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HOMOTOPY GROUPS OF THE SPACE OF CURVES ON A
SURFACE

VLADIMIR TCHERNOV

Abstract

We explicitly calculate the fundamental group of the spacef of all immersed closed curves on a
surface F . It is shown that �n�f� � 0, n � 2, for F 6� S2;RP2. It is also proved that �2�f� � Z,
and �n�f� � �n�S2� � �n�1�S2�, n � 3, for F equal to S2 or RP2.

By a surface we mean any smooth two-dimensional manifold.

1. Introduction

Recently the space of closed curves on a surface attracted a lot of attention.
The interest was initiated by the work of V. Arnold [1], who axiomatically
defined invariants St and J� of generic curves on R2.
In order to define axiomatically this kind of invariants on an arbitrary

surface F one has to know the fundamental group of the space f of all im-
mersed closed curves on F . However, as far as I know, this group is not
calculated in the literature. In this paper we explicitly calculate it. The
knowledge of its properties allowed me [9] to generalize in a natural way
Arnold's invariants to the case of generic curves on an arbitrary surface.
(The results of the well known paper by S. Smale [8], where he calculated
homotopy groups of the space of all immersed closed curves with the fixed
initial point and the velocity vector at it, are not sufficient for this purpose.)
When the work described in this paper was complete and submitted to

Mathematica Scandinavica, I received a preprint of A. Inshakov [5] con-
taining similar results obtained by him independently. (Later the preprint of
Inshakov was broken into two parts [6] and [7].)
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2. Main results

2.1. Basic definitions. A curve is a smooth immersion of an oriented circle S1

into a (smooth) surface F . For a surface F we denote by f the space of all
curves on F .
Two curves s0 and s1 are said to be regularly homotopic, if there exists a

homotopy H : S1 � I ! F such that H�t� 0� � s0�t�, H�t� 1� � s1�t�, and
H�� � x� is an immersion for every x 2 I . This means that s0 and s1 are in
the same connected component of f.
Two (oriented) curves with a tangency point, at which the velocity vectors

of the two curves are pointing in the same direction, are said to be direct
tangent to each other at this point.
For a surface F we denote by STF the spherical tangent bundle of F and

by pr : STF ! F the corresponding locally trivial S1-fibration.
For a curve � on F we denote by ~� its lifting to STF , which maps every

point t 2 S1 to the direction of the velocity vector of � at t.
We fix a point a on S1. Then a curve � represents an element of

�1�F ; ��a��, and ~� represents an element of �1�STF ;~��a��. When there is no
ambiguity, we denote these two elements by � and ~� respectively.

2.2. Fundamental group of the space of curves on an orientable surface. For
orientable surfaces the group �1�f; �� appears to be much simpler than for
nonorientable surfaces.

Theorem 2.2.1. Let F � S2 and let � be a curve on S2. Then �1�f; �� � Z2.

Theorem 2.2.2. Let F � T2 (torus) and let � be a curve on T2. Then
�1�f; �� � Z� Z� Z.

Theorem 2.2.3. Let F 6� S2;T 2 be an orientable surface (not necessarily
compact) and let � be a curve on F.
I. If � represents a homotopically nontrivial loop on F, then �1�f; �� � Z� Z.
II. If � represents a homotopically trivial loop on F, then �1�f; �� � �1�STF�.
The proofs of Theorems 2.2.1., 2.2.2. and 2.2.3. are given in

Subsections 3.2., 3.3., and 3.6., respectively.

2.3 Fundamental group of the space of curves on a nonorientable surface.

Theorem 2.3.1. Let F � RP2 and let � be a curve on RP2. Then
�1�f; �� � Z4.

Theorem 2.3.2. Let F � K (Klein bottle) and let � be a curve on K.
I. If � represents an orientation preserving loop on K, then

�1�f; �� � �1�STK�, provided that ~� � b2l in �1�STK ; ~��a�� for some
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b 2 �1�STK ; ~��a�� projecting to an orientation reversing loop on K, and
�1�f; �� � Z� Z� Z otherwise.
II. If � represents an orientation reversing loop on K, then �1�f; �� is iso-

morphic to Z.

