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POSITIVE DEFINITE KERNELS ON FREE PRODUCT
SEMIGROUPS AND UNIVERSAL ALGEBRAS

GELU POPESCU

Abstract

A method to construct positive definite operator-valued kernels on free product semigroups
amalgamated over the identity is presented. A complete description of the structure of positive
definite Toeplitz kernels on free products of semigroups is given.

In particular, these results leed to the generalized disc algebra 7, (G*),n =2,3,..., 00, and
the reduced C*-algebra C;(x,G"), where G* is the unital semigroup of nonnegative elements of
an additive subgroup G of real numbers. The completely bounded (resp. contractive) re-
presentations of .7,(G'), n=2,3,...,00, on a Hilbert space are characterized when G* is
commensurable.

As consequences, we obtain von Neumann type inequalities, isometric (resp. unitary) dila-
tions, for a large class of semigroups of operators on Hilbert spaces.

1. Introduction and preliminaries

Let P be a unital semigroup with neutral element e and let B(#) be the al-
gebra of all bounded operators on a Hilbert space . A hermitian operator-
valued kernel on P is a map

K:PxP— B(JX)
with the property that K(o,w) = K(w,0)" (o,w € P). If

k
Z<K(0i7Q/)hj?hi> >0
ij=1
for any k € N, for any Ay,... . € #, and oy,...,0, € P, then K is said to
be positive definite. A kernel K on P is called Toeplitz if K(e,e) = I, and
K(ao, aw) = K(o,w) for any a,0,w € P.

Let P; (i € I C {1,2,...}) be unital semigroups and let P := *P; be the free
product semigroup amalgamated over the identity. For any hermitian op-
erator-valued kernels K; : P; x P; — B(#) (i € I), we define a free product
kernel K := xK; on P such that K(o,w) = K(w,0)" (o,w € P) and
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K|p.p =K foranyicl.

We show in Section 2 that if K; (i € I) are positive definite Toeplitz kernels
on semigroups, then the free product kernel K has the same properties. This
extends Bozejko’s result concerning positive definite operator-valued func-
tions on free products of groups [B].

In Section 3, we study the structure of positive definite Toeplitz kernels on
semigroups, extending the Naimark dilation theorem ([N], [SzF]) to our set-
ting.

The results of these two sections are combined in order to obtain isometric
(resp. unitary) representations for free products of semigroups. Certain con-
sequences of these results are considered in the next sections.

Let G be a discrete subgroup of the additive group of real numbers and G*
be the wunital semigroup of nonnegative elements of G. Let
{Vi($)}seq: CB(A') (i=1,2,...,n) be n orthogonal semigroups of iso-
metries, i.e.,

Vi(0) =Ly, Vils+1)=Vi(s)Vi(1)
for any s,t € G, i=1,2,...,n, and such that
Vis)Vi(s) + -+ Vu(s)Vals)" < Ly

for any s € GT\{0}. Here, n=1,2,...,00 and by abusing notations, when
n = oo we meen a sequence of semigroups. We denote by C*({V;(s)} the C*-
algebra generated by the isometries V;(s), i=1,2,...,n, s € G". This C*-
algebra has been studied by many authors in various particular cases. Co-
burn ([C1], [C2]) studied the C*-algebra generated by one isometry (this
corresponds to the case Gt = N, n = 1) and Douglas [Do] proved that the
C*-algebra generated by one semigroup of isometries { V1(s)}, s+ is either a
quotient of C (G) or a generalized Toeplitz algebra. The case when
G"=N, n=2,3,...,00, was studied by Cuntz [Cu]. In [D1], Dihn con-
sidered the case when G is a countable dense subsemigroup of [0,00) and
n=273,...,00.

The C*-algebras C*({V;(s)}), with G* dense, are special cases of a family
of C*-algebras arising naturally from the Arveson-Powers-Robinson index
theory of semigroups of endomorphisms of type I factors ([Ar2], [D2]).

In Sections 4, 5, we study the closed nonselfadjoint algebra generated by
Vi(s), i=1,2,...,n, s€ G*, where G" is commensurable and
n=273,...,00.

Define the free product semigroup

#,GT =G %% G

where G is an isomorphic copy of G* for any i = 1,2,...,n. Let o/,(G") be
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the closed nonselfadjoint algebra on ¢(x,G*) generated by the operators of
left multiplication by elements of x,G™, and let C:(*,G") be the C*-algebra
generated by them. Notice that, in the particular case when
Gt =Z"=1{0,1,2,...}, o/,(Z") is the noncommutative disc algebra .o7, in-
troduced in [Pol] (see also [Po2]), and C;(x,Z") = C*(Si,...,S,) is the ex-
tension through compacts of the Cuntz algebra @, (n > 2) [Cul.

We prove in Section 5 that .o/, (G™") is the universal algebra generated by n
semigroups of contractions {7;(s)},.q- C B() (i =1,2,...,n) such that

(1.1) Ti()T1(8) + -+ Tu(s)Tu(s)" < Ly

for any s € G*\{0}.

It is clear that a sequence of semigroups of contractions
T =A{Ti(8)}seqr CB(AH), i=1,2,...,n, satisfying (1.1), gives rise to a
contractive representation

pr: #,GT — B(A)
by setting

pT(g) = T(g) = Ti](til) T Ek(tik)

ifg=t,*xty*---xt;, €x,GT withij b # -+ F i, I1,..., 0k € {1,2,...,n},
and p,(0) = I,. Let 2(*,G*) be the set of formal linear combinations of ele-
ments of x,GT with the obvious algebra structure. An element p € 2(x,G")
has the form

p:Zagg, a, € C, g € %,G".

finite

Define p, : 2(x,G") — B(A) by
pr(p) = Zagp'r(g)7 p= Z g8

finite

We prove in Section 4 that if Gt is commensurable, then the contractive re-
presentation p, admits a minimal isometric dilation, i.e., there is a Hilbert
space A" D A and an isometric representation 7 : x,Gt — B(A#’) determined
by semigroups of isometries {Vi(s)},cq: C B(A'), i=1,2,...,n, satisfying
the properties:

@) i@Vi@) + -+ Va(O)Va(t)" < Ly, for any ¢ € G*\{0};

(i) pr(g) = Pum(g)ly: &€ #G";

(i) A = Ve, g 7(g)H .

