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UNIFORM BOUNDS FOR LIMITED SETS AND
APPLICATIONS TO BOUNDING SETS.

BENGT JOSEFSON

Abstract

A set D in a Banach space E is limited if limsupy_ sup.cp [¢x(z)| > 0 =sup);=; limsup;_,
|ox(z)|> 0 for every sequence (pr) C E*. It is studied how this implication can be quantified, for
example if there exists a constant C >0 such that limsup,_. sup.cp|ex(z)|=1=
Sup|;=1 imsupy_o, [¢x(z)] > C for every sequence (¢x) C E*, is studied. Relatively compact
sets and limited sets in /> - among others the unit vectors - have uniform bounds in this sense. A
fundamental example of a limited set without any uniform bounds is constructed. A set D is
called bounding if /(D) is bounded for every entire function on E. That bounding sets are uni-
formly limited and that strongly bounding sets are limited in the strongest sense are proved.
Examples show that the convex hull of bounding sets in general are not bounding and that
bounding sets in general does not have Grothendieck’s incapsulating property as relatively
weakly compact sets have.

Introduction

The Banach spaces considered here are over the the real or the complex field.
A set D in a Banach space E is called limited if every weak* null sequence
(pr) in the dual space E* converges uniformly on D, i.e.

lim sup | (z)| = 0

k—o0 zeD
An equivalent formulation without referring to null sequences is: D is called
limited if

lim sup sup |¢r(z)] > 0 = sup limsup |pr(z)| >0
k—oo z€D llz|=1 k—o0

for every sequence (¢x) C E*.
A natural question is how this relation can be quantified. For example we
may ask if a limited set D has a constant C > 0 such that

lim sup sup |¢r(z)] = 1 = sup limsup |gr(z)| > C

k—oo zeD llzl=1  k—oo

for every sequence (wx) C E*. Such a limited set is called limited in the
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strongest sense (the class #). Relatively compact sets and limited sets in />
- among others the unit vectors - are uniformly limited in this sense (see re-
mark 6).

Four different notions of uniform bounds are introduced. The weakest
one, called uniformly limited (the class %4 in Definition 2), is a sequential
property (such as being compact or limited) in contrast to being in .%.

Recall that a set D C E is bounding if f(D) is bounded for every entire
function f : E — C and that f(z) = Y ;o ¥ (z) is an entire function if and
only if (px), C E* is a weak* null sequence. Thus compact sets are bounding
which in turn are limited and, in Banach spaces without any copy of /j, lim-
ited sets are weakly compact according to [1]. Theorem 2 sharpens this well-
known inclusion to say that bounding sets are uniformly limited.

That this is a sharpening follows from Theorem 1. A Banach space E
containing an isometric copy (ax) of the unit vectors of ¢y as a limited set is
constructed such that for every e >0, there exists (pr) C E* with
llerll = 1 = @i(ax), for every k, but supy._ limsupy_. [¢x(2)| < €, denying
any possible uniform bound. Of course this gives a new example of a limited
set which is not bounding. Other examples can be found in [6] and [7].

A set D C E is called strongly bounding (the class %) if f(D) is bounded
for every function holomorphic in some ball rBg with r > sup..p, ||z||, where
Bg denotes the open unit ball of E. Relatively compact sets are obviously
strongly bounding and, according to [5], so is also every limited set in /*.
Theorem 3 proves that strongly bounding sets in fact are limited in the
strongest sense.

In the other direction Theorem 4 shows that a strongly uniformly limited
set is bounding for holomorphic functions generated by uniformly bounded
linear functionals (the class %, in Definition 4). Examples show that Theo-
rem 4 cannot be essentially improved.

Section 2 treats the class of bounding sets (%) and the different classes of
limited sets regarding two basic properties — being closed under taking con-
vex hulls (the H-property for short) and having Grothendieck’s incapsulat-
ing property (the G-property), i.e. D is in the class if (and only if) there is,
for every € > 0, a set D, in the class such that D C D, + eBg. In [8] this ana-
logy of Grothendieck’s characterization of the relatively weakly compact
sets is observed to hold for limited sets. It is easily verified that the classes of
compact, limited and uniformly limited sets have both properties. On the
contrary ¢ fails the G-property while the class of bounding sets fails both
of them. The question whether the convex hull of a bounding set also is
bounding has been open for quite a while and the negative answer underlines
the complexity of bounding sets.

Altogether the following scheme, (see Definitions 1-4), is proved:
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We do not know if the inclusion # C 4, is strict or not, but otherwise the
inclusions are strict. The scheme is also complete in the sense that if it does
not give any information about two classes — there exist no inclusions be-
tween them. For example there are sets in 4 which are not in % and sets in
%1 which are not bounding.

Through a number of examples there is a common theme in the construc-
tions. As a starting-point serves ¢y and the key point is to split each unit
vector into parts to give an inner structure. These new units are then con-
nected by /[* and /; structures. Besides Example 4 only linear functionals are
considered.

Uniform bounds

DEerFINITION 1. A set D C E is called limited in the strongest sense if there
exists a constant C > 0 such that
limsup sup |¢x(z)] = 1 = sup limsup |pk(z)| > C
k—oo zeD llz]|=1  k—oo
for every sequence (¢x) C E*.

Further D is said to be limited in the strong sense if there exists, to every
K > 0, a constant Cg > 0 such that

limsup sup |¢x(z)| = 1 = sup limsup |pk(z)| > Cxk
k—oo z€ED lz]|=1 —00
for every sequence (¢;) C E* norm-bounded by K (i.e. supy ||¢«| < K).
The classes of sets limited in the strongest respectively the strong sense are
denoted ¥ respectively %.

REMARK 1. A relatively compact set D is limited in the strongest sense
because every sequence in D has a clusterpoint and we may take C = 1. In
/> all limited sets are limited in the strongest sense according to Remark 6
below. In particular the unit vectors and the unit ball of ¢y are in | with
Cc=1.

We shall first construct an example showing that not all limited sets are in
the class Z»(D ).

We need Banach spaces with the Gelfand-Phillips property (GP-spaces),
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i.e. limited sets are relatively compact, but demanding weak* null sequences
with big norms to deny the limitedness of isometric copies of the unit vectors
of ¢y. Such spaces are an essential part of the construction in [6]. We recall
the construction with some modifications.