The following construction will be needed for a description of �1�f; �� for
� representing a homotopically nontrivial loop on F and F 6� RP2;K.
Let F 6� RP2;K be a surface (not necessarily compact), and let � be a

curve on F such that � 6� 1 2 �1�F ; ��a��. Let f 2 �1�STF ; ~��a�� be the
homotopy class of an oriented fiber of the S1-fibration pr : STF ! F .
One can show, that there exists a unique maximal Abelian subgroup

G� < �1�F ; ��a�� containing � 2 �1�F ; ��a��, and that this G� is isomorphic to
Z (see also Proposition 3.1.8.). Let g be its generator. Consider a curve g�
direct tangent to � at ��a�, which realizes g 2 �1�F ; ��a��.
One can show, that ~� 2 �1�STF ; ~��a�� can be presented in the unique way

as ~gk� f
l 2 �1�STF ; ~��a�� (see also the Proof of Theorem 2.3.3.).

Theorem 2.3.3. Let F 6� RP2;K be a nonorientable surface (not necessarily
compact) and let � be a curve on F.
I. If � represents an orientation reversing loop on F, then �1�f; �� � Z.
II. If � represents a homotopically nontrivial orientation preserving loop on

F then:
a) �1�f; �� � Z� Z, provided that g� is an orientation preserving loop on F,

or that g� is an orientation reversing loop and ~� � �~g��2kf l for some nonzero k
and l.
b) �1�f; �� � �1�K�, provided that g� is an orientation reversing loop and

~� � �~g��2k for some nonzero k.
III. If � represents a homotopically trivial loop, then:
a) �1�f; �� is isomorphic to the subgroup of �1�STF� consisting of all the

elements, which project to orientation preserving loops on F, provided that ~� is
a homotopically nontrivial loop in STF. (This means, cf. 3.1.2, that � is not
regularly homotopic to the figure eight curve.)
b) �1�f; �� � �1�STF�, provided that ~� is a homotopically trivial loop in

STF. (This means, cf. 3.1.2, that � is regularly homotopic to the figure eight
curve.)

The proofs of Theorems 2.3.1., 2.3.2. and 2.3.3. are given in
Subsections 3.4., 3.5. and 3.6., respectively.

2.4. Higher homotopy groups of the space of curves.

Theorem 2.4.1. Let F be a surface (not necessarily compact or orientable)
and let � be a curve on F.
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I. If F is equal to S2 or RP2, then �2�f; �� � Z and �n�f; �� �
�n�S2� � �n�1�S2�, n � 3.
II. If F 6� S2;RP2, then �n�f; �� � 0, n � 2.

For the Proof of Theorem 2.4.1. see Subsection 3.7.

3. Proofs

3.1. Some useful facts and technical Lemmas.

Lemma 3.1.1. Let F be a surface, let STF be its spherical tangent bundle
and let p 2 STF be a point. Let f 2 �1�STF ; p� be the class of an oriented (in
some way) fiber of the S1-fibration pr : STF ! F.
If � 2 �1�STF ; p� is a loop, which projects to an orientation preserving loop

on F, then

�f � f�:�1�
If � 2 �1�STF ; p� is a loop, which projects to an orientation reversing loop

on F, then

�f � f ÿ1�:�2�
The proof of this Lemma is straightforward.

3.1.2. (Parametric h-principle.) The parametric h-principle, see [3] page 16,
implies thatf is weak homotopy equivalent to the space 
STF of free loops
in STF . The corresponding mapping h :f! 
STF sends an immersion
� 2f to a loop ~� 2 
STF by mapping a point y 2 S1 to the point in STF
corresponding to the velocity vector of � at y.