Moreover, the minimal isometric dilation satisfying these properties is

uniquely determined up to an isomorphism. Using the results from Sections
2, 3, we extend this result to a more general setting.
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In Section 5, we prove the following extension of the von Neumann in-
equality ([vN], [Pol])

(1.2) o)l < llp

where any polynomial p is viewed as an element of the reduced C*-algebra
C#(%,G") (resp. the full group C*-algebra C*(x,G)). Notice that in the par-
ticular case when G* = Z* we find the noncommutative von Neumann in-
equality proved in [Pol] (see also [Po2], [Po4]). Moreover, the inequality
(1.2) is extended to matrices.

Let us remark that all the results of this paper hold true for » = oo in a
slightly adapted version.

In a subsequent paper we will study the generalized disc algebra .o7,(G*)
in a more general setting.

C (%, GT) < ||p‘ C*(%,G) > JS ‘g](*”GJr)a

2. Positive definite kernels on free products of semigroups

Let Py, P, be unital semigroups and let P := P; x P, be the unital free pro-
duct semigroup amalgamated over the identity e. We can assume that
P, N P, = {e}. If x € P\{e}, then it has the unique representation

(2.1) X =012, Ol

where o;; € Pi\{e}, i € {1,2}, i; #ijr1, j=1,2,...,k— 1.

Let us introduce the block length function | | on the free product semi-
group P setting |e| =0 and |x| =k if x € P is of the form (2.1). For each
r=1,2,...,|x|, let 5,(x) be the r® factor in the representation (2.1) of x.
Notice that we have

x = s1(x)s2(x) - - 514 (X).

Let K;: P;x P;— B(#) (i=1,2) be kernels such that Kj(w;,0;) =
Ki(o:,w;)* for any w;, 0; € P;. In the following we will define a kernel

K:PxP— B(X)

such that K(o,w) = K(w,0)" (o,we P) and Kl|p , :=K; (i=1,2). If
x € P\{e} has the representation (2.1) we define

K(e,x) == K;(e,on) - Ki (e, o)
and
K(X, €) = K(e, X)* = K[k(ak,ik, 8) e Kil (al,il s 6).

Let w,0 € P\{e} be such that s;(w) # s1(c). We have two subcases.
If {s1(w),s1(0)} C P; (i =1,2) we define
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K(w,0) i= K(53(0) -5 (), €)Ki(s51 (), 81 (0)) K (,2(0) -+ 8,1 (7).
If {s1(w),s1(0)} ¢ P; (i =1,2) then we set
K(w,0) := K(w,e)K(e,0).

Now, let w,o € P\{e} be such that s;(w) = s1(c). Let r be the maximum

natural number such that s;(w) = s;(0) for any i = 1,2,...,r. Define
K(sp41(w) -+ S (W), $r41(0) - 810(0));  if r < min{|w|, [o]}
K(e7 Sr+1(0) RRIE (U))§ if r= |w| < |U|
K(w,o) = .
K(S,,+1(w) o 'S\w|(w>7 e)? if r= |J| < |w|
Ly; if r=|w| =|o].

Since K|p,p, = Ki (i =1,2) and Ki(w;,0;) = Ki(o,w;)" for any w;,0; € P,
one can see that the kernel K, defined above, has the property
K(w,0) = K(o,w)" for any w,o € P. Notice also that if K; (i=1,2) are
Toeplitz kernels, then K is also a Toeplitz kernel. The kernel K is denoted by
K x K, and called the free product of K} and K.

Let S;, S, be two sets such that S; NS, = {x¢}, and let K;, K, be kernels
on Sy, S,, respectively, such that K;(xo, xo) = Kz(x0,x0) = I. Following [B],
we define a kernel K on S; U S5 in the following way:

(1 K|S,-><S,- =K (i=1,2)

(2) (Markov property) For s; € S; (i=1,2)

K(s1,52) := K(s1,x0)K(x0,52) and K(s1,s2) = K(s2,51)".

The kernel K is denoted by K *Q;[ K, and called the Markov product of K
and K;.

Let us recall an important result of Bozejko [B] that will be used in what
follows.

LemMmaA 2.1 (Bozejko). If Ky, K> are positive definite kernels on Sy, S», re-
spectively, and Kij(x,x)=1 for all x € S;US,, then the Markov product
K =K *{‘f K> is also a positive definite kernel.

THEOREM 2.2. Let P; (i=1,2) be unital semigroups. If K;: P; x P; —
B(A) are positive definite kernels and Ki(o;,0;) = Ly for any o; € P;, then the
free product K\ x Kj is a positive definite kernel on Py x P;.

PrOOF. Since P := P, * P, is the free product semigroup amalgamated
over the identity e, we can assume that P; N P, = {e}. Consider the follow-
ing sets: Xo =Py, Yo=P,, andforanyk=1,2,...,
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Xy = |J {apros- - BiranPa},

a;ePp\{e}
Bi€Py\{e}

Xy = | {aBiaz-- axfBPr}
a;eP\{e}
Bi€Py\{e}

U {Bion -+ o1 8P},

a;eP\{e}
BiePy\e}

Yo = U {BirouBa- - - BrouPar}.
azeP \{e}
BiePy\{e}
Define also X = JZ, Xj and Y = |J, ¥;. Notice that P;* P, = X U Y and
XNY={e}. Ifxe X\{e} and y = Y\{e} then s;(x) # s1(»), s1(x) € P and
s1(y) € P,. According to the definition of K := K * K,, we infer that

K(x,y) = K(x,e)K(e,y) = K|y, x *éw Kly,.y(x,¥).

