P V���h. In this case its minimal Naimark dilation is unique up
to an isomorphism.
Moreover, if P is a topological semigroup and K��; !� is weakly continuous
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with respect to each variable �; ! 2 P, then fV���g�2P is also a weakly con-
tinuous function of �.

Proof. Assume K : P � P! B�h� is a positive definite Toeplitz kernel.
Let k0 be the set of all finitely supported sequences fh�g�2P in h. Define
the bilinear form h�; �i onk0 by

hfh!g!2P; fk�g�2Pi :�
X
!;�2P
hK��; !�h!; k�ih:

Since K is positive definite, h�; �i is positive semi-definite. Consider

n � fk 2k0 : hk; ki � 0g
and the quotient space k0=n. Let k be the Hilbert space obtained by
completing k0=n with the induced inner product. For each � 2 P let us de-
fine the operator V��� onk0 by

V���fh�g�2P �
�X
�2P

����t�h�
�
t2P
;

where ����t� � 1 if t � �� and ����t� � 0 otherwise. It is easy to see that V���
is well-defined onk0, V�e� � Ik0 , and V�!�V��� � V�!�� for any !; � 2 P.
Let us show that V��� is an isometry on k0. Indeed, since K is a Toeplitz
kernel, i.e., K���; �!� � K��; !� for any �; �; ! 2 P, we have

hV����fh!g�;V����fh0�g�i �
X
s;t2P
hK�s; t�

X
!2P

��!�t�h!;
X
�2P

����s�h0�i�3:2�

�
X
�;!2P
hK���; �!�h!; h0�i �

��� X
�;!2P
hK��; !�h!; h0�i

� hfh!g; fh0�gi:
Therefore, the operator V��� extends by continuity to an isometry on k,
denoted also by V���, and fV���g�2P is an isometric representation of P.
Embedh ink by setting h � f�e�t�h�gt2P where

�e�t� �
1; if t � e
0; if t 6� e:

�
This identification is allowed since it preserves the linear and metric struc-
ture ofh. Indeed we have

h�e�s�h; �e�t�h0ik �
X
t;s2P
hK�t; s��e�s�h; �e�t�h0ih

� hK�e; e�h; h0ih � hh; h0ih:
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For any h; h0 2h and �; ! 2 P we have

hV�!��V���h; h0ik � hf���t�hg; f�!�t�h0gik
�
X
t;s2P
hK�t; s����s�h; �!�t�h0ih

� hK�!; ��h; h0ih;
which implies PhV�!��V���jh � K�!; �� for any !; � 2 P.
Let us observe that every element ink0 can be considered as a finite sum

of terms of type f���t�hgt2P �h 2h� and hence every element k 2k0 can be
decomposed into a finite sum of terms of the type V���h; � 2 P; h 2h.
This impliesk � W�2P V���h, i.e., the Naimark dilation is minimal.
To prove the uniqueness, let fV 0�s�gs2P be another minimal dilation of K

on a Hilbert space k0 �h. One can prove that there is a unitary operator
W :k!k0 such that WV�!� � V 0�!�W for any ! 2 P, and W jh � Ih.
To see this, it is sufficient to define

W
Xfinite

�2P
V���h�

 !
�
Xfinite

�2P
V 0���h� �h� 2h�:�3:3�

Since hV���h;V�!�h0ik � hK�!; ��h; h0ih for any h; h0 2h and �; ! 2 P,
one can easily see that the operator W defined by (3.3) is correctly defined,
isometric, and in view of minimality, it extends to a unitary operator be-
tweenk andk0.
To prove the converse of this theorem, let fV���g�2P be an isometric re-

presentation of P on a Hilbert space k �h. Assume that K : P � P!
B�h� is the kernel defined by

K�!; �� � PhV�!��V���jh; for any !; � 2 P:
It is easy to see that K�e; e� � Ih; K�!; �� � K��; !�� and K�s!; s�� �
K�!; �� for any s; !; � 2 P. Since for any finitely supported sequence
fh!g!2P �h X

�;!2P
hK��; !�h!; h�i �

X
�;!2P
hPhV����V�!�h!; h�i

�




X
!2P

V�!�h!




2 � 0;

we infer that K is a positive definite Toeplitz kernel.
It remains to consider the case when P is a topological semigroup and

K��; !� is weakly continuous with respect to each variable �; ! 2 P. Since
kV���k � 1 for any � 2 P and k � W�2P V���h, it is enough to prove that
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hV�s�V���h;V���h0i is a continuous function of s for any h; h0 2h and
�; ! 2 P. Notice that

hV�s�V���h;V���h0ik � hPhV����V�s��h; h0i � hK��; s��h; h0i
and this is a continuous function of s. This completes the proof.