3.1.3. Relations between the homotopy groups of the space STF and of the
space of free loops in STF. Let b be a point in STF . We denote by 
bSTF the
space of all loops in STF based at b.
Let 
STF be the space of all free loops in STF and let � be a fixed ele-

ment of 
STF . Fix a point a on S1.
Let t : 
STF ! STF be the mapping, which sends ! 2 
STF to

!�a� 2 STF . One verifies that t is a Serre fibration with the fiber isomorphic
to the space of loops based at the corresponding point.
This fibration gives rise to the following long exact sequence:

� � � !@ �n�
��a�STF ; �� !in� �n�
STF ; �� !t� �n�STF ; ��a�� !@ � � � :�3�
The following statement is well known.
3.1.4. Let � be a loop in STF (not necessarily contractible) and let a be a

fixed point on S1, then for any n � 1 : �n�
��a�STF ; �� � �n�1�STF ; ��a��.
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Lemma 3.1.5. (Cf. V.L. Hansen [4]) The group �1�
STF ; �� is isomorphic
to Z���, the centralizer of � 2 �1�STF ; ��a��.
3.1.6. Proof of Lemma 3.1.5. Let t : 
STF ! STF be the mapping de-

scribed above. A Proposition proved by V.L. Hansen [4] says that: if X is a
topological space with �2�X� � 0, then �1�
X ; !� is isomorphic to
Z�!� < �1�X ; !�a��. (Here 
X is the space of free loops in X and ! is an
element of 
X .) One can verify that �2�STF � � 0 for any surface F . Thus,
we get that �1�
STF ; �� is isomorphic to Z��� < �1�STF ; ��a��. From the
proof of the Hansen's Proposition it follows that the isomorphism is induced
by t�.

The following statement is an immediate consequence of Lemma 3.1.5 and
the h-principle.

Corollary 3.1.7. Let F be a surface and let � be a curve on F, then
�1�f; �� is isomorphic to Z�~��, the centralizer of ~� 2 �1�STF ;~��a��.
Lemma 3.1.8. Let F 6� S2; T 2 �torus�;RP2; K �Klein bottle� be a surface

(not necessarily compact or orientable) and let G0 be a nontrivial commutative
subgroup of �1�F �. Then G0 is infinite cyclic and there exists a unique maximal
infinite cyclic group G < �1�F� such that G0 < G.

3.1.9. Proof of Lemma 3.1.8. It is well known that any closed F , other
than S2;T 2;RP2;K , admits a hyperbolic metric of a constant negative cur-
vature, which is induced from the universal covering of it by the hyperbolic
plane H. The Theorem by A. Preissman (see [2] pp. 258-265) says that if M
is a compact Riemannian manifold with a negative curvature, then any
nontrivial Abelian subgroup G0 < �1�M� is isomorphic to Z. Thus if
F 6� S2;T2;RP2;K is closed, then any nontrivial commutative G0 < �1�F� is
infinite cyclic.
The proof of the Preissman's Theorem given in [2] is based on the fact,

that if �; � 2 �1�M� are nontrivial commuting elements, then there exists a
geodesic in �M (the universal covering of M), which is mapped to itself under
the action of these elements considered as deck transformations on �M.
Moreover, these transformations restricted to the geodesic act as transla-
tions. This implies, that if F 6� S2;T 2;RP2;K is a closed surface, then there
exists a unique maximal infinite cyclic G < �1�F� such that G0 < G. This
gives the proof of the Lemma for closed F .
If F is not closed, then this statement is also true, because in this case F is

homotopy equivalent to a bouquet of circles.

3.2. Proof of Theorem 2.2.1. From the exact homotopy sequence of the
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fibration pr : STS2 ! S2 we get that �1�STS2� � Z2. Corollary 3.1.7. implies
that �1�f; �� � Z2.

3.3. Proof of Theorem 2.2.2. From the exact homotopy sequence of
the fibration pr : STT 2 ! T 2 and identity (1) we get that
�1�STT 2� � Z� Z� Z. Corollary 3.1.7. implies that �1�f; �� � �1�STT 2� �
Z� Z� Z.

3.4. Proof of Theorem 2.3.1. From the exact homotopy sequence of the
fibration pr : STRP2 ! RP2 we get that �1�STRP2� � Z4. Corollary 3.1.7.
implies that �1�f; �� � Z4.