Notice that this relation also holds if x = e or y = e. If we can prove that the
kernels K|y, y and K|y, , are positive definite, then, according to Lemma
2.1, the kernel K is positive definite.

Let us prove now that K|, , is positive definite. For each m =0, 1,2,
consider Z,, = U'" X;. Since X =J,,_yZnand Z, C Z; C --- it is enough to
prove that K|mezm is positive definite for any m = 0,1, 2, -

We proceed by induction. Notice that K|, ., = K|p ,p = Ki is positive
definite. Assume that K|, ., is positive definite and let us prove that
K|z, «z,. 1s positive definite.

Suppose that m =2k — 1 is fixed (the proof is similar in the case when
m = 2k). Notice that K|, ., is positive definite if and only if K], ., is
positive definite for any n = 1,2, ..., where

n
(2.2) A, =2y U (U a(lr)ﬂgr) R Oz,(:)ﬂ/@P]) ,
r=1

and ozl(r) € P)\{e}, ﬁl@ eP)\{e}, i=1,2,....k, r=1,2,...,n, are fixed
such that

o
T
I

Oégrl) irl)“'ag’l)ﬂ](c"l)?é g )ﬂ(“) .. Wﬂrz)

ifri,rme{l,2,...,n} and r; # r,.
We proceed by induction over j =0, 1,...,n. Assume that K|A/XA/ is posi-
tive definite for a fixed j such that 0 <j <n— 1, where Ay = Zy,._;. We will
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show that K|AMX1\/+1 is positive definite. Notice that A; N {yj41P1} = yjt1,
where

j+1 j+1 j+1 j+1
i = af VB

and Ajy1 = Aj U {y11P1}. Since K(yj41w,yj410) = Ki(w, o) for any w, o € Py,
it follows that K|, p 1.y, p, 18 positive definite. Let us prove now that

M
(2.3) K|A/+IXA/+] - K|A/XA/ i K|{)7z+1P1}X{}T;‘+1Pl}’
that is,

(2.4) KN, yirp1) = KON, v 1) K(vjs1, yis1pt)

for any \; € A; and p; € P;. We have two cases:
(i) N € Zo1; o o
(i) N =y, where y, = o787 ... a\"8" 1 <r <jandp| € P.

Case (1). We further divide the proof into two subcases:
(@) s1(N) # s1(yjr1p1)s
(®) s1(N) = s1(yj+101)-

Subcase (a). Since {s1(N;),s1(yj+1)} C Pi\{e}, according to the definition
of K, we have

K (X, yj1p1)
= K(s2(Nj) - - 'S\,\j\()\j)» e)Ki (s (N), 51 (J’j+1))K(€’7 S2(J’j+1) t 'S|y,,1\(yj+1)l71)
= K(s2(A) =515 (N), @)K (s1(Ny), s1(ie1)) K (e, 52(0j41) - - -
Sty Vi41)) K (e, p1)
= KN, yjr1)K(e, 1)
= KN yi+1) K1, yie1p1)-

Therefore, the relation (2.4) holds in this subcase.

Subcase (b). Notice that |\;| < 2k and 2k < |y;11p1| < 2k + 1. Let g be the
maximum natural number such that s;(\;) = s;(yj+1p1) forany i =1,2,...,¢.
This shows that

N = 51(N) - 5g () - Sgen(N) sy (V)
and
Vit Pr=51(4) -+ 5¢(N) - Sgraen) -+ 8y 0021

with {sq+1(N), Sg+1(vj+1)} C Pi for some i = 1,2, and s441(\) # Sgi1 (V1)
Using the definition of K, we have
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KN yiap1) = K(sgr () - s (), Sga1 (1) === Spyy (041)P1) -
On the other hand, this is equal to

K(sge1(N) 0 ()5 Sg11 (1) =+ = 81y (0741) ) K (€, p1)
= KN,y ) K1, yi+101),

which proves that the relation (2.4) holds in subcase (b), therefore in case (1).
Case (i1). We divide the proof into two subcases:

(@) s1(yr) # s1(vj41);
(B s (J’r) =51 (yj+1)-

Subcase (). Since {s1(yr),s1(yj+1)} C P1 and |y,| = |yj1] = 2k, we have

K(N,yiap1) = K(yipy, yapr)

= K(s2(yr) -+ - s vr)ps ) Ki (51 (), 51 (1)) K (€82 (1) - - 52 (1)) K (e, p1)
= Ky, yir1)K (e, p1)

= K\, 1)K (i1, yjr1p1)-

Therefore, the relation (2.4) is satisfied.

Subcase (). Since y, # yj41, there exists 1 < g <2k—1 such that
si(yr) = si(yjp1) forany i =1,2,...,q, and 5441 (yr) # Sg+1(¥j+1). Assume that
g < 2k — 2. Since {s411(Vr),Sq+1(¥j+1)} C P1 (resp. P,) if ¢ is even (resp. ¢ is
odd) we have

KN, yj1p1) = K(vipy, yjsap1)

= K(sg+1(7r) - 52 (0r)Ph s Sg1 (Vi) -+ 52 (ve1)p1)

= K(sg+2(0r) - 52 (vr)PYs ) K (Sg11 (0r) s 8g1 (1)) K (€, g2 (1) -+
s (¥j+1)p1)

= K(yp),yie1)K (e, p1) = K(yepy, i) K (i, yiipn)

= KN,y 1) K(yj1, yjs1p1),

proving that the relation (2.4) holds. The case ¢ = 2k — 1 can be treated si-
milarly. This completes the proof of subcase (3) and also case (i1). Summing
up the above results, we conclude that the relation (2.3) is true. Since the
kernels K|, ., and K|{} APy Py AT€ positive, using Lemma 2.1, we infer
that K[, ., is positive definite. The induction argument shows that
K|,, 4, 1s positive definite for any n=1,2,.... This shows that K|, ., is
positive definite and completes our inductlve argument to prove that
K| .7 is positive definite for any m = 0,1,2,.... According to the remarks

m
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considered at the beginning of this proof, we infer that K|, , is positive
definite.
Similarly, one can prove that K|, , is positive definite. Since

K =Kly,.x *ﬁl Kly,y,

using Lemma 2.1 again, we deduce that K is positive definite on P; x Ps.
This completes the proof.

