MATH. SCAND. 87 (2000), 5-21

ON ADDITIVE K-THEORY WITH THE LODAY -
QUILLEN *-PRODUCT

KATSUHIKO KURIBAYASHI and TOSHIHIRO YAMAGUCHI

Abstract

The *-product defined by Loday and Quillen [17] on the additive K-theory (the cyclic homology
with shifted degrees) K (4) for a commutative ring 4 is naturally extended to a product
(*-product) on the additive K-theory K (£2) for a differential graded algebra (£2,d) over a
commutative ring. We prove that Connes’ B-maps from the additive K-theory K (£2) to the
negative cyclic homology HC, (£2) and to the Hochschild homology HH..({2) are morphisms of
algebras under the *-product on K (£2). Applications to topology of Connes’ B-maps are also
described.

§0. Introduction

Let A be an algebra over a commutative ring. Let HC, (4) and HH,,(4) de-
note the negative cyclic homology and the Hochschild homology of A, re-
spectively. In the algebraic K-theory, C. Hood and J. D. S. Jones [11] have
constructed the Chern character ch, : K,,(4) — HC, (4) which is a lift of the
Dennis trace map Dtr: K,,(4) — HH,(A4) by modifying basic construction
due to Connes [5] and Karoubi [12]. When the algebra 4 is commutative, the
usual pairing of K,(4) and the product on HC, (4) defined by Hood and
Jones in [11] make the character ch, into a morphism of algebras. In con-
sequence, we can have the following commutative diagram in the category of
graded algebras:

K.(4) — L HCC (4)
(0.1 N‘ |
HH, (4)

Here /4 is the map induced from the natural projection to the Hochschild
complex from the cyclic bar complex. The Chern character
ch: Ky(4) — HC;(A4) = HC{"(A4) is connected with the ordinary Chern
character K(X) — H§ %, (X;C) when A is the ring consisting of smooth
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functions from a compact manifold X to the complex number C (see, for
example, [19, 6.2.9. Example]). Therefore, one may expect that the Chern
character ch, : K,,(4) — HC, (4) or the Dennis trace map Dtr: K,(4) —
HH,,(4) becomes a map with value in the de Rham (singular) cohomology of
some manifold (space) by replacing the algebra 4 with an appropriate object
concerning with the space.

Hochschild and (negative) cyclic homologies can be extended to functors
defined on the category of commutative differential graded algebras (DGAs)
over a commutative ring (see [8], [11], [4]). In particular, if we choose the de
Rham complex (£2(X), d) of a simply connected manifold X as the DGA, the
Hochschild and the negative cyclic homology of £2(X) can be regarded as the
real cohomology and the real T-equivariant cohomology of the space of free
loops on X respectively (see [8]), where T denotes the circle group. However,
in algebraic K-theory, we can not expect such an extension. What is “K-
theory”” which addmits an extension to a functor on the category of DGAs
and in which there is a commutative diagram corresponding to (0.1)? We can
consider the additive K-theory K (A4) (see [6]) as “K-theory”, which is iso-
morphic to the positive cyclic homology group HC,_;(A4). Let ¢ be the iso-
morphism form K (4) to HC,_(A) defined by Loday and Quillen in [17]
and independently Tsygan in [21]. Tillmann’s commutative diagram [20,
Theorem 1] connects the dual of the Dennis trace map with the Connes B-
map by the dual of the isomorphism ¢ : K;(4) — HC,._;(A4) when 4 is a
Banach algebra. Therefore it is natural to choose the Connes B-map
Byy: HC,_1(4) — HH.(4) as a map in the additive K-theory corresponding
to the Dennis trace map in algebraic K-theory. The Connes’ B-map
By : K (A) =2 HC,_1(4) — HH.(A) has a natural lift B, which is also
called Conne’s B-map, to the negative cyclic homology HC, (4). Moreover
functors HC,, HC_, HH, and the connecting maps can be extend on the
category of DGAs by using the cyclic bar complex in [7] and [8]. In the
consequence, we can obtain the following commutative diagram corre-
sponding to (0.1) in the category of graded modules:

KX () ~HC,_ () —2— HC(2)

- s HHl(hQ)

where (2 is a DGA. We propose a natural question that whether the diagram
(0.2) is commutative in the category of graded algebras, as well as the dia-
gram (0.1), under an appropriate product on K (£2). To answer this ques-
tion, we extend the *-product defined by Loday and Quillen [17] to a product
on the additive K-theory (the cyclic homology with shifted degrees) of a
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DGA, which is an explicit version of that of Hood and Jones [11, Theorem
2.6]. Since the product is defined at chain level, we can see that

THEOREM 0.1. The diagram (0.2) is commutative in the category of graded
algebras when the product of K} (12) is given by the *-product.