A closer look at (3.2) reveals that V��� is an isometry due to the only fact
that K is �-Toeplitz. If we drop out the condition �T� �, then V��� is a
bounded operator on k0 if and only if K is �-bounded. Notice that if we
replace the equality ��� from (3.2) by the inequality �M�� the proof of The-
orem 3.2 still works. Consequently, if K is a positive definite bounded kernel
in Theorem 3.2, then fV���g�2P is a semigroup of bounded operators. The
last part of the theorem remains true if we assume that K is uniformly
bounded.

Remark 3.3. Let P be a unital semigroup and let K : P � P! B�h� be a
positive definite kernel with K�e; e� � Ih. Let fV���g�2P � B�k0� be the as-
sociated semigroup of operators, as in the proof of Theorem 3.2. Then the fol-
lowing statements are true:
(i) V��� is bounded if and only if K is �-bounded;
(ii) V��� is an isometry if and only if K is �-Toeplitz;
(iii) V���k0 ? V�s�k0 �� 6� s� if and only if K���; s!� � 0 for any

�; ! 2 P;
(iv) If K is �-Toeplitz and �P � P, then V��� is unitary;
(v) If P is a �-semigroup and K is �-bounded, then V���� � V���� if and

only if

K��; �!� � K����; !��3:4�
for any �; ! 2 P. Moreover, if (3.4) holds and ��� � e, then K is �-Toeplitz, so
V��� is an isometry.
Corollary 3.4 (Naimark). If G is a group and f : G! B�h� is a positive

definite function with f �e� � Ih, then there exists a Hilbert spacek �h and
a unitary representation U : G! B�k� such that

f ��� � PhU���jh; � 2 G;
andk � W�2G U���h.

Proof. Let P � G and let K : G� G! B�h� be defined by
K��; !� � f ��ÿ1!�; �; ! 2 G. Since K is a positive definite Toeplitz kernel on
G , the result follows from Theorem 3.2 and Remark 3.3 part (iv).

Theorem 3.5. Let P1; . . . ;Pn be unital semigroups and let Ki : Pi � Pi !
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B�h� �i � 1; 2; . . . ; n� be positive definite Toeplitz kernels. Then there exists a
Hilbert space k �h and a semigroup fV���g�2P1�����Pn

of isometries on k
such that

�K1 � � � � � Kn���; !� � PhV����V�!�jh
for any �; ! 2 P1 � � � � � Pn, andk �

W
�2P1�����Pn

V���h:

Proof. According to Corollary 2.3, the free product kernel K1 � � � � � Kn is
a positive definite Toeplitz kernel on the free product semigroup
P1 � � � � � Pn. Now, we can use Theorem 3.2 to complete the proof.

Let P be a unital semigroup and let fT���g�2P � B�h� be a semigroup of
contractions, i.e.,

T�0� � Ih; T��!� � T���T�!�
for any �; ! 2 P. We say that fT���g�2P has a minimal isometric dilation if
there is a Hilbert space k �h and a semigroup fV���g�2P � B�k� of
isometries such that

T��� � PhV���jh; � 2 P;
andk � W�2P V���h.

Corollary 3.6. Let Pi �i � 1; 2; . . . ; n� be unital semigroups and let
fT���g�2Pi

� B�h� �i � 1; 2; . . . ; n� be semigroups of contractions that have
isometric dilations. Then there is a Hilbert space k �h and
fV���g�2P1�����Pn

� B�k�, an isometric representation of P1 � � � � � Pn, such
that

T��1� � � �T��k� � PhV��1� � � �V��k�jh
for any �1; . . . ; �k 2 [ni�1Pi, andk �

W
�2P1�����Pn

V���h:

Proof. For each i � 1; 2; . . . ; n, let fW���g�2Pi
� B�ki� be an isometric

dilation of fT���g�2Pi
on a Hilbert Space ki �h. Define the kernel

Ki : Pi � Pi ! B�h� by
Ki�!; �� � PhW�!��W���jh

for any !; � 2 Pi. Notice that Ki is a positive definite Toeplitz kernel. Ap-
plying Theorem 3.5, the result follows.
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4. Isometric dilations of contractive representations of some semigroups