Let M C N be infinite and let P, (M) denote the set of all infinite subsets
of M. Put I' = P(N) x wy, where w; denotes the first uncountable ordinal.
For each infinite M C N, choose a family {Vy.:a <wi} C Ps(M) sa-
tisfying

Vi 0 Vg is finite if o # S.

Keep nc N fixed. Let (@), be the unit vectors for some /*°(S,). Put
XM oom) = Dokevy, Qkm- Let {ya s A € Ay} C1(S,) be a set of vectors con-
taining a Hamel-basis of norm one vectors for /*(S,) and the set
{x’(MMn) :(M,a) €T}

Let {f(\n) : A € 4,} be the unit vectors of some /;(A4,), which we view as a
subspace of some /°°(S},), and put zy = yx +-5 f(\). Note that (M, a,n) € 4,
for all (M, ) € I'. Especially we put X7 = sz,u’n) + 2 fisan. Denote
by F, the Banach space, isometric to ¢, generated by {au.,) : k € N}. Let
E, C [*(A,), where A4,=S,US,, be the Banach space generated by
{za: X € 4,}. Let E, be the same vector space but with the equivalent norm

(1) | I = max|| ||1o<>(An)a”|| HI”C(An)/F,,]

Note that [[X(ar,a.) || = n but |lag,,|| =1 for all (M,«) € I" and all k. Note
also that the quotient space E,/F, is isomorphic to /;(4,), because of the
terms {fir,) : A € A,}.

LEMMA 1. The Banach space E, has the Gelfand-Phillips property. If (vx),. is
a weak* null sequence in E; with limsupy_ . |[ok(agm)| =1, then
lim supy . lpell > n/4

ProOF. The proof is similar to that of Lemma 1 in [6]. Since E,/F, is iso-
morphic to /;(A,), there exists a projection P : E, — F,. Both /;(4,) and F,
(isometric to ¢p) are GP-spaces. Thus D limited in E, implies that both D/F,
and P(D) are relatively compact and hence D is relatively compact, which
proves that E has the GP-property.

Assume that (¢r) is a weak* null sequence in Er with ||¢k|| < n/4 and

lim sup |90k(a(k‘n))| =1.

k—o0

Since

Jim prlag) =0= /11210 or(agn)
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and (a,,)) is isometric to the unit vectors of ¢g, a standard perturbation and
subsequence argument shows that we may assume, that for an infinite set M,
we have i (ap,) = 1 but wi(ag,) =0 when k # j and k,j € M.

Keep o < w; fixed for a moment. Since

Jim o (X(ar.am)) = 0

there exists Up o C Vs such that Vi, \ Uy, is finite and such that
lok (X(ar.amy)| < 1/n for all k € Upq.
Since w; is uncountable, there exist ay,...,«,» and j such that

2

S ﬁ UM,a,
=1

Put

2
n-

1
X= ;;x(M,a/,n) =da(jn 2z

Since Vs N Vg is finite if a # 3 we have that

nZ
Z X(M ay,n)
=1

according to 1). Since also || —727; ax Jowamllie(a,) = 1/n* we conclude that

1
2

=1/n
Ey/Fy

1
n2

Izllg,/r, = 1/n. Note also that [|z[| = ||z Ey/lag,)> Where [a(jn] is the subspace

generated by «a;,). Hence

nl
1/n > [p;(x)] = |gj(agn)l — lei(2)] > 1 “an 3/4
which gives a contradiction if n > 1 and completes the proof.

REMARK 2. In [4] and [8] it is observed that E is a GP-space if the dual ball
B, contains a sequentially weak*-precompact E-norming subset B, i.c., there
exists ¢ > 0 so that ||z|| < c¢sup,ep|p(z)| for every z € E. A direct proof of
this gives that if D = {e,} C E satisfies |e,|| > d and d < |le, — ¢;|| for a gi-
ven d > 0 and all n # j, then there exists a weak* null sequence (p,) C 8¢B;
with limsup |@n(es)| > d. (For given infinite U and given k& > [ there exist
¥ € B and an infinite ¥ C U such that |¢(ex —¢;)| > d/c and such that
lim, .o ey ¥(en) exists. Thus there exist a weak* Cauchy sequence (i) C B
and (]k) such that W]k(ejzk - e_fZA'—l)| > d/c but |17Z]k(€jm - ejn)| < d/ZC if
m>n>2k. Hence (pr) = (¢Yx —x—1) is a weak* null sequence in E*,
okl <2 and |gx(e;)| > d/4c for i = 2k — 1 or i = 2k.)
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On the other hand Theorem 10 in [8] gives that if X = (®kenXk),, where
X are GP-spaces such that every sequence (cx), of norming constants for Xy
is unbounded, then X is a GP-space without a sequentially weak*-pre-
compact, X-norming subset of the dual ball. A sequence (X;) with these
properties is also constructed in [8]. According to the Lemma X =
(®neNEy);, 1s another example of this kind. (The results of Schlumprecht
appeared already in [9].)

ReEmARK 3. Without the terms {f(,, : A € A} in the construction, E, is
isomorphic to /°(S,) with a bijection of norm n. Hence {ag ) : k € N} is
limited in the strongest sense with C = 1/n.

ExaMPLE 1. Let {ag,) : (k,n) € N x N} be the unit vectors of ¢o(N x N)
and let E, be the Banach space in Lemma 1 associated to {a, : kK € N} but
without the terms {f(,,) : A € A,}. Then (a,), is limited in E, according to
Remark 3 and each E; (as in the construction preceeding Lemma 1) is
naturally identified with the subspace /°°(N x n) of /*°(N x N) (because
A, =S,=Nxn) and E, is I°°(N x n) equiped with the equivalent norm
2]l = max[||z|, |zl = ), ). Note that if gofc") € E; is the projection onto
[ag.n) such that o} (agm) =1, o\ (ay) = 0 for k #j and [|¢}”|| = 1, then
lim supy_. o (2)| < ||z||/n for all z € E,.