COROLLARY 2.3. Let P; (i =1,2) be unital semigroups. If K;: P; x P; —
B(#), Ki(e,e) = Ly, are positive definite Toeplitz kernels, then the free pro-
duct K| x K; is a positive definite Toeplitz kernel on P| x P;.

Let G;, iel C{l,2,...}, be groups and G = x,c;G; be the free product
group. Consider u; : G; — B() such that u;(e) = I,. We define the free

product function u := x;c;u; in the following way. If x € G, x # e and x has
the unique representation

X = al,il e ak,i/\w

where a;; € G; and i; # ijy1, j=1,...,k — 1, then we set

k
M(X) = H u,~/. (aj,,-j),
i=1

and u(e) = Iy. Let us recall that a function f : G — B(#) is positive definite
if the kernel K;(y,x) =f(y~'x) is positive definite in the sense of Section 1.
COROLLARY 2.4 (Bozejko). Let G; (i € I) be groups. If u;: G; — B(HX),
ui(e) = Ly, are positive definite functions, then the free product function
u = *;cqu; is positive definite on the free product group G = x,c;G;.
ProOF. According to Corollary 2.3, it is enough to prove that the kernel
K, is equal to the free product kernel of K,,(i € I), i.e., K, = *K,, in the sense

of the definition given in the beginning of this section. This is a straightfor-
ward computation, so we omit it.

Let us consider some examples of positive definite kernels on semigroups.

ExampPLE 2.5. Let N ={1,2,...} be the additive semigroup of natural
numbers and 7 € B(#). Define the kernel K7 : N x N — B(#) by
=", ifm>n
Kr(n,m)=q T, ifm<n
Ly ; if m=n.
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It is well-known that K7 is positive definite if and only if T is a contraction
(see [SzF)).

ExaMPLE 2.6. Let R" be the additive unital semigroup of positive real
numbers and let 7 = {T(#)}., C B(#°) be a strongly continuous semigroup
of contractions. Define K, : R* x R — B(#) by

T(s—1); if s> ¢
K (t,s)=q T(t—s)"; ifs<t
Iy ; if s=1.

The Toeplitz kernel K is positive definite [SzF].

ExaMPLE 2.7. Let F! be the unital free semigroup on n generators:
Siy-..,8;. Consider Ty,...,T, € B(#) and set T(w):=T} ---T; for any
w=s -8, and T(e) =1Iy. Let Kz, 7, : Ff x F7 — B(A') be the Toe-
plitz kernel defined by

T(5); if w= 06 for some 6 € F}
Kir,...1n)(ow) =1 T()"; if o =wé for some § € F
0; otherwise.

It was proved in [Po3] that K|z, .7, is positive definite if and only if the
operator matrix [T}, ..., T,] is a contraction. Let us remark that

Kir,,..1) # Kr, % - * Kr,.

The following example shows that one can define many different positive
definite Toeplitz kernels on the unital free semigroup on n generators.

ExamPLE 2.8. Let n,ny,ny,...,n € {1,2,...} suchthatn =n; +m + ...+
ny, and consider {7},};33::; C B() satisfying the relation
ThThy+ -+ TuT, <Ly, i=12,.. k.
According to Corollary 2.3, the Toeplitz kernel
K = Kiry,,..1,) % * K1y 10,

is positive definite on F,.
Other examples of positive definite Toeplitz kernels on free semigroups
are considered in [Po3], [Po4], and also in Section 4.

3. The structure of positive definite Toeplitz kernels

Let P be a unital semigroup and let K : P x P — B(#) be an operator-
valued kernel such that K(e,e) = I,. An isometric representation of P on a
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Hilbert space " is a function V : P — B(X"), where values are isometric
operators on %', and such that V(e) =1y, V(xy)=V(x)V(y) for any
X,y € P. We will denote such a semigroup of isometries by {V'(x)} ... We
say that K has a Naimark dilation if there is a Hilbert space # O # and
{V(0)},cp a semigroup of isometries on .#" such that

(3.1) K(o,w) =Py V(o) V(w)|, foranyo,weP,

where P is the orthogonal projection of #" onto #. The Naimark dilation
is called minimal if %" =\/__p V(o)A .

DEFINITION 3.1. Let K : P x P — B(#) be an operator-valued kernel. We
say that
(1) K is 7-Toeplitz (7 € P) if

(T,) K(ro,7w) = K(o,w)

for any o,w € P;
(i1) K is Toeplitz if it is 7-Toeplitz for any 7 € P;
(iii) K is 7-bounded (7 € P) if there exists M, > 0 such that

(M) > ((K(ro, whhy, he) < M7 > (K (0, w)h, ho)
oweP o,weP
for any finitely supported sequence {/,},.p in J;
(iv) K is bounded if it is 7-bounded for any 7 € P;
(v) K is uniformly bounded if it is bounded and

sup M, < oo.
TEP

Notice that if K is Toeplitz, then it is also uniformly bounded.

In what follows we extend the Naimark dilation theorem to our setting.
The proof is modeled on the ideas of the classical result [N] and also [Po3].

THEOREM 3.2. Let P be a unital semigroup and let K : P x P — B(#) be an
operator-valued kernel such that K(e,e) = Ly. Then K is a positive definite
Toeplitz kernel if and only if it admits a minimal Naimark dilation, that is,
there is a Hilbert space A" D A and {V (0)},cp a semigroup of isometries on
A such that

K(o,w) =Py V(o) V(w)|, foranyo,weP,

and A" =\/ ,.p V(o)A . In this case its minimal Naimark dilation is unique up
to an isomorphism.
Moreover, if P is a topological semigroup and K (o,w) is weakly continuous
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with respect to each variable o,w € P, then {V (o)}, p is also a weakly con-
tinuous function of o.