3.5. Proof of Theorem 2.3.2. Corollary 3.1.7. says that �1�f; �� �
Z�~�� < �1�STK ; ~��a��.
Consider K as a quotient of a rectangle modulo the identification on its

sides shown in Figure 1. We can assume that ��a� coincides with the image of
a corner of the rectangle, and that � and the side c of the rectangle are direct
tangent at this point. Let g and h be the curves such that: ~��a� �~g�a� �~h�a�,
g � c 2 �1�K ; ��a�� and h � d 2 �1�K ; ��a��. (Here c and d are the elements
of �1�K� realized by the images of the sides of the rectangle used to construct
K , see Figure 1.)
One can show that:

�1�STK; ~��a�� �
�
~g;~h; f

��~h~g�1 �~g�1~h;~hf �1 � f �1~h;~g f � f~g
	
:�4�

The second and the third relations in this presentation follow from (1)
and (2). To get the first relation one notes that the identity
dc�1 � c�1d 2 �1�K ; ��a�� implies that ~h~g�1 �~g�1~hf k for some k 2 Z. But ~h2
commutes with~g, since they can be lifted to STT2 the fundamental group of
which is Abelian. Hence k � 0.
Relations present on the products of f ;~g;~h imply that any element of

�1�STK ; ~��a�� can be presented as ~gk~hlf m for some k; l;m 2 Z. Using this re-
lations we calculate Z�~�� � �1�f; ��.

Figure 1
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This group appears to be:
a) The whole group �1�STK ; ~��a��, provided that ~� �~h2l for some l 2 Z.
b) An isomorphic to Z� Z� Z subgroup of �1�STK ;~��a��, provided that

~� �~gk~h2l f m for some k; l;m 2 Z such that k 6� 0 or m 6� 0. This subgroup is
generated by f~g;~h2; f g.
c) An isomorphic to Z subgroup of �1�STK ;~��a��, provided that

~� �~gk~h2l�1f m for some k; l;m 2 Z. This subgroup is generated by
�� �~gk~hf m. (Note that �2� �~h2, and ~� � �2l�1� .)
Now the statement of the Theorem is a direct consequence of

relations present.

3.6. Proof of Theorem 2.2.3. and Theorem 2.3.3. We are going to prove
that the statement of Theorem 2.3.3. is true for any orientable surface
F 6� S2;T2 and any nonorientable F 6� RP2;K . (We will see that
~� 2 �1�STF ; ~��a�� can be presented in the unique way as~gk� f

l 2 �1�STF ; ~��a��
for any F 6� S2; RP2;T2;K.)
Clearly this gives a proof of Theorem 2.3.3. Theorem 2.2.3. is also an im-

mediate consequence of this fact.

3.6.1. Proof of Theorem 2.2.3. and Theorem 2.3.3. in the case of
� 6� 1 2 �1�F ; ��a��. Consider a subgroup G0 of �1�F ; ��a�� generated by �. It
is an infinite cyclic group (see 3.1.8). There is a unique (see 3.1.8.) maximal
infinite cyclic group G < �1�F ; ��a�� such that G0 < G. Let g be the generator
of G. Let g� be a curve direct tangent to � at ��a� representing this g.
Corollary 3.1.7. says that �1�f; �� is isomorphic to Z�~��. Take � 2 Z�~��.

Since ~� and � commute in �1�STF ; ~��a��, we get that their images under the
projection pr� : �1�STF ; ~��a�� ! �1�F ; ��a�� commute in �1�F ; ��a��.
Lemma 3.1.8 implies that these projections are in the subgroup G.
The kernel of the homomorphism pr� is generated by f , the homotopy

class of an oriented fiber of the S1-fibration pr : STF ! F . This fact and
identities (1) and (2) show that there exist unique k; l;m; n 2 Z such that
~� �~gk� f l and � �~gm� f n.
Using identities (1) and (2) we can check for which values of k; l;m; n the

elements � and ~� commute. This allows us to calculate Z�~��. It turns out to
be:
a) A group isomorphic to Z� Z generated by f~g�; f g, provided that g� is

an orientation preserving loop on F .
b) A group isomorphic to Z generated by ~g�f l , provided that g� is an or-

ientation reversing loop, and k is odd. (This means that � represents an or-
ientation reversing loop on F .) Note also, that in this case �~g�f l�2 �~g2� .
c) A group isomorphic to Z� Z generated by f~g2� ; f g, provided that g� is

an orientation reversing loop on F , k 6� 0 is even, and l 6� 0.
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d) A group isomorphic to �1�K� generated by f~g�; f g, provided that g� is
an orientation reversing loop on F , k 6� 0 is even, and l � 0.
(Note that if k � 0, then � � 1 2 �1�STF ; ��a��, which contradicts to our

assumption.)
This finishes the proof of the two theorems for this case.