Let T be the set of all sequences v = (n,v,), C N x N. Note that
[*°(v) C (N x N) and that the unit vectors of /*°(v) is limited in /*(v). Let
E be the sup-norm sum of the Banach spaces {E, : n € N} and the family
{I*(v) ;v eT}. Then D = {ay, : (k,n) € N x N} is limited in E (every se-
quence in D has a subsequence in either some E, or in some /> (v)). But D is
not limited in the strong sense since, for given n, the projections
{gp,((”) :k €N} above can be extended to E by putting <p,(€") JE; =
0= go,i")/l“(v\ {n,u,}). Then (go,((n))k C E* is still norm bounded by 1,
SUp.cp |ga§€")(z)| =1 but limsupy_, |¢x(z)] < ||z||/n for all z € E. This holds
for every n and thus D is not limited in the strong sense.

Note that every sequence in D is limited even in the strongest sense (once
again because every sequence in D has a subsequence in either some E, or in
some /*(v)). Thus neither being limited in the strongest nor the strong sense
is a sequential property.

The following definitions are however sequential.

DErFINITION 2. A set D C E is called uniformly limited if every sequence in
D has a subsequence uniformly limited in the strong sense.

Further D is said to be strongly uniformly limited if every sequence in D
has a subsequence uniformly limited in the strongest sense.
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The class of uniformly limited sets is denoted ¥4 while .#3 denotes the
class of strongly uniformly limited sets.

The set D in example 1 is strongly uniformly limited.

We shall now construct the example showing there is no way of defining
the concept of uniform bounds such that it holds for all limited sets.

Let S={(j,k) e NxN:j<k} and {e;s} be the unit vectors of ¢o(S).
Put a; = Zj‘;l e, then {a;} generates a Banach space isometric to co. Put
Q) = 2721 e(j k) where e(jz) = 01if j > k for convenience. Let, for fixed n, F,
be generated by {a(,;k € N}. Then F, is isometric to ¢y and we can take E,

associated to (a( ), as in Lemma 1.

Put a,((”) = Zf:n 11€(k)- Let T be the set of all non-decreasing, unbounded
sequences v = (vx) of positive integers, such that vy < k for all k. Let, for
every v € T, ¢o(v) denote the Banach space, isometric to ¢y, generated by
{a,{,“k)}k and let /*(v) C [°°(S) denote the corresponding /*-space generated
by all sequences (zka,(;’k))k, where (zx), € /. Let further F be generated by
{apn) : (k,n) € S} and {a,i”") :v € T}. Then F is a subspace of ¢o(S), actu-
ally the whole of ¢y(S).

We shall now add the spaces {E, : n € N} and {/*(v) : v € T’} in a differ-
ent manner than in Example 1.

Recall that E,, regarded as a vector space, is a subspace of /*°(4,), where
A, =S8,US, and [~(S,) C [*(S). Thus z € E, has a natural decomposition
z=:0 422 where z) € /~(S) and z? € /*(S}). Furthermore || || =
max[|| [l (4,)s Il [l (4,)/r,]- Let E be the Banach space generated by the Ba-
nach spaces {E, : n € N} and {/*°(v) : v € T’} in such a way that

! r
D )
=1

n=1

E

max

IEIRD PEr
=1

n=1

t r
; Z Izl g/, + Z llzvill e (50
(S) n=1 =1

where z, € E, and z,, € I*°(v))

THEOREM 1. The sequence (ay) is limited in E. But for each n there exists a
sequence (pr) C E* such that o (ax) = 1 = ||pk|| and

sup limsup [pi(2)| < 1/n

lzll=1 k—oo

PrROOF. Assume that () is not limited. Then there exists a weak* null
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sequence (k) such that limsup |gx(ax)| = 1. Put C = sup ||¢k||. There does
not exist n > 8C such that limsupy_, [@x (@) > 1/2, since then, accord-
ing to Lemma 1, limsup;_, ||¢k|| > n/8 > C.

Thus we may take, for every n > 8C, m, > m,_ such that | (au)| <
1/2 when k >m, . Especially |oy, (a,ﬁ”)| > 1/2 for every n>8C. Thus
lim supy_ o [ox (g (W) )| >1/2, where M =n when m, <k <m,;;. Hence
(a,(cA )) « 1s not limited in E, which is impossible since the unit vectors of ¢ is
limited in /*°. Thus (a) is limited in E.

To prove the estimate of the Theorem, fix n and let ¢, € /°°(S)" be such
that P,x(z) = wr(z)emp) is the natural projection /°°(S) — [e(,x)]. Thus
or(emi)) =1 = [l¢k||. Obviously we can extend the definition of ¢, by put-
ting i /1°°(S}) = 0 for every j. Thus we may assume that ¢ € E* and still
x|l = 1. Further we have that ¢ /E; = 0 if j < n and that (¢ /I>°(v)) is a
weak* null sequence in /°(v)”* for every v € T, because v — 0o as k — oo.

Letz =)0 2+ Y 2y, € E, where z; € Ej and z,, € [*(v;), be such that
limsupy_o [@k(2)] > 1/n. Since @i /I°(S]) =0, ¢x/E;=0 if j<n and
limy o0 i (20,) = 0 for every / we get that

'
. )
hglsolclp Dk (sz + ZZU,> ‘ = hmsololp ) (jzn:zj ) > 1/n
Then
=) =0 =0
1 <n sz < ”Z 23 e )7 < Z iz 11 g, e < =1l
Jj=n Joo (S)/F Jj=n Jj=n

according to the definition of the norm in E. Hence lim sup;_, .. |¢x(2)| < 1/n
if ||z|| < 1 and the theorem is proved.

REMARK 4. Let B be the unit ball of the c¢yp-space generated by
{ar : k € N}. Let D CrB+ K, where r >0 and K C E is compact, be not
relatively compact. Then there exist a sequence (br) C D and d > 0 such that
|b; — bi|| > d and d < ||by|| for all j # k. The proof of Theorem 1 together
with the basis properties of ¢y gives that there exists, for every givenn € N, a
sequence (yr) C E*, such that ||| =1, |pk(br)| >d but limsup,_ .
lox(z)] <||z||/n for every z € E. Thus no set D C rB+ K, besides the rela-
tively compact ones, is limited with uniform bounds in any sense. Now E
given above contains limited sets which are limited even in the strongest
sense, without being relatively compact, because £ has subspaces isomorphic
to /. A somewhat more complicated example can be given so that only re-
latively compact sets are uniformly limited whatever uniform bound we use.
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We just briefly sketch how the construction of £ can be modified to give
such a space.