PrROOF. Assume K : P x P — B(J) is a positive definite Toeplitz kernel.
Let "y be the set of all finitely supported sequences {/,},.p in . Define
the bilinear form (-,-) on /¢ by

({hotoep {kotoer) == Z (K(o,w)hy, kq) -

w,c€P
Since K is positive definite, (-,-) is positive semi-definite. Consider
N ={keAy: (kk)y=0}

and the quotient space ¥y, . Let # be the Hilbert space obtained by
completing %y, with the induced inner product. For each 7 € P let us de-
fine the operator V'(7) on 4’y by

VEboep = { 8000}

ocP
where 6,,(¢f) = 1if t = 70 and 6,,(f) = 0 otherwise. It is easy to see that V(1)
is well-defined on %', V(e) = Iy,, and V(w)V(7) = V(wr) for any w, T € P.
Let us show that V'(7) is an isometry on #y. Indeed, since K is a Toeplitz
kernel, i.e., K(70,7w) = K(o,w) for any 7,0,w € P, we have

B2V (M) {h)) VO URD) = Y (K (s.0) Y brlt)hoy Y bro(9)h)

s,teP weP oeP
= S (K(ro, r)ha ) 2 ST (K (o, w)ho, 1)
oweP oweP

= ({h} ARG})-

Therefore, the operator V'(7) extends by continuity to an isometry on J%,
denoted also by V(7), and {V(7)},.p is an isometric representation of P.
Embed 2 in " by setting h = {6.(¢)h)},.p Where

I, ifr=e

(1) = {o; i1 e.

This identification is allowed since it preserves the linear and metric struc-
ture of . Indeed we have

(8e(s)h, 8e(DI') o = Y (K(1,5)be()h, 6c(1)H) o

t,seP

= (K(e,e)h, l' Y = <hah,>yf-



POSITIVE DEFINITE KERNELS ON FREE PRODUCT SEMIGROUPS... 149

For any i,/ € # and o,w € P we have
(V(w) V(o)h, ')y = ({8(0)h}, {8,()H'})
=D (K (t,5)85(s)h, 6u(0)H)

t,seP

= (K(w,0)h, It} .,

which implies Py V(w) V(0)|, = K(w, o) for any w,o € P.

Let us observe that every element in #°¢ can be considered as a finite sum
of terms of type {6,(¢)h},.p (h € #') and hence every element k € # can be
decomposed into a finite sum of terms of the type V(o)h, c € P, h€ .
This implies 4" = \/ .p V(o) i.e., the Naimark dilation is minimal.

To prove the uniqueness, let {V7(s)},.p be another minimal dilation of K
on a Hilbert space #” D #. One can prove that there is a unitary operator
WA — A" such that WV (w) = V'(w)W for any w € P, and W|, = I,.
To see this, it is sufficient to define

finite finite
(3.3) W(Z V(U)hg> =Y _V'(o)hs (hs € ).
oeP oeP

Since (V(o)h, V(w)l') , = (K(w,0)h,H'),, for any h i € # and o,w e P,
one can easily see that the operator W defined by (3.3) is correctly defined,
isometric, and in view of minimality, it extends to a unitary operator be-
tween A and 4.

To prove the converse of this theorem, let {V(0)},.p be an isometric re-
presentation of P on a Hilbert space #° O #. Assume that K: P x P —
B(#) is the kernel defined by

K(w,0) = PyV(w)'V(o)l,, foranywoe P.

It is easy to see that K(e,e) =1y, K(w,0) = K(o,w)" and K(sw,so) =
K(w,0) for any s,w,c € P. Since for any finitely supported sequence
{h}uep © H

Z (K(o,w)hy,, hy) = Z (PyV (o) V(w)hy, hy)

oweP oweP

> V(wh,

weP

2
>0

)

we infer that K is a positive definite Toeplitz kernel.

It remains to consider the case when P is a topological semigroup and
K(o,w) is weakly continuous with respect to each variable o,w € P. Since
[[V(o)|| =1 forany o € P and " =\/ ., V(o)A , it is enough to prove that
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(V(s)V(o)h, V(7T)l') is a continuous function of s for any h,/h € # and
o,w € P. Notice that

(V($)V(o)h, V(T)H) = (PxV(7) V(so)h,h'y = (K(T,s0)h, k)
and this is a continuous function of s. This completes the proof.

A closer look at (3.2) reveals that V'(7) is an isometry due to the only fact
that K is 7-Toeplitz. If we drop out the condition (T,), then V(7) is a
bounded operator on %y if and only if K is 7-bounded. Notice that if we
replace the equality () from (3.2) by the inequality (M,) the proof of The-
orem 3.2 still works. Consequently, if K is a positive definite bounded kernel
in Theorem 3.2, then {V(0)},.p is a semigroup of bounded operators. The
last part of the theorem remains true if we assume that K is uniformly
bounded.

REMARK 3.3. Let P be a unital semigroup and let K : P x P — B(#) be a
positive definite kernel with K(e,e) = Iy. Let {V(0)},.p C B(A ) be the as-
sociated semigroup of operators, as in the proof of Theorem 3.2. Then the fol-
lowing statements are true:

(1) V() is bounded if and only if K is T-bounded;

(i) V() is an isometry if and only if K is 7-Toeplitz;

(i) V(r)A'o L V(s)A o (T #s) if and only if K(ro,sw)=0 for any
o,weE P;

(iv) If K is T-Toeplitz and TP = P, then V(1) is unitary;

(v) If P is a x-semigroup and K is T-bounded, then V(7*) =V (7)" if and
only if
(3.4) K(o,7w) = K(770,w)

for any o,w € P. Moreover, if (3.4) holds and T°T = e, then K is T-Toeplitz, so
V(7) is an isometry.