Let G be a discrete additive subgroup of the real numbers and G� be the
unital semigroup of nonnegative elements of G. Define the free product
semigroup

�nG� :� G�1 � � � � � G�n ;
where G�i is an isomorphic copy of G� for any i � 1; 2; . . . ; n. A reduced
word in �nG� has the form

� � ti1 � ti2 � � � � � tik ;
where i1 6� i2 6� � � � 6� ik; i1; . . . ; ik 2 f1; 2; . . . ; ng, and tij 2 G�ij nf0g
�j � 1; 2; . . . ; k�.
Let fTi�s�gs2G� � B�h� �i � 1; 2; . . . ; n� be semigroups of operators, i.e.,

Ti�0� � Ih; Ti�s� t� � Ti�s�Ti�t�
for any s; t 2 G�; i � 1; 2; . . . ; n, and such that

T1�s�T1�s�� � � � � � Tn�s�Tn�s�� � Ih�4:1�
for any s 2 G�nf0g. A sequence of semigroups of operators satisfying (4.1) is
called contractive. For such G�, there always exist semigroups of operators
which have the desired properties (see Section 5).
For any � � ti1 � ti2 � � � � � tik 2 �nG� with i1 6� i2 6� � � � 6� ik, let us define

T��� :� Ti1�ti1� � � �Tik�tik�:
Notice that T���T�!� � T��!� for any �; ! 2 �nG�, thus fT���g�2�nG� is a
semigroup of contractions.
Assume that G� is commensurable, i.e., it has the property that for any

t1; t2; . . . ; tk 2 G�nf0g there is t 2 G� and n1; . . . ; nk 2 f1; 2; . . .g such that
ti � nit for any i � 1; 2; . . . ; k. For instance G� � Z�; G� � Q�, etc.
Let us define the kernel K : ��nG�� � ��nG�� ! B�h� by K�0; 0� � Ih

and

K��; !� �
K��; 0� if � � !� for some � 2 �nG�
K�0; ��; if ! � �� for some � 2 �nG�
0; otherwise;

8><>:�4:2�

where K�0; �� � T��� � K��; 0��. We shall prove that

Xk
i;j�1
hK��i; �j�hj; hii � 0�4:3�
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for any �1; �2; . . . ; �k 2 �nG� and h1; . . . ; hk 2h. Assume that � �
ti1 � ti2 � � � � � tik with tij 2 G�ij � G�; tij 6� 0. Then there exist t 2 G�nf0g and
n1; . . . ; nk 2 f1; 2; . . .g such that tij � njt. Therefore,

T��� � Ti1�t�n1 � � �Tik�t�nk � T�t����;
where � � sn1i1 � � � snkik 2 F�n (see Example 2.7). If �1; �2; . . . ; �k 2 �nG�; then a
similar argument shows that there exists t 2 G� and �1; �2; . . . ; �k 2 F�n such
that

K��i; �j� � K�T1�t�;...;Tn�t����i; �j�:
Since

T1�t�T1�t�� � � � � � Tn�t�Tn�t�� � Ih;

we infer, according to Example 2.7, that

Xk
i�1
hK�T1�t�;...;Tn�t����i; �j�hj; hii � 0:

Therefore, the relation (4.3) holds for any �1; . . . ; �k 2 �nG� and h1; . . . ; hk 2
h. Hence, K is a positive definite Toeplitz kernel.
Let G be a discrete additive subgroup of the real numbers such that G� is

commensurable.

Theorem 4.1. Let fTi�s�gs2G� � B�h� �i � 1; 2; . . . ; n� be a contractive
sequence of semigroups of operators. Then there exists a Hilbert spacek �h
and fVi�s�gs2G� � B�k� �i � 1; 2; . . . ; n� a contractive sequence of semi-
groups of isometries such that

Ti1�s1�Ti2�s2� � � �Tik�sk� � PhVi1�s1�Vi2�s2� � � �Vik�sk�jh�4:4�
for any k 2 f1; 2; . . .g; i1; . . . ; ik 2 f1; 2; . . . ; ng; s1; s2; . . . ; sk 2 G�, and

k �
_

Vi1�s1� � � �Vik�sk�h;�4:5�
where the span is taken over all i1; . . . ; ik 2 f1; . . . ; ng; s1; . . . ; sk 2 G�; and
k � 1; 2; . . ..
Moreover, the isometric dilation satisfying these properties is uniquely de-

termined up to an isomorphism.