Obviously we have to replace /*°(v) by GP-spaces as in Lemma 1. Let 1
and P, (N) be as before. Put 2 =7 x P (N). To every w= (v,M) € 2 we
associate a sequence (w,), where w, = ([ux/n]),c), and [ | denotes the integer
part. Note that w,, for every n, is a non-decreasing, unbounded sequence of
positive integers. Let, for every wy, F,, denote the Banach space, isometric to
co, generated by {a; (e :k € M}. We may assume that (2 is well-ordered
and use transfinite induction. Assume that we have taken E,, for every n and
every k < w = (v, M). If there is x = (v®), M) < w such that E,, # 0 and
such that for some integer #» and some infinite set U C M, N M we have that
[v,<f> /n] < v when k € U, we put E,, = () for every j. Otherwise we take, for

[ve /1)

every j, E,, associated to the set {a,(( :k € M} as in Lemma 1 with n re-

placed by j.
Let E be the Banach space generated by the Banach spaces {E, : n € N}
and {E,, :n € N and w € 2} in such a way that

t r
DL R DBEN
n=1 =1 7

ZHZn

t r
I 1
e Ziu))
=1 =1

lﬁc

st ol e,
//

where z, € E, and z 0 EE and 2! (,) is defined as zﬁ,l).

7/ J1 @i

Essentially the same proof works [to show that Theorem 1 also holds for
this new Banach space E. It remains to show that if D is limited in E, then
D C rB+ K for some r > 0 and some compact set K C E. The main diffi-
culty is to show that a set of type {a,iuk) :k € M}, where v €7, is limited.
Take w = (v, M). If E,, # 0 there exists a weak* null sequence (¢x)epr C EJ,
such that g (a!™) = 1 when k € M. We give, for every k € M, ¢ the addi-
tional properties that o (eqx) = wr(egr) if i > > v, gr(ew, k) = —1 and
wr(e(p) = 0 for all other (j,p) € S. Observing that if both E,, and E,, are
nonempty and V=MnM, then either hm{keyk_,oc} /vy ") —0 or
hm{keykﬁo} vk /vk =0, it is easy to verify that (yx);,, is @ weak* null se-
quence in every E; and every E; and hence in E*. If E, = () (and hence all
E,, = () we take E,, (at least one exists) that forces E,, to be the empty set
and U C M, ﬂ M as above. Then take a weak* null sequence (yx);.y C E
such that ¢ (al™)) = 1, or(en)) = rlegr) when i > j > vk, (e, p) = -1
and proceed as above.

The following Lemma will be used in the next section.



232 BENGT JOSEFSON

LEMMA 2. Let D be a non-uniformly limited set in the Banach space E. Then
there exist a sequence (ay) C D and a constant K > 0 such that, for every n,
there exists (") C E* norm bounded by K with " (ay) = 1, for ¥n and k, but
Pzt lim sup;_ |g0,((")(z)| <l1/n.

ProOF. If D is non-uniformly limited there exist a sequence (a;) C D and
a constant K such that, for each integer n, there exists (<p,(€")) C E* with
eyl < K. limsupy o o) (@)l =1 but limsup,_ o) (2)] < ||z]l /2 if
z #0. A subsequence of a subsequence passing to the diagonal argument
shows that we may assume that this holds for all subsequences of (a;). But
then once again subsequences out of subsequences and passing to the diag-
onal give us a sequence, also denoted (ay), such that for every given n there
exist (¢"), norm bounded by K, such that limy . |o\" (a)] =1 but
lim supy_ |ap,<(”)(z)| < ||z||/n for every z € E,z # 0. To get the sequence in
the Lemma we just have to notice that we are free to change finitely many
o for every fixed n.

REMARK 5. If D is not even limited we may take (<p,(€">) independent of x.
Also sets which are not strongly uniformly limited have a corresponding
description (just omit K and the proof will be essentially the same). Ob-
viously Lemma 2 gives both a necessary and sufficient condition for a set to
be not uniformly limited.

Bounding sets

First we reformulate the definition of being bounding in a way similar to the
different classes of limited sets.

LEMMA 3. 4 set D in a Banach space E is bounding if and only if there exist,
for every given sequence (Qx), of jx-homogeneous polynomials on E such that

lim supy_,» SUP.cp |Qk(z)|l/j" >0, a constant C >0, z€ E and a sequence
(zi) C E such that limy_, zx = 0 and limsupy_, ., C*|Qk(z + z¢)| > 0.

The proof is simple.
Combining propositions from [1] and [8] we get:

PrROPOSITION 1.

1. The absolutely closed convex hull of a limited set is limited.

2. Subsets of a limited set are limited.

3. Theset Ay — Ay ={a1 —ar: a1 € Ay,a2 € Aa} is limited if A\ and A, are
limited and so is tA) for every t € C.

4. Limited sets are conditionally weakly compact.



UNIFORM BOUNDS FOR LIMITED SETS AND APPLICATIONS... 233

S. Limited subsets of spaces containing no copy of I} are relatively weakly
compact.

6. If there is, for each € > 0, a limited set D. such that that D C D. + €Bg,
then D is limited in E.

Since & is the largest class, 4) and 5) hold for all classes considered here
and evidently also 2). It is immediate that the classes .¥; and ¢, are closed
under taking convex hulls and by Lemma 2 it is easily seen that also #; and
%4 have the hull-property. Property 3) is merely a special case of 1) and
holds for bounding sets, though not as obvious as in the limited case. Let A4
and B be bounding sets. If 4 4+ B is not bounding there exist a holomorphic
function f(z) = > 2, Px(z), where Py : E — C is a jy—homogeneous poly-
nomial, and sequences (ai), C A and (by), C B such that Pi(ay+ by) =
Jx + 1 for every k. Write Pr(ax + bi) = ]}':0 Osi(ak, br) where Qg i (ax, by) is
a s-homogeneous polynomial in a; and a (jx — s)-homogeneous polynomial
in by. Since Pi(ax + bi) = ji + 1 there exists, for every k, at least one s such
that |Qy, x(ax, bx)| > 1. Since (ax) is bounding there exist, according to Lem-
ma 3, C>0, acE and (xx), CE such that limg_xx=0 and
limsupy o, C*|Qy, x(a + xx, bi)| > 0. Since (by), is bounding the same argu-
ment gives b€ FE and (), CE such that limg_.yx=0 and
lim supy_.o. | Oy, k(@ + Xk, b +yk)\1/;k > 0. But then a Cauchy-estimate shows
that f'(z) is not holomorphic and we get a contradiction which proves 3) for
bounding sets. (A similar argument shows that 3) holds for all classes of
bounding sets considered here.) On the other hand bounding sets does not in
general have a bounding convex hull as the following example shows.