COROLLARY 3.4 (Naimark). If G is a group and f : G — B(H) is a positive
definite function with f (e) = Ly, then there exists a Hilbert space X" O A and
a unitary representation U : G — B(A") such that

f(0) =PxU@)l,, 0€G,
and A =\/ . U(o) A

ProOF. Let P=G and let K:GxG— B(#) be defined by
K(o,w) = f(07'w),0,w € G. Since K is a positive definite Toeplitz kernel on
G , the result follows from Theorem 3.2 and Remark 3.3 part (iv).

THEOREM 3.5. Let Py,..., P, be unital semigroups and let K;: P; x P; —
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B(#) (i=1,2,...,n) be positive definite Toeplitz kernels. Then there exists a
Hilbert space A" D> A and a semigroup {V(0)},cp,,...p, 0f isometries on A
such that

(Ky %+ % K,)(o,w) =Py V(J)*V(w)\%
forany o,w € Py x - Py, and A = VnePl*u-*P,, V(o)A .

Proor. According to Corollary 2.3, the free product kernel K - - - x K, is
a positive definite Toeplitz kernel on the free product semigroup
Py x---x P,. Now, we can use Theorem 3.2 to complete the proof.

Let P be a unital semigroup and let {7(0)},.p, C B(#') be a semigroup of
contractions, i.e.,

T(0) = Iy, T(ow) = T(0)T(w)

for any o,w € P. We say that {T'(0)},.p has a minimal isometric dilation if
there is a Hilbert space " D # and a semigroup {V (o)}, .p C B(A") of
isometries such that

T(0) = PxV(o)ly, o€P,
and A =\, .p V(o)H.

COROLLARY 3.6. Let P; (i=1,2,...,n) be unital semigroups and let
{T(0)}yep, € B(H) (i =1,2,...,n) be semigroups of contractions that have
isometric dilations. Then there is a Hilbert space X D A and
{V(0)}gepywnp, C B(X'), an isometric representation of Py % ---% P,, such
that

T(01)--T(ox) = PxV(o1) - V(ow)|
forany oy,...,on € UL Py, and A =\/ jep ,...p, V(0O)H .

ProoF. For each i=1,2,...,n, let {W(0)},cp, C B(#';) be an isometric
dilation of {7T(0)},cp on a Hilbert Space #'; D #. Define the kernel
K,P,XP,%B(%)by

Ki(w,0) = Py W(w) W(o)l,

for any w, o € P;. Notice that K; is a positive definite Toeplitz kernel. Ap-
plying Theorem 3.5, the result follows.
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4. Isometric dilations of contractive representations of some semigroups

Let G be a discrete additive subgroup of the real numbers and G* be the
unital semigroup of nonnegative elements of G. Define the free product
semigroup

#,GT =G k% G

where G/ is an isomorphic copy of G for any i=1,2,...,n. A reduced
word in *,G* has the form

O =1y xty*- - *xl;,

where i\ E i A Fi, Q1,0 €{1,2,...,n}, and t,}.eG;\{O}
(G=1,2,...,k).
Let {Ti(s)},eqe CB(H) (i=1,2,...,n) be semigroups of operators, i.e.,

Ti(0) = L, Ti(s+1) = Ti(s)Ti(1)
for any s,1 € G*, i =1,2,...,n, and such that
(4.1) Ti(s)T1(s)" + -+ Tu(s) Tu(s)" < Ly

for any s € GT\{0}. A sequence of semigroups of operators satisfying (4.1) is
called contractive. For such G*, there always exist semigroups of operators
which have the desired properties (see Section 5).

Forany o=t *t;, - - x t;, € %,G" with iy # iy # - -+ # i, let us define

T(U) =T (til) T Tik(tik)'

Notice that 7(0)T(w) = T(ow) for any o,w € *,G, thus {T(0)},c, ¢+ 15 a
semigroup of contractions.

Assume that G is commensurable, i.e., it has the property that for any
t,ta, ... bt € GT\{0} there is t € Gt and my,...,n, € {1,2,...} such that
t; =mn;t for any i = 1,2,...,k. For instance GT =Z*, G = Q" etc.

Let us define the kernel K : (%,GT) x (%,GT) — B(#) by K(0,0) = I,
and

K(7,0) if 0 = wr for some 7 € x,G*
(4.2) K(o,w) =14 K(0,7); if w= o7 for some 7 € *,G"

0; otherwise,

where K(0,7) = T(7) = K(7,0)". We shall prove that

(4.3) i(K(Uh 0j)hj, hi) = 0

ij=1
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for any oy,02,...,0r € x,G* and hy,... . € #. Assume that o=
ti * i % - x i, with 1, € G = G*, t;; # 0. Then there exist r € G\ {0} and
ny,...,m € {1,2,...} such that t;, = n;t. Therefore,

T(o) =Ti()" - Ty, ()™ = T(1)(e),

where € = 5] ---5}* € F (see Example 2.7). If 01,03,...,0x € %,G", then a
similar argument shows that there exists 1 € G and €, €,...,6 € F! such
that

Since
Ti(OT () + -+ Tu(O) ()" < Ly,
we infer, according to Example 2.7, that

k

D (K. 1,01 (i )y i) > 0.
i=1
Therefore, the relation (4.3) holds for any oy, ...,0% € x,G" and hy,... }h €
. Hence, K is a positive definite Toeplitz kernel.
Let G be a discrete additive subgroup of the real numbers such that G* is
commensurable.

TueOREM 4.1. Let {Ti(8)}eq: C B(H) (i=1,2,...,n) be a contractive
sequence of semigroups of operators. Then there exists a Hilbert space A" O H
and {Vi($)}eqr CB(A) (i=1,2,...,n) a contractive sequence of semi-
groups of isometries such that

(44) Til (Sl)Tiz(Sz) T ]—}k (Sk> =Py Vil (Sl)Viz (SZ) T I/ik (Sk)|9’/
forany k€ {1,2,...}, i1,...,ik €{1,2,... .10}, s1,8,...,5 € G, and

(4.5) A=\ Vi) Vi(s) A,
where the span is taken over all iy,... i € {l,...,n}, s1,...,5x € G, and
k=12,...