Proof. Theorem 3.2 shows that the positive definite Toeplitz kernel de-
fined by (4.2) has a Naimark dilation, i.e., there is a Hilbert space k �h
and fV���g�2�nG� a semigroup of isometries onk such that

K��; !� � PhV����V�!�jh
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for any �; ! 2 P and k � W�2�nG� V�h. Notice that if ti 2 G�i nf0g;
tj 2 G�j nf0g �i 6� j�, then

K�ti � �; tj � !� � 0 for any �; ! 2 �nG�:
According to Remark 3.3 part (iii), V�ti�k ? V�tj�k. Setting Vi�t� :�
V�ti�, where i � 1; 2; . . . ; n, and ti � t 2 G�, it follows that fVi�t�gt2G�
�i � 1; 2; . . . ; k� are semigroups of isometries with

V1�t�V1�t�� � � � � � Vn�t�Vn�t�� � Ik

for any t 2 G�nf0g. It is easy to see that the relations (4.4) and (4.5) are sa-
tisfied. The proof is complete.

Remark 4.2. Using Theorem 3.5, the result of Theorem 4.1 can be ex-
tended to systems of contractive sequences of semigroups of operators.

5. Universal algebras associated to some semigroups of operators

Let G be a discrete additive subgroup of the real numbers and let G� be the
unital semigoup of nonnegative elements of G. Define the free product
semigroup �nG� :� G�1 � � � � � G�n ; where G�i is an isomorphic copy of G�, for
any i � 1; 2; . . . ; n. A reduced word in �nG� has the form

� � ti1 � ti2 � � � � � tik ;
where i1 6� i2 6� � � � 6� ik; i1; . . . ; ik 2 f1; 2; . . . ; ng, and tij 2 G�ij nf0g
�j � 1; 2; . . . ; k�.
The length of � is defined to be j�j :� ti1 � � � � � tik . It is clear that �nG� is

a unital semigroup with the left cancellation property and no divisors of the
neutral element 0 2 �nG�. Let

`2��nG�� �
�
f : �nG� ! C j

X
�2�nG�

jf ���j2 <1
�

and let f��g�2�nG� be its canonical basis, i.e., ���!� � 1 if ! � � and
���!� � 0 otherwise. For each i � 1; 2; . . . ; n and t 2 G�, define the operator
Si�t� on the Hilbert space `2��nG�� by

Si�t�
� X
�2�nG�

����

�
�
X

�2�nG�
�t�i����� ; t � t�i� 2 G�i ;�5:1�

where �� 2 C and
P

�2�nG�
j�� j2 <1.

Since the semigroup �nG� has the left cancellation property and no divi-
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sors of the identity, it is easy to see that for any i � 1; 2; . . . ; n, and
t 2 G�nf0g, the operator Si�t� is a unilateral shift on `2��nG��.
For any reduced word � � ti1 � ti2 � � � � � tik define S��� :�

Si1�ti1� � � �Sik�tik�. Thus, fS���g�2�nG� is an isometric representation of the
semigroup �nG� on the Hilbert space `2��nG��. Notice that

`2��nG�� �
M

�2�nG�
S����C�:

Using (5.1), one can see that

Si�0� � I ; Si�t1�Si�t2� � Si�t1 � t2��5:2�
for any i � 1; 2; . . . ; n, and t1; t2 2 G�. Thus fSi�t�gt2G�nf0g is a semigroup of
unilateral shifts. On the other hand, if i 6� j; i; j 2 f1; 2; . . . ; ng then
S�j �t�Si�s� � 0 for any t; s 2 G�nf0g. Therefore,

S1�t�S1�t�� � � � � � Sn�t�Sn�t�� < I`2��nG���5:3�
for any t 2 G�nf0g.
For each n � 1; 2; . . . ; denote by an�G�� the non-selfadjoint closed alge-

bra generated by fSi�t�g t2G�
i�1;2;...;n

and let C�r ��nG�� be the C�-algebra generated

by fSi�t�g t2G�
i�1;2;...;n

. Notice that in the particular case when

G� � Z� � f0; 1; 2; . . .g; an�Z�� is the noncommutative disc algebra an in-
troduced in [Po1], and C�r ��nZ�� � C��S1; . . . ;Sn� is the extension through
compacts of the Cuntz algebra on �n � 2�.
Let fTi�s�gs2G� � B�h� �i � 1; 2; . . . ; n� be semigroups of operators, i.e.,