ExamPLE 2. Let, for each n € N, {ey, : k € N,k > n} be an isometric
copy of the unit vectors of ¢y and, for each fixed k € N, || Zl;:l tenll =
S |ta|l. Put S = {(k,n) € N x N:k >n}. Let

G= {z 1z = Z Z(k,n)e(k,n)}
(

k.n)es

with ||z|| = supy Zﬁ:l |Z(km|. Denote by H, the [*-space generated by
{e(cn) : k € N,k > n} and by ¢, the corresponding co-space. Let 1" be the set
of all sequences v = (vy,,n), C S such that v, < v,y for all n € N. Let /*(v)
denote the /°-space generated by {e(,, . : n € N} and note that /*(v) C G.
Let further ¢o(v) be the corresponding cy-space. Let finally £ C G be the
Banach space generated by {H, : n € N} and the family {/*(v) : v € T}, i.e.,
the closure in G of the set {z=13 _ z,+ > i Zy : 2Zn € Hy, 2, € 1°(v) }.
Then D = {eq) : (k,n) € S} is limited in the strongest sense in E since the
unit vectors of ¢y is limited in the strongest sense in /. Hence the closed
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absolute convex hull D of D also is limited in the strongest sense. Further-
more D is bounding, even strongly bounding, since the unit vectors of ¢y is
(strongly) bounding in /. (For the notion of strongly bounding see defini-
tion 3 and remark 6 below.) We shall prove that D is not bounding, more
precisely that {a; : k € N}, where a; = kz €(kn» 1s not bounding.

Put f(2) = 3308, Pe(z) = S50 K T 1<Pkn( z), where ¢, € E*, for ev-
ery (k,n), is the natural norm-one projection of E onto the span [e,]. Then
flay) =k — oo as k — oo because k' [T*_, prn(ar) = k. Let z =3 z,+
Sz = > (kmjes Zkm€kn) € E and take €>0. There exist an integer
m >0 and, for every k € N, a set My C {1,2,,k} with at most m elements
such that 3°, i i/u, [Zgem | < € for every k. Then supyy.|Pr(z+x)| <

k(k(||z]| + €)™ (2¢)* '"(kkm)k " < (3¢)X, if k is big enough, according to the
relation between the geometrical and the arithmetical mean. Thus f is an
entire function and {ax : k € N} is not bounding.

Property 6) is an analogy of Grothendieck’s characterization of relatively
weakly compact set as pointed out in [8] and can, by Lemma 2, easily be
generalised to the classes ¥, and %4 i.e., if D can be e-incapsulated by uni-
formly limited sets (in the strong sense) then D itself is a uniformly limited
set (in the strong sense). Neither bounding sets nor strongly uniformly lim-
ited sets have in general this property.

ExaMPLE 3. Let {e() : (k,n) € N x N = S} be vectors such that, for each
fixed n € N, the set {e(, : k € N} is isometric to the unit vectors of ¢y and
such that, for each k € N, {e<kﬂ,,> :n € N} is isometric to the unit vectors of /;.
Let H), be the [*-space generated by {e ) : k € N} and let G be the Banach
space generated by {H, : n € N} equiped with the norm ||z[l; = || 3 _; z =
SUPreN E]n:l |Z(k,n)‘ where z, = (Z(k,n))k € H,. Put k) = €(k,1) T Cnl(kn+1)>
where ¢, € R will be determined below. Then {a(k,n) : k € N} generates, for
every n € N, a Banach space F, isometric to ¢y and lim, .o @) = ek, if
lim,, .o ¢, = 0. Let F,;° be the /*°-space generated by to (), Let F be the
Banach space generated by {an,) : (k,n) € S}. Give F,* the equivalent norm

2|l = max[||z|| =, dullz|| = ), |, Where &, € R, dy, > 1 will be determined later,

and let E, be F° equiped with this new norm. Note that ||z|| = ||z||p= if
z € F,. Note also that if (gok) C E* is such that limsupy_, . |@x (@@ )|n— 1
then lim supy_, ¢k (z)| > 4 7 llz|| for some z € E, (because the unit vectors are
limited in the strongest sense in /). Thus (@ ,)), is limited in the strongest
sense in E, and is also bounding because E, is isomorphic to F;° and the unit
vectors are bounding in /*. Let finally £ be the Banach space generated by
{E;;n € N} in such a way that if z = Z’l::l z; € E, where z; € E;, then
lz|| p = max][||z] ¢, j _1 Izill g, /,]- Note that F is isometric to a subspace of E
that we identify W1th F. Put now ¢, = 1/n and d, = n". Then (e )), is uni-
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formly limited in E since uniformly limited sets have the G-property ac-
cording to above and obviously (a)), is bounding also in E for every n.

Define ¢y, € E* by @rn/Es =0 when s < n, and ¢y ,/E, by the norm-one
projection onto [a ] if s > n. Then it is readily verified that oz ,(ex,1)) =1
and that ¢ ,|| = n because |@x (e, 1) = s if s <n and |px (e 1) = 0 if
s > n . Furthermore lim supy_, o, |ox.(2)| < ||2]|/s* if z € E;, where s > n, since
lrn(z)] <L whens>n, z€Eyand |z| = Izl z,r, = 1. Thus the /; sum gives
that limsupy_ . |oka(z)| < ||2||/n" for all z € E. Since this is true for every
n € N we conclude that {ey ;) : k € N} is not limited in the strongest sense
and hence neither strongly uniformly limited since limsupy_,., Sup.cp
lokn(2)] = 1 for every subsequence D of (ex.1)).