Moreover, the isometric dilation satisfying these properties is uniquely de-
termined up to an isomorphism.

Proor. Theorem 3.2 shows that the positive definite Toeplitz kernel de-
fined by (4.2) has a Naimark dilation, i.e., there is a Hilbert space # O #

and {V(0)},c., ¢+ a semigroup of isometries on #" such that

K(o,w) =Py V(o) V(w)l,



154 GELU POPESCU

for any o,we P and 4 =\/
€ GH{0} (i /), then

K(t;*o,tjxw) =0 forany o,w € *,G".

. V,#. Notice that if # € G;F\{0},

o€x,G

According to Remark 3.3 part (iii), V() L V(t;)A . Setting Vi(t) :=
V(t;), where i=1,2,...,n, and t;=t€ G", it follows that {V;()},.s
(i=1,2,...,k) are semigroups of isometries with

OVi(e) + -+ V() Va(t) < Iy

for any t € Gt\{0}. It is easy to see that the relations (4.4) and (4.5) are sa-
tisfied. The proof is complete.

REMARK 4.2. Using Theorem 3.5, the result of Theorem 4.1 can be ex-
tended to systems of contractive sequences of semigroups of operators.

5. Universal algebras associated to some semigroups of operators

Let G be a discrete additive subgroup of the real numbers and let G* be the
unital semigoup of nonnegative elements of G. Define the free product
semigroup x,G" := G| % --- x G|, where G} is an isomorphic copy of G, for
any i =1,2,...,n. A reduced word in *,G* has the form
O =1 *1p % %1,

where iy £ i # - Fiy, d1,..., 0 € {1,2,...,n}, and t,~j.€G3\{0}
G=12,...,k).

The length of o is defined to be |o| :=t;, + - -+ + 1;,. It is clear that *,G" is

a unital semigroup with the left cancellation property and no divisors of the
neutral element 0 € *,G". Let

B(1,67) = {f 106" = €| T I < oo}

oex,Gt

and let {6,},c, g+ be its canonical basis, ie., 6,(w) =1 if w=0 and
8s(w) = 0 otherwise. For each i = 1,2,...,n and 7 € G, define the operator
S;(t) on the Hilbert space ¢*(%,G.) by

(5.1) Si(t)( > 5TAT> = > oA 1=19€G],

TEX, G TEX, Gt

where A, € Cand Y |\ * < oc.

TEX, G

Since the semigroup *,G* has the left cancellation property and no divi-
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sors of the identity, it is easy to see that for any i=1,2,...,n, and
t € G\{0}, the operator S;(¢) is a unilateral shift on ¢2(%,G").

For any reduced word o=t *t,*---xt;, define S(o):=
Si (tiy) - S (t,). Thus, {S(0)},c. g+ 18 an isometric representation of the
semigroup *,G* on the Hilbert space ¢*(x,G"). Notice that

P (,G") = @ S(0)(C).

o€x,GT
Using (5.1), one can see that
(5.2) Si(0) =1, Si(t1)Si(tz) = Si(t1 + 1)

forany i=1,2,...,n, and t1,1, € G". Thus {Si(1)},c+ (o} is @ semigroup of
unilateral shifts. On the other hand, if i#j, i,j €{l,2,...,n} then
S7(1)Si(s) = 0 for any #,s € G"\{0}. Therefore,

(5.3) SIO)S1()" + -+ Su(0)Su(1)" < Lp(s,6+)

for any r € G\ {0}.
For each n=1,2,..., denote by .«/,(G") the non-selfadjoint closed alge-

by  {Si(¢)} . . Notice that in the particular case when

i=12,..n
Gt =Z"=1{0,1,2,...}, o/,(Z") is the noncommutative disc algebra .o7, in-
troduced in [Pol], and C!(,Z") = C*(S1,...,S,) is the extension through
compacts of the Cuntz algebra O, (n > 2).
Let {Ti(s)},eqr € B(A) (i=1,2,...,n) be semigroups of operators, i.e.,

Ti(0) =1, Ti(s+1)=Tis)Ti(1)
for any s,t € G*, i=1,2,...,n, and such that
(5.4) Ty()Ti(8) 4+ -+ Tu(s) Tu(s)" < Ly

for any s € G*\{0}.

For such G*, there always exist semigroups of contractions which have the
desired properties. If #" is a Hilbert space, then {S(0) ® I },c, g+ is the left
regular representation of x,G* on ¢*(%,G.) ® #". For any sy > 0, define

A= @ (S(0)® L)),

oGt
lol<so

Notice that S(w)"(#'s,) C Ay, for any wé€ x,G". Define T;(1) =
Py Si(t)|j,-30, for any i=1,2,...,n and 1€ G*. It is easy to see that

S0
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{Ti(t)},eq+ € B(A',) (i=1,2,...,n) satisfies the above-mentioned proper-
ties.

We need now a few definitions. We identify M,,(B(#)), the set of m x m
matrices with entries from B(s#), with B(# @ --- @ ). Thus we have a

m—times

natural C*-norm on M,,(B(#)). If X is an operator space, i.e., a linear
subspace of B(#), we consider M, (X) as a subspace of M,,(B(#)) with the
induced norm. The appropriate morphisms between operator spaces are the
completely bounded maps [Arl], [P2], [Pi]. Let X, Y be operator spaces and
u: X — Y be a linear map. Define u,, : M,,(X) — M, (Y) by

um([x]) = [u(xy)]-
We say that u is completely bounded (cb in short) if

[[ull, = sup [Jum]] < oo.
m>1

If |jull,, <1 (resp. uy, is an isometry for any m > 1) then u is completely
contractive (resp. isometric), and if u,, is positive for all m, then u is called
completely positive.

From now on we assume that G* is a commensurable unital subsemigroup
of [0, 00).