Ti�0� � I ; Ti�s� t� � Ti�s�Ti�t�
for any s; t 2 G�; i � 1; 2; . . . ; n, and such that

T1�s�T1�s�� � � � � � Tn�s�Tn�s�� � Ih�5:4�
for any s 2 G�nf0g.
For such G�, there always exist semigroups of contractions which have the

desired properties. Ifk is a Hilbert space, then fS��� 
 Ikg�2�nG� is the left
regular representation of �nG� on `2��nG�� 
k. For any s0 > 0, define

ks0 �
M
�2�nG�
j�j�s0

�S��� 
 Ik��k�:

Notice that S�!���ks0� �ks0 for any ! 2 �nG�. Define Ti�t� �
Pks0

Si�t�jks0
, for any i � 1; 2; . . . ; n and t 2 G�. It is easy to see that
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fTi�t�gt2G� � B�ks0� �i � 1; 2; . . . ; n� satisfies the above-mentioned proper-
ties.
We need now a few definitions. We identify Mm�B�h��, the set of m�m

matrices with entries from B�h�, with B�h� � � � �h|����������{z����������}
mÿtimes

�. Thus we have a

natural C�-norm on Mm�B�h��. If X is an operator space, i.e., a linear
subspace of B�h�, we consider Mm�X� as a subspace of Mm�B�h�� with the
induced norm. The appropriate morphisms between operator spaces are the
completely bounded maps [Ar1], [P2], [Pi]. Let X ;Y be operator spaces and
u : X ! Y be a linear map. Define um : Mm�X� !Mm�Y� by

um��xij�� � �u�xij��:
We say that u is completely bounded (cb in short) if

kukcb � sup
m�1
kumk <1:

If kukcb � 1 (resp. um is an isometry for any m � 1) then u is completely
contractive (resp. isometric), and if um is positive for all m, then u is called
completely positive.
From now on we assume that G� is a commensurable unital subsemigroup

of �0;1�.
Theorem 5.1. Let fAi�t�gt2G� � B�h�; i � 1; 2; . . . ; n; be n semigroups of

operators. Then

A1�t�A1�t�� � � � � � An�t�An�t�� � Ih for any t 2 G�nf0g�5:5�
if and only if the linear map � :an�G�� ! B�h� defined by

��Si1�t1� � � �Sik�tk�� � Ai1�t1� � � �Aik�tk��5:6�
for any i1; . . . ; ik 2 f1; 2; . . . ; ng; t1; . . . ; tk 2 G� and k 2 f1; 2; . . .g is a com-
pletely contractive homomorphism.

Proof. If G� is not dense the result can be deduced from [Po2, Theorem
2.1]. Assume that G� is dense in �0;1� and the relation (5.5) holds. Ac-
cording to Theorem 4.1, there exists a Hilbert space k �h and
fVi�t�gt2G� �i � 1; 2; . . . ; n� semigroups of isometries such that

V1�t�V1�t�� � � � � � Vn�t�Vn�t�� � Ih; t 2 G�nf0g
and

Ai1�s1� � � �Aik�sk� � PhVi1�s1� � � �Vik�sk�jh�5:7�
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for any i1; . . . ; ik 2 f1; 2; . . . ; ng, s1; . . . ; sk 2 G�, and k 2 f1; 2; . . .g. Accord-
ing to [D2], since G� is dense, there is a �-isomorphism

	 : C��S1�t�; . . . ;Sn�t�� ! C��V1�t�; . . . ;Vn�t��
such that

	�Si1�t1� � � �Sik�tk�Sj1�s1�� � � �Sjp�sp��� � Vi1�t1� � � �Vik�tk�Vj1�s1�� � � �Vjp�sp��:
In particular, we have k	kcb � 1. According to (5.7), we have

��Si1�t1� � � �Sik�tk�� � Ai1�t1� � � �Aik�tk�
� PhVi1�t1� � � �Vik�tk�jh
� Ph	�Si1�t1� � � �Sik�tk��jh:

Similarly, one can show that

��f � � Ph	�f �jh for any f 2an�G��:
Therefore, k�kcb � k	kcb � 1.
Conversely, assume that fAi�t�gt2G� � B�h�; i � 1; 2; . . . n; are semi-

groups of operators such that the linear map �, defined by (5.6), is com-
pletely contractive. In particular, we have

A1�t� A2�t� � � � An�t�
0 0 � � � 0
..
. ..

. ..
.

0 0 � � � 0

2664
3775


















 �

S1�t� S2�t� � � � Sn�t�
0 0 � � � 0
..
. ..