Put f(z) =3 2, k]_[ﬁzl wkn(z). Then f is an entire function because, for
each k € N, {e(,) : n € N} is isometric to the unit vectors of /; (see the end
of example 2) and because |pr,(z)| <|z||/n" for every k and n if
Izl = llzllg/p- It is obvious that f(ex1) =k — oo as k — oco. Thus
{e(k,1) : k € N} is not bounding.

The construction above can be modified to give a bounding set which is
not strongly uniformly limited.

EXAMPLE 4. Let {ey : (k,n) € N x N =S} be the unit vectors of ¢o(S).
Put ag ) = ew,1) + n? €(knt1)- As in the preceding example {a( ) : k € N}
generates, for every n € N, a Banach space F, isometric to ¢y and
limy, o0 @) = €q,1)- Let H, be the [*°-space belonging to (a( ), and define
a equivalent norm by |z|| = max[|z||, ,nlz| 4, /r], and let E, denote H,
equiped with this new norm. Let finally £ be the Banach space generated by
{E;;n € N} in such a way that if z= f:l z; € E, where z; € E;, then
llz]] = max[HzH,x(S),Z’l::l Izill £, /£, ]- Note that ¢o(S) is a subspace of E. Then
it follows exactly as in Example 3 that (e(,1)), is not strongly uniformly
limited in E.

Assume that (e 1)), is not bounding for holomorphic functions. Then
there exist a holomorphic function f(z) =>";7, P;(z), where P; is a ji-
homogeneous polynomial on E, such that limsupy_ ., | P (eu,1))| > 1 and a
constant C > 0 such that ||P;|| < C for every k. Take m € N so big that
6C/m<1/4 and md4™™ <27™ Let Dy be the compact set Dy =
> Zngeny /2" 2, € C and |z,| < 5/4 Vn}. Let By be the unit ball of
the Banach space generated by {e( ) : n € N} and let () be a sequence such
that limy_ . €, = 0.

We claim that

2 lim sup |P;(z Vie = o
Jk

k—00 ze Dy +¢ By
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Assume that this is not the case. Then there exist, since each Dy is compact
and actually translates of each other, sequences (@) and (x;) in E such that
limg oo Xx =0 and such that, for every k, ar € Dy, a; can be written
ak =, Znlgen /2", where z, € C is independent of k, |z,| < 5/4 and
lim supy_, o | Py, (ar + Xi)| ik > 0. Thus (ar) is not bounding according to
Lemma 3. But {a;} is isomorphic to the unit vectors of ¢y and the /*-space
of all bounded sequences of (ax), is a subspace of E because E is the /;-direct
sum y °, ®E, and because ) ° n/2"" is convergent. Hence (a) is a
bounding set and we get a contradiction.

We shall now show that 2) is false and get a contradiction. Let ji > 22" be

such that |Pf ( (k,1) )‘ > 1. Put Q( ) ( C(k,1) — Ul(kmt1)M 727”) Zlk d u’

and QW (u) = Z”‘/z dyu”. Then |Q(0)| = |Q(0)| > 1. Apply Lemma 4 be-
low and we get that

2
Sup ‘Q(l)( +Z>‘ > 2/ /2/71

l-I1<;
Since sup, . |Q(u)] < C/* we have that |dp|mzz'~p < Ci which gives, for
p > ji/2%, that |d,| < (C/m)* < 47 and hence that ji|d,| <27 because
Jx > m. Thus

om

sup |Q(1 + z)| = sup | P; (1) — (1 + 2)egminm > )| =

l7I1<4 2<%

e P (1 + 2)agem) — zeun)| = %%
Thus there exist z,, € C with |zm| < 5/4 and x,, € C, with |x,| < 1/4 such
that [P (zu@gcm) + Xme(e,1))| > 2%/2,”
that 2% < ji, have taken v,y = >y, Ze(ks), Where z; € C and |z, <3257,
and x, € C, where |x,|<1/2"", such that |P;(vuu + Xue1))| >
1/2 22" This is true for n = m according to the above.

Put

Assume now that we, for n > m such

s 2n+l
Ou) = 23 Pi (Ven) + Xn(t1) — Ue(ininy(n+1)77 Zd u’

and QW (u) = ij/z d w”. Then |Q(0)] = |0W(0)] > 1. If 22" < ji we get
that
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sup |Q(u)| =

2n+1
|u| <(n+1)*

22n+1

22 sup [Py (Vien) + Xn€(k1) — Uearay(n+1)"7 )] < (6C)*

n+
U] <(n+1)>

72271—1
because Sup|u\§(n+l)22n+l 1Vikny + Xne (k1) — Ue(pr2)(n+ 1) || <3. For the

on+1 )
coefficients d, we this time get the estimate |d,|(n+1)> 7 < (6C)* which
gives, for p > ji /2*"", once again that |d,| < 47 and hence that ji|d,| < 27

as before. Thus we can proceed as above, apply Lemma 4 and take

V1) = *1 —n ZsA(ks)» Where zg € C and |z,] <2°75/4, and x,1 € C, where

| < 1/2"+1 msuch that [Py (viust) + Yasregn)] = 1/2F 2. Let [
be the biggest integer such that 2% < Ji- Then v,y and x;, exist as above.
Note that there exist infinitely many ji such that [P (e 1))| > 1, that [ — oo
as jx — oo, that each v ) € Dy, that ¢ = ||x,eq || — 0 as k — oo and fi-

1/ o0 -5
nally that (1/2* 202 ) - 1/22‘\'7"12 >1/2. But this contradicts 2).
Thus {e 1)} is a bounding set in E.