3.6.2. Proof of Theorem 2.2.3. and Theorem 2.3.3. in the case of
� � 1 2 �1�F ; ��a��. From the exact homotopy sequence of the S1-fibration
pr : STF ! F we get that ker pr� is generated by f , the homotopy class of
the fiber. Since � � 1 2 �1�F ; ��a�� we get that there exists a k 2 Z such that
~� � f k. Lemma 3.7.1. says that �1�f; �� is isomorphic to Z�~�� �
Z�f k� < �1�STF ; ~��a��.
For k 6� 0 identities (1) and (2) imply that Z�f k� coincides with the set of

elements of �1�STF ; ~��a��, which project to orientation preserving loops on
F . This finishes the proof of the Theorem for � � 1 2 �1�F ; ��a�� and
~� 6� 1 2 �1�STF ; ~��a��.
If k � 0, then ~� � 1 2 �1�STF ; ~��a��. Thus Z�~�� � �1�STF ;~��a��. Hence, in

this case �1�f; �� � �1�STF ; ~��a��.
3.7. Proof of Theorem 2.4.1. The proof of this Theorem is based on the

following exact sequence, which was introduced in section 3.1.3.

� � � !@ �n�
��a�STF ; �� !in� �n�
STF ; �� !t� �n�STF ; ��a�� !@ � � � :�5�

Lemma 3.7.1. If F is equal to S2 or RP2 and n � 2, then

�n�
STF ; �� � �n�
��a�STF ; �� � �n�STF ; ��a��:
3.7.2. Proof of Lemma 3.7.1. Fix n > 1. We construct a homomorphism

g : �n�STF ; ��a�� ! �n�
STF ; �� such that t� � g � id�n�STF ;��a��. After this
the exactness of the sequence (5) and the fact that higher homotopy groups
are Abelian imply the statement of the Lemma.
We describe this construction for F � RP2. The construction of g for

F � S2 can be easily deduced from this one.
From the exact homotopy sequence of the covering STS2 ! STRP2 we get

that �n�STRP2�, n � 2, is canonically isomorphic to �n�STS2�.
Take s : Sn ! STRP2, which represents a given element of

�n�STRP2; ��a��. Let s0 : Sn ! STS2 be the mapping which is a lifting of s
under the covering STS2 ! STRP2. Fix an orientation of S2. Then for every
x 2 Sn the orientation of a small neighborhood of pr s0�x� 2 S2 induces an
orientation of a small neighborhood of pr s�x� 2 RP2.
There is a unique isometric autodiffeomorphism Ix of RP2 such that:
a) It maps pr s��� to pr s�x�.
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b) The differential of it sends s��� to s�x�.
c) The above described local orientation at pr s�x� coincides with the one

induced by the differential of Ix from the local orientation at pr s���.
Let �s : Sn ! 
STRP2 be the mapping which sends x 2 Sn to Ix��� (the

translation of � by Ix).
Set the value of g on the element of �n�STRP2; ��a�� represented by s to be

the element of �n�
STRP2; �� represented by �s. A straightforward verifica-
tion shows that this g is the desired homomorphism from �n�STRP2; ��a�� to
�n�
STRP2; ��.
This finishes the proof of Lemma 3.7.1.

3.7.3. One verifies that �2�STF � � 0 and �n�STF� � �n�S2�, n � 3, for F
equal to S2 or RP2. Now Lemma 3.7.1, statement 3.1.4 and the weak
homotopy equivalence given by the h-principle (see 3.1.2) imply the first
statement of the Theorem. (Note that �3�S2� � Z.)
Statement 3.1.4. says that �n�
��a�STF ; �� � �n�1�STF ; ��a��. One verifies

that �n�STF� � 0, n � 2 for F 6� S2;RP2. The exactness of sequence (5) im-
plies, that �n�
STF ; �� � 0, n � 2. Using the weak homotopy equivalence
given by the h-principle we get the second statement of the Theorem.
This finishes the proof of Theorem 2.4.1.
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