. ..
.

0 0 � � � 0

2664
3775


















;

which shows that

A1�t�A1�t�� � � � � � An�t�An�t�� � Ih for any t 2 G�nf0g:
The proof is complete.

Using Paulsen's result [P1] and Theorem 5.1, one can infer the following.

Corollary 5.2. A representation � :an�G�� ! B�h� is completely
bounded if and only if it is given by ��Si�t�� � XTi�t�Xÿ1;
i � 1; 2; . . . ; n; t 2 G�; where fTi�t�gt2G� �i � 1; 2; . . . ; n� are semigroups of
operators with

T1�t�T1�t�� � � � � � Tn�t�Tn�t�� � Ih for any t 2 G�nf0g;
and X is an invertible operator.

Let G be a discrete additive subgroup of the real numbers and define the free
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product group �nG � G1 � � � � � Gn, where Gi is an isomorphic copy of G for
any i � 1; 2; . . . ; n. Let

`2��nG� �
�
f : �nG! C

X
�2�nG

jf ���j2 <1
�

and let fe�g�2�nG be the canonical basis of `2��nG�, i.e., e��t� � 1 if t � � and
e��t� � 0 otherwise. For each i � 1; 2; . . . ; n and t 2 G, let Uj�t� 2 B�`2��nG��
be the unitary operator defined by

Ui�t�
�X
�2�nG

��e�

�
�
X
�2�nG

��et�i��� �t � t�i� 2 Gi�;

where �� 2 C and
P

�2�nG j��j
2 <1. It is clear that fUi�t�gt2G�

�i � 1; 2; . . . ; n� are semigroups of unitary operators. The Hilbert space
`2��nG�� can be seen as a subspace of `2��nG� and

Ui�t�j`2��nG�� � Si�t��5:8�
for any t 2 G�; i � 1; 2; . . . ; n.
Now, one can prove the following unitary dilation theorem for contractive

semigroups of operators. Assume that G� is commensurable.

Theorem 5.3. Let fTi�t�gt2G� � B�h�; i � 1; 2; . . . ; n, be a sequence of
semigroups of operators such that

T1�t�T1�t�� � � � � � Tn�t�Tn�t�� � Ih; for any t 2 G�nf0g:
Then there is a Hilbert space k �h and a sequence fWi�t�gt2G� � B�k�;
i � 1; 2; . . . ; n; of unitary semigroups such that k is the smallest closed redu-
cing subspace for each Wi�t� �t 2 G�; i � 1; 2; . . . ; n�, containing h, and such
that

Ti1�t1� � � �Tik�tk� � PhWi1�t1� � � �Wik�tk�jh
for any i1; . . . ; ik 2 f1; 2; . . . ; ng and t1; . . . ; tk 2 G�.
Proof. Let pu be the set of all polynomials in Ui�t�; t 2 G�; i � 1; . . . ; n.

According to the Theorem 5.1 and the relation (5.8), the linear map
x : pu ! B�h� defined by

x�Ui1�t1� � � �Uik�tk�� � Ti1�t1� � � �Tik�tk�
for any i1; . . . ; ik 2 f1; 2; . . . ; ng and t1; . . . ; tk 2 G�; is a completely con-
tractive homomorphism. Applying Arverson's extension theorem [Ar1, The-
orem 1.2.9] to our setting, there is a completely positive linear map

158 gelu popescu



{orders}ms/990250/popescu.3d -20.11.00 - 13:54

~x : C��fUi�t�g� ! B�h�
such that ~xjpu � x. Combining this result with Stinespring's representation
[S] the result follows.

According to the notation from Section 1, we set

p�fTi�t�g� :� ~���p� for any p 2 p��nG��:
Using Theorem 5.1 and Theorem 5.3, we infer the following version of the
von Neumann inequality [vN], which also extends the main result from [Po1]
to contractive semigroups of operators.

Corollary 5.4. Let fTi�t�gt2G� � B�h�; i � 1; 2; . . . ; n, be a sequence of
semigroups of operators such that

T1�t�T1�t�� � � � � � Tn�t�Tn�t�� � Ih; t 2 G�nf0g:
Then

kp�fTi�t�g�k � kpkC�r ��nG�� � kpkC���nG��5:9�
for any polynomial p 2 p��nG��, which is viewed as an element of
C�r ��nG���resp. C���nG��.
It is plain that the inequality (5.9) can be extended to matrices

Mm�p��nG���.
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