THEOREM 5.1. Let {A;(t)},cqr C B(K), i=1,2,...,n, be n semigroups of
operators. Then

(5.5) A1 (DA ()" + -+ Ay (1) A, (1)" < Iy forany te GT\{0}

if and only if the linear map @ : o/ ,(G") — B(A’) defined by

(5.6) B(S, (1) -+ Si.(10)) = Ay (1) -+ Ay (10)

for any iy, ..., i € {1,2,....,n}, t1,...,t € G" and k € {1,2,...} is a com-

pletely contractive homomorphism.

Proor. If G* is not dense the result can be deduced from [Po2, Theorem
2.1]. Assume that G* is dense in [0,00) and the relation (5.5) holds. Ac-
cording to Theorem 4.1, there exists a Hilbert space # D # and
{Vi()},eq+ (i=1,2,...,n) semigroups of isometries such that

ViOVi(@) + -+ Va()Vu(t) < Ly, t€ G+\{0}

(5.7) Aiy(s1) -+ Ay (s) = Por Vi (s1) -+ Vi (1)
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for any iy,...,ik € {1,2,...,n}, s1,...,8, € G, and k € {1,2,...}. Accord-
ing to [D2], since G is dense, there is a x-isomorphism

U CH(S1(0), .-, Su(0) — C(V1(2), ..., Va(2))
such that
!I/(Si] (ll) o 'Sik(lk)Sjl (Sl)* o 'Sjp(sp)*) = Vil (tl) T I/ik(tk) I/}l (Sl)* U V}p(s[))*'
In particular, we have |||, = 1. According to (5.7), we have
(S (11) -~ S (1)) = Aiy (11) - -~ A; (1)
=Py Vi(t1) - Vi(tk)
= Py @ (Si (1) -+ Si (1) -
Similarly, one can show that
(/) = Py W(f)],, for any [ € #/,(G*).

Therefore, ||P] ., < ||¥]., = 1.

Conversely, assume that {4;(¢)},.q- C B(A), i=1,2,...n, are semi-
groups of operators such that the linear map &, defined by (5.6), is com-
pletely contractive. In particular, we have

A1) Ax(t) - An(2) Si(t) Sa(e) - Su(1)
0 0 0 0 0o .- 0
: : : = : : : ’

which shows that
A (A1) + -+ Ap(1)4u(2)" < Iy for any t € GT\{0}.
The proof is complete.
Using Paulsen’s result [P1] and Theorem 5.1, one can infer the following.

COROLLARY 5.2. A representation & :.o/,(GT) — B(AH) is completely
bounded if and only if it is given by &(Si(t)) = XTi(6)X7!,
i=1,2,...,n teG", where {Ti(t)},cq+ (i=1,2,...,n) are semigroups of
operators with

Ty (T ()" + -+ T,(0)T,(t)" < I, for any t € G"\{0},
and X is an invertible operator.

Let G be a discrete additive subgroup of the real numbers and define the free
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product group *,G = G| * - - - x G,, where G; is an isomorphic copy of G for
any i=1,2,...,n. Let

£(1,6) = {506 — € 3 v < )

and let {e,},, ; be the canonical basis of £*(x,G), i.e., e,(1) = 1 if 1 = o and
e,(t) = 0 otherwise. For each i =1,2,...,n and 1 € G, let U;(t) € B({*(%,G))
be the unitary operator defined by

Ui(f)( > Age(’) = > A, (1=19€ Gy,

o€, G

where XA, € C and ZO‘E*,,G|)\U|2<OO' It is clear that {Ui(?)},cq+

(i=1,2,...,n) are semigroups of unitary operators. The Hilbert space
£*(%,GT) can be seen as a subspace of ¢?(%,G) and
(5.8) Ui(0)l e, 6 = Si(t)

forany t e G*, i=1,2,...,n.
Now, one can prove the following unitary dilation theorem for contractive
semigroups of operators. Assume that G* is commensurable.

THEOREM 5.3. Let {Ti(t)},cqv C B(H), i=1,2,...,n, be a sequence of
semigroups of operators such that
Ti(OTi ()" + -+ Tu()Tu(t)" < Ly, forany re G\{0}.

Then there is a Hilbert space A" O A and a sequence {W;(t)},.q+ C B(A'),
i=1,2,...,n, of unitary semigroups such that A" is the smallest closed redu-
cing subspace for each Wi(t) (t € Gt,i=1,2,...,n), containing A, and such
that

ﬂl(tl)"']}k(tk) :P”VVH(“) I/I/iA(tk)|Jf
forany iy, ...,i. € {1,2,....,n}and t},..., 1 € G'.

ProOF. Let 24 be the set of all polynomials in U;(¢), t € G*, i=1,...,n.
According to the Theorem 5.1 and the relation (5.8), the linear map
X : Py — B(AH) defined by

‘%‘(Uil(tl).“ l]ik(tk)) = Til(ll) "'Tik(tk)

for any ij,...,ix € {1,2,...,n} and #,...,tx € G", is a completely con-
tractive homomorphism. Applying Arverson’s extension theorem [Arl, The-
orem 1.2.9] to our setting, there is a completely positive linear map
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Z: C({Ui(n)}) — B(A)

such that 7 », = Z. Combining this result with Stinespring’s representation
[S] the result follows.

According to the notation from Section 1, we set

p({Ti(1)}) := p:(p) for any p € 2(x,G").

Using Theorem 5.1 and Theorem 5.3, we infer the following version of the
von Neumann inequality [VN], which also extends the main result from [Pol]
to contractive semigroups of operators.

COROLLARY 5.4. Let {T;(t)},cqr C B(K), i=1,2,...,n, be a sequence of
semigroups of operators such that

TV(O)Ti () + -+ Tu()Tu(1)" < Ly, t€G"\{0}.
Then
(5.9) IpET OB < [Pl : 60y < Ml

for any polynomial p € P(x,GT), which is viewed as an element of
Cx(%,G)(resp. C*(x,Q)).

C*(%,G)

It is plain that the inequality (5.9) can be extended to matrices
M, (2 (x,GT)).
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