Let M be a simply connected manifold and LM the space of all smooth
maps from circle group T to M. By using the Connes’ B-map Byy, we con-
sider the vanishing problem of string class of a loop group bundle
LSpin(n) — LQ — LM. In the consequence, a generalization of the main
theorem in [14] is obtained when the given manifold M is formal (see Theo-
rem 2.1).

We also show that the algebra structure of HC_ ({2) can be described with
the *-product on K ({2) via Connes’ B-map B : K} (£2) — HC, (£2) when the
DGA (£2,d) over a field k of characteristic zero is formal. This fact allows
us to deduce the following theorem.

THEOREM 0.2. Let X be a formal simply connected manifold. Then
Hi(LX;R) = {H*(LX;R)/Im(Bug o 1)} & R[u]

as an algebra, where I : H*(LX;R) = HH_,(2(X)) — K* (2(X)) is the map
in Connes’ exact sequence (1,1) mentioned in §1 for the de Rham complex
0(X) with negative degrees and Ru| is the polynomial algebra over u with de-
gree 2. The multiplication of the algebra on the right hand side is given as fol-
lows; wxu' = 0 and w xw = w - BIW, where - is the cup product on H*(LX;R).
In particular,

() if H(X;R) = R[x]/(x**!) and s > 1, then

Hi(LX;R) 2 ®>0,1<j<sR{6(j, k)} ® R[u]

as an algebra, where deg B(j,k) =j deg x +k((s+ 1)deg x —2) — 1,
B(j, k)« B(j, k') =0 and B(j, k) *u =0 for any j, k,j', k', and
(i) if H*(X;R) =2 A(p), then

H:(LX;R) = @&0R{f(k)} ® R[y

as an algebra, where deg B(k) = (k+ 1)(deg y — 1), B8(k) = B(j) = Bk +j+ 1)
and B(k) xu = 0 for any j, k.

As for the algebra structure of H3(LX;R), the above results cover [13,
Theorem 2.4].

This paper is set out as follows. In Section 1, we define the additive K-
Theory K (£2) of a DGA (§2,d) over a commutative ring and a product
(*-product) on K (£2). Some properties of the *-product will also be studied.
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In Section 2, we will describe the applications of Connes’ B-maps B and Bpy
which are mentioned above.

§1. The *-product on K}

Let (2,d) be a commutative differential graded algebra (DGA) over a
commutative ring k, 2 = &P, (2;, with unit 1 in 2y, endowed with a dif-
ferential d of degree —1 satfsfying d(1) =0. We assume that differential
graded algebras are non-positively graded algebras with the above proper-
ties unless otherwise stated. We recall the cyclic bar complex defined in [7]
and [8]. The complex (C(£2)[u'],b+ uB) is defined as follows:

C()=> N,
k=0

k
b(wo, ..,wk) = — Z(—I)EH (wo, ..,w[_l,dw[,wi+1, ey wk)
i=0
k=1
—Z(—I)E"(wo, oy Wi 1y WiWig 1 5 Wig 2y ey W)
i=0

(= 1) D% (g, wiey), BT =0

and

k
B(wo, .. wi) =Y _(—=1)(erm1 + 1) (ex — gim1) (1, wr, ooy i, wo, -, wint), Bu™') =0,
i=0
where 2 = 2/k, deg(wo, ..,wi) = deg wo + - - - + deg wy + k, for (wp, ..,wx) in
C(02), e;=degwy+ -+ degw; — i and deg u = —2. Note that the formulas
bB+ Bb =0 and b> = B> =0 hold, see [7]. The negative cyclic homology
HC, (£2), the periodic cyclic homology HCY®(f2) and the Hochschild
homology HH.({2) of a DGA (2,d) are defined as the homology of the
complexes (C(02)[[u]], b + uB), (C(2)[[u,u"], b+ uB) and (C(2),b), respec-
tively. Since a DGA in our case has negative degrees, the power series alge-
bra C(f2)[[u]] agrees with the polynomial algebra C({2)[u], similarly,
C([[u,u™"] = C(2)[u,u™"].

We define the nth additive K-theory K (12, d) of a DGA (£2,d) to be the
(n — 1)-th cyclic homology HC,_;(£2,d) which is the (n — 1)-th homology of
the cyclic bar complex (C(2)[u~'],b + uB) :

K (2) =HC,_1(2) = H._1(C(2)[u""],b + uB).
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Unless we note the differential d of a DGA in particular, K,/ (£2,d) will be
denoted by K (). We define a product (*-product) on the complex
(C(2)[u~'],b + uB) as follows:

n m n
E xiu~ ! x E yiu = E X; - Byou™,
i—0 7=0 i=0

where - is the shuffle product on C(£2).

ProposITION 1.1. (1) The *-product induces a degree +1 map of complexes
Cu @ C(2)[u'] — C(2)[u'] which is associative.