LEMMA 4. Let n and j be integers such that n > 10 and j > 2*'. Let Q(z) be a
polynomial in one complex variable 0f degree at most j/2* such that

10(0)] > 1/2. Then supy< |Q(1 + 2)| > 5
ProoF. Let w € C be such that [w| =1 and [Q(w)| = sup—1|Q(z)| = m.
Note that m > |d,| where Q(z) = Z;/:zgl dyz’. Assume that
1
sup [Q(1 +z)| < Ed

i<}
and put r(z) =2 ln|Q(w+z)| Since |1 — w| <2 we have, for § € [— 5, %],
that s(8) = r(e’ (1 —w)) < j £1n1/2 = —2*""1n2. Note that
2w 2
sup |s(0)] < j—,lnijf/ =1In2 —|—J—_lnmj
0

because |d,| < m and there at most j/2* + 1 < terms in Q. Furthermore
r(z) is subharmonic. Thus

22" 22" 27 22” 1 .
—,1n|Q(W)|:_1nm<_/ d9<1n2+—1nm]—W22 1n2
J

and hence
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12+?H Lo

n2+—Inj—— n

j / 107w

which implies, since j > 2% and since 1“7" is a decreasing function for x > e,
that

on

1 om_
ln2+ﬁ2”ln2—10—7TZ "In2>0

But this is impossible since n > 10. Thus we got a contradiction and the
Lemma is proved.

Uniform limitedness and bounding sets

Though limited sets in general are not uniformly limited we have the fol-
lowing:

THEOREM 2. Bounding sets in Banach spaces are uniformly limited

Proor. Let D C E be a non-uniformly limited set. Take, according to
Lemma 2, a sequence (ax) and a constant C such that there exists, for every
n, a sequence (¢rn), C E*, norm bounded by C, with ¢y ,(ar) =1 for all
k € N, but limsup;_ . [o.(2)| < ||z]|/(4C(n + 1))* for every z € E.

Put  Pi(z) = Hlfzz (gokﬁr(z))zkir. Let z€E be given and take
m > max(||z||, C,2). Take k > m so big that

lorm(2)| < &
ﬁ ~ (4C(m+ 1)
Then
2||z|] c
(3) Sup |Spk,ﬂ’l (Z + y)‘ < m m
I lI<@Cm+1) " (4Cm+ 1) (4C(m+ 1))’
3m
< T
(4C(m+1))
Further
(4) sup lorr(z+ )| < Clm+1)

Iyl <@C(m+1)~*"

for all . Note that, the degree of Py, S-*_, 25" < 2k /4. Thus (3) and (4) give
the estimate
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3 zk—m
(5) sup Pzt ) < (Com+ 1) H— ) <
Iyl <(@C(m+1))"" (4C(m+1))
(3m)2k—m 3m zk—l E 21(—1 7k

(@Cm+ ) acmy) <@ <2
if also k > 5, because we may assume that C > 1.

Thus f(z) = Y 7, ckPr(z) defines a holomorphic function for every se-
quence (cx) of complex numbers such that |cx| < k, see [3, 2.4 and 2.8]. From
(5) we deduce there exists a subsequence () in N such that |P, (a,, )] <277
when j > k. But then, since Py(ay) =1 for every k, for a suitable choice of
signs of ¢, where |cx| = k, we have that |f(a,, )| > k — Zj>kj2‘j — 00, as
k — oo, where f(z) =Y ;- ¢k Py, (z). Hence D is not bounding and the The-
orem is proved.

DEerFINITION 3. Let rBg denote the open ball of E centered at origo and
with radius r. A set D C rBg is called H(rB)-bounding if every function ho-
lomorphic on rBg is bounded on D.

A set D is called strongly bounding (the class %, from the introuction), if D
is H(rB)-bounding for every r > sup..p ||z|.

REMARK 6. The notion of strongly bounding sets was introduced in [5]. In
[5] it is shown that every limited set in /* is strongly bounding. Moreover it
is proved that a set D C [* is limited if and only if D does not contain any
isomorphic copy of the unit vectors of /;. Thus, according to the Theorem
below, every limited set in /* is limited in the strongest sense. Especially this
holds for the unit vectors of ¢y or more generally the unit ball of ¢y and we
may take C = 1.

THEOREM 3. Strongly bounding sets in Banach spaces are limited in the
strongest sense with constant C = 1/sup.cp ||z||. More precisely, if D C E is
H(rBg)-bounding then D is limited in the strongest sense with constant
C=1/r

ProoF. It is enough to prove the second statement. Assume that there is
(¢r) C E* such that

lim sup sup |k (z)] = 1

k—oo zeD

but supy._; limsup,_ |¢k(z)| < 1/r. Then
o0
f(2) =) a2
k=1

is a holomorphic function on rBg for every choice of ¢; € C such that
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limsup | |* < 1
k—o0
Put K =sup.¢p ||z||/r < 1. Hence limsup;_, |¢k(z)] < K for every z € D.
Thus there exist sequences (a;) C D and (¢;) C C such that

limsup|ck|1/k <1
k—o00
and such that limsup_,. |cx@k(ax)| > k but |exph(a;)| < K* for every k and
J < k. But then a Cauchy-estimate gives that there exists a choice of (¢x) such
that |f(ax)] — oo as k — oo. This contradicts the fact that D is H(rB)-
bounding and the Theorem is proved.

REMARK 7. Example 2 shows that there are limited sets in the strongest
sense which are not even bounding. A partial converse holds.

DEFINITION 4. An entire function f: E — C is said to be generated by
linear functionals if f(z) = >/, Hf;z:l ©imyo) (2), Where @, € E*.

Moreover f is said to be generated by uniformly bounded linear func-
tionals if in addition

k
1
sup [T leonn -
k m=1

is finite.

The class of sets which are bounding for entire functions generated by
linear functionals is denoted %; and the class of sets bounding for uniformly
bounded linear functionals is denoted %;,.

REMARK 8. If f(z) = D", Hl;:l ©(mk) () 1s an entire function it is easy to
see that []%_, ||<p(m,k)||% < CFKk, for some constant C independent of k. This
estimate is also the best possible as Example 2 shows. Note also that the
entire functions in Example 2 and 3 are generated by linear functionals. Thus
the class % neither is closed under taking convex hulls nor has the G-prop-
erty.

THEOREM 4. Strongly uniformly limited sets are bounding for the class of
holomorphic functions generated by uniformly bounded linear functionals.

Proor. Let D C E be a non-bounding set for the class 4,.. Then there
exist a sequence (ay) C D, a constant K >0 and an entire function
f(Z) = Zliozl Pk(Z)) = ZZO:I Hizzl 7vzjm,k(z)v where 1, € E* and ”wmkH <K,
such that Py(ax) > 1. Thus we may, for each k, rearrange and multiply 1/1,(711()
with suitable constants such that Pi(z) = [[%_, omi(z) where @i € E* is
such that ¢, x(ax) > 1 and such that ||@m_1 || < ||emkl|l for every k and m. It
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is no loss of generality to assume that |la| < 1, for every k, and hence
[lomill > 1 for every k and m.