(i) The *-product on the cyclic bar complex defines an associative graded
commutative algebra structure on K (£2).

In [7], to give an A..-algebra structure to the graded k-module C(£2)[[u]],
E. Getzler and J. D. S. Jones have defined a sequence of operators
By: C(Q)®k — C({2) of degree k and have clarified relation of By, Bx_; and
the shuffle products on C({2). In particular, in order to prove Proposition
1.1, we need the following formula representing the relation of the operator
B,, Connes’ B-operator B : C(£2) — C({2) and the shuffle products.

LemMma 1.2. ([7, Lemma 4.3]) There exists an operator By: C(Q)®2 —
C(12) of rank 2 satisfying

(12.1)  (=D)""'bBy(a, B) + B(av- B) = (=1)"1" By(bar, B) + (Ba) - B
+(=1)"Na-BE+ (1) By(a, bB)}.

The definitions of B, (see [7, page 280]) and B enable us to deduce that,
for any elements z and z’' in C({2),

(1.2.2) By(z, BZ') = By(Bz,7') = 0.

Proor ofF ProrosiTiON 1.1. (i) From the formulas (1.2.1) and (1.2.2), by
replacing the element § with B, it follows that B(« - By) = Ba - Bry. For any
elements x =Y xu™, y=>yu7 and z=> zu™ in C(2)[u"!], we see
that, on C(2)[u™"], x* (y*z) = x* (X y;- Bzo)u? = > x; - B(yo - Bzo)u™' =
(xxy) *z. We will prove that *-product is a map of complexes. Since the
differential b is a derivation under the shuffle product on C(£2)[u"!], by the
formula bo B+ Bob =0, we have
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(b+uB)(x xy) = (b +uB) (> (xi- Bro)u™")

>0
= Z(bx,-) - Byou™" + Z(—l)‘x"‘xi - bByou~" + Z B(x; - Byo)u !
i>0 >0 i>0
= Z(bx[) - Byou™" + Z(—l)‘x"mxi - Bbyou™" + Z Bxis1 - Byou™.
i>0 >0 i>0

On the other hand, by the formula Bo B =0, we have
(b+uB)xxy+ (—1)"xx (b+uB)y

= Z(bxi) - Byou™" + Z Bx;.1 - Byou™

i>0 i>0

+(—=D)MH (Z byju™ + ZBJ’_/Hu*j)

Jj=0 Jj=0

Thus we can conclude that (b+uB)(xxy)=(b+uB)x*y+(—1)
(b +uB)y. Note that (—1) = (=1)" for any i.

|x|+1

(i) To prove that the *-product defines a graded commutative algebra
structure on K (§2), it suffices to prove that, for any elements x = Y x;u™'
and y =Y yu in Ker(b + uB), there exists an element w = D k0 Wh—1U~

such that

xi - Byo—(—=1) MOy By —buy 4 By

for any k > 0. We will verify that

W = (_1)(\y|+1)\x\ ( Z Vi Xj— Z (—1)‘}71‘32(%,)‘.1)) for k > 0 and

i+j=k i+j=k+1

W= (_1)(\X\+1)(\}’|+1)Bz(y07XO)

are factors of the required element. Since equalities by; = —By;.; and

bx; = —Bj11x;41 hold, it follows that, if k > 0,
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(=D PO by + B

= > By () (SR = Y (<) BBy, )

i+j=k—1 i+j=k

+ S By x; + (=D Bx; + (=1)M16By (31, x;)}
Vi + Xj Yi Xj 2Viy Xj

ik

S S TR S
ki1 =k =1

+ Z By, . X,‘ + Z (—l)m‘y,‘ . BXj

i+j=k i+j=k

= Byy - xx + (—l)‘yk‘yk - Bxg
_ (_1)(\y|+1)\x\(xk - By — (_1)(|}’\+1)(\X|+1)yk - Bxo)

from the formulas (1.2.1) and (1.2.2). We can check that equality
bw_1 + Bwy = xo - Byg— (—1)("*‘“)('}"“))20 - Bxj holds in a similar way.

We define Connes” B-maps Bpy : K (2)—HH,(2) and B: K (2) —
HC, (£2) by Bun(>_;»¢xiu™") = Bxg and B(> ., xiu~') = Bxy. Note that the
maps By and B are connecting maps in Connes’ exact sequences ([16, The-
orem 2.2.1 and Proposition 5.1.5])

(1.1) coo = HH, 1 (2) = Ko (2) =5 K (£2) 25 HH,(02) — -
and
(1.2) S HC (2) 25 HCP (2)— K (2) =5 HC, (2) — - --

respectively.