Assume now that D is strongly uniformly limited. Then (@) has a sub-
sequence which is limited in the strongest sense. We also denote this sub-
sequence by (a;) and we let /" be defined by the corresponding subsequence
of (Py). (Below we shall frequently take subsequences of (ay), and then de-
fine f by the corresponding subsequence of (Px),.) Let C < 1 be a constant,
as in Definition 1, belonging to (ax) and write

Vintr1)—1

P = H H Lmk

nom=vi)

where v, 1) € {1,,k} is defined by m > v, 5 < [|omxl| > K", which is well-
defined since 1 < [|@pm-14 < ||@mill- Thus vry =1 and, if v < Vg1,
we have that K" < |guxl < K™™' when vy <m < v414. Note that
TT%_, llomll < K™ because each ||tk < K. Hence K2=n"019 < K’ where

U1 k) = Vinr1k) — Vuk) i Va1 18 defined and wgqp) =t + 1 — v if
Vt1x s not defined (there is no m with K" < |lg,kl)). Thus
> o il ”J”” < 1. By passing to subsequences of subsequences and finally to a
diagonal sequence (we define /* by the corresponding subsequences of (Py)),
if necessary, we may assume that limy . = (” M — y, exists for every n and that
|”<”A"> uy| < 1/k* for every n<k. Note also that ), u, =1 because
(tr — Vi) )k < tr = (1 — ka))/fk < 1/k.

We now fix n. Put ¢ = where the sum is over all m such that
K™ < |lomsll < K. (If u,,k 20 we put 1 = 0). Since 1k 1(ax) > 1 and
since (ai) is limited in the strongest sense, there exists y; € E such that
[yl =1 and

limsup |91 (v1)| > C.
k—o0
Hence there are infinitely many k such that for at least r( ) = u(”1’<),,c different
m, we have that |, «(y1)| > C/2. After passing to a subsequence, if neces-
sary, (of (a;) and (Py)) We may assume that rq ) = Z’I'QC exist as above for
every k > 1. Put ¢y, = m

> ©mi where the sum is over the u(, ) — r(1 1)
different m containing all the m such that |, (y1)| < C/2. Then

Vi (ak Omg(ax)
2le) = Unk) — T(1,k) Z "

Thus, applying the limitedness in the strongest sense again, we can pick
2 € E such that |[y;|| = | and such that limsup |¢x2(y2)| > C. Hence there
are infinitely many k such that for at least
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(U(nk) — T11))C
rox) = % = pu(1 = Pn)tinp))

different m, we have that |@,x(y2)| > C/2, where p, = 1 — 5%. Thus, after
passing to a subsequence if necessary, we may assume that, for every k > 2,
at least r(op) = (“2% different m satisfy |p,ux(y2)| > C/2. Now we can
proceed in this manner and get a diagonal sequence such that, for every s,
there exists y; € E with [|y;][ =1, such that for k >s, at least riu =

1 = puugyy different m satisfy [pur(vs)| > C/2. Put h,p) = g —
S ren) = Uy (L= (1 =) S5 057 ) = uppk and gy = g/t
Note that limy . q(, k) =0.

Put Q) = [ s Pk and put zg, g = 322, €90 (1 — p,)pSys, where
O € [0,27]. Note thdt > o(1 —pu)ps = 1. Then a Cauchy estimate gives
that there exist a choice of () such that, for every &,

suplan( Zup) + tag)[ > H (1= pa)pyC/2) o/ pnss —

|t|=r s=1

,k (1 p”>rq(nk) —

m»

((1 = py, pnC/2)

5:1

Ui/ 1k k
(g ) o S (PP P s

u,,+1/k2
(%) e T (un+1/k?) k)

where T, = >", 2In((1 — pu)p3)pi(1 — p,). An integral estimate shows that
> In((1 = pa)ps)pi(l — p,) < Tn where T just depends on K and C.
Once again for a suitable diagonal sequence, also denoted (ax) with the
corresponding (Px), we get that O, = limy .o Oy exist for every s. Put
= > e Ly, and X(x) = Z(ux) — Zn. Then

i C u,+1/k
sup | Qi (zn + X(up) + tak)|’i' > <2> e~ Tl t1/R) gy
[t|=r
where x(,x) — 0 as k — oo.

Since this holds for every n starting with any subsequence of (ax), we may
inductively take a diagonal sequence, also denoted (ay), such that

! u,+1/K2
sup |Qn,k (Zn + X(n ) + [ak)ﬁ > (3) o~ Trun=T/k (g

lt|=r
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holds for every n and every k > n. Since x, ) — 0 as k — oo, we may also
assume that E];:l |X(n) || — O (the original sequence (P;) can be made as
thin as wanted). Furthermore ¢y = Zﬁ:l Gnje) + (te = Vieso)) [tk <
Sk O pR1fk < S L upk +2/k — 0 as k — oo because )/t < tn+
1/k?, Y, u, = 1 and pX — 0 as k — oo for fixed n. But then the Cauchy es-
timate and the diagonal argument above, with n corresponding to s,
Zn + X(uk) to ys and nuy, to slz (note that Y nu, is convergent), give that there
exist a subsequence, also denoted (ax), z = -, nupe®nz, and x; such that
xx — 0 as kK — oo and such that

1
sup | Pr(z + xp + tag) |« >

lt|=r

C ZunJrl/k B - C 2 B
(5) e 2 T TH(nun)””rq" > (§> e 2T ¢y

where the sums and the product is over all n and [] (nu,)" > C; > 0. But
this contradicts the fact that f/ is holomorphic on E, because if R is so big
that R(%)ze’TCl > 1, then f is not bounded in any neighbourhood of R:.
Hence D is not strongly uniformly limited and the theorem is proved.

REMARK 9. Example 2 shows that the class %, cannot be replaced by %,
and a close look at the example of [6] shows that strongly uniformly limited
cannot be replaced by uniformly limited. The unit vectors of ¢y in [6] is in
fact limited in the strong sense.
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