PrOOF OF THEOREM 0.1. The product structure m, on C({2)[u] defined by
my(on, ) =g - —&—(—1)‘““rl uBy(aq, ;) induces the algebra structure of
HC, (£2). From (1.2.2), we see that the product m, agrees with the shuffle
product if a; or a; belongs to the image of the operator B: C(£2) — C({2).
Therefore the formula B(a-By)= Ba-By implies that the map
B: K (2) — HC, ({2) is a morphism of algebras.

In study of the cyclic homology theory, it is often useful to consider the
reduced theory. To prove some theorems below, we will use the reduced ad-
ditive K-theory K. (£2) defined by K*(£2) = Coker(, : K (k) — K} (12)),
where ¢ : k — {2 is the unit. The reduced additive K-theory K (£2) is a direct
summand of K (f2) because the exact sequence 0 — C(k)[u"!] —
C()u™"] — C(2)[u"'] — 0 of cyclic chain complexes is a split sequence.
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More precisely, K7 (f2) is isomorphic to K/ (2) ®@k[u~'] as a graded
HC. (k) = k[u~!]-module. When one notices the direct summand k[u~!] of
K (§2), by definition of *-product, it follows that k[u~!] is included in the
annihilator ideal of K (£2). Therefore we can also conclude that the algebra
(K (£2),*) does not have an unit.

Let us consider a relation of the *-product on K (£2) to the suspension
map S : K (2) — K ,(£2) in Connes’ exact sequence (1.1). Since the sus-

pension map S is defined by S(Zx,-u_i) = Zx,;ﬂu_i , it follows that
i>0 i>0

Sxxy=S(x*y) on C(2)[u"']. From this fact and commutativity of the

*.product, we have

PRrROPOSITION 1.3.  For any elements w and 1 in K (2),
Swxn=S(w*n) =ws*Sn.

For the rest of this paper, unless otherwise mentioned, we will assume that
any DGA (f2,d) is a commutative algebra over a field k of characteristic
zero, connected and simply connected, that is, 2= ®;<of2;, (2 =k,
H(2) =0and d(1) = 0. A DGA (£2,d) is said to be formal if there exists a
DGA-morphism from the minimal model .# of (2 to the DGA
(H*(£2,d),0) which induces a isomorphism between their homologies (see
[10D).

For any DGA (2,0) with the trivial differential, M. Vigué-Poirrier has
given a decomposition of the negative cyclic homology HC, (£2,0):
HC_ (£2,0) = ®4>0H(%%[u], b+ uB), and has shown that the S-action on
ﬁE;((z, 0) is trivial, see [22, Proposition 5], where %¢ = {(ao,..,q,)|
> deg a;=—q,—q+p=—n}. This fact implies that the S-action on

ﬁé:(ﬂ, d) for any formal DGA (2,d) is trivial ([22, Théoréme A]). The
proof of [22, Proposition 5] is based on Goodwillie’s result [9, Corollary
I11.4.4], which is led from the following proposition.

PrROPOSITION 1.4. [9]. Let (£2,d) be a DGA over a commutative ring and D a
derivation on 2 with degree |D| satisfying that D(ab) = (Da)b + (—1)""1“la(Db)
and [D,d] =0. Then there exist chain maps ep: C(2) — C(£2) of degree
|ID| -1, Ep:C(f2) — C(f2) of degree |D|+1 and an operator
Lp : C(£2) — C(R2) of degree |D| such that [u='ep+ Ep,b+uB] = Lp in
C(2)[u,u™"), where [a,b] = ab — (=1)“""|ba for any operators a and b.

We can obtain a lemma by using Proposition 1.4 and the idea of the de-
composition of cyclic homology due to Vigué-Poirrier [22].

LemMA 1.5. Let (£2,0) be a DGA with the trivial differential. For any ele-
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ment w in K (£2,0) = If-I\(/Z*_l(_Q, 0), there exists an element 1y in C(£2) Nker b
such that w = [no] in K} (£2,0).

ProoF. According to Vigué-Poirrier [22], we define a derivation D on {2
by D(a) = (deg a)a. Consider a decomposition K, (£2,0) = 3° ., K7 (£2,0)
defined by K (£2,0)! = H,_(¢%[u"'],b + uB). Since K (£2) is isomorphic to
> g1 K (£2)7, in order to prove Lemma 1.5, it suffices to show that there
exists an element 79 with the property in Lemma 1.5 for any element w in
K (2)" (¢>1). Since the operation Lp on C(£2) is defined by
Lp(a, ..,a,) = Zogigp(ao,..,Dai,..,ap), it follows that the operator Lp on
K ()" is given by Lp(w) = —qw in our case. On the other hand, for any
element w in K (£2)? which is represented by > . wu in C(2)[u~!], we
have that [u'ep+ Ep,b+uBlw= epBwy+uEpBwy— (b+uB)(u'ep +
Ep)w in C(2)[u,u"']. By virtue of Proposition 1.4, we can conclude that
epBwy— (b+uB)(u'ep + Ep)w = —qw in C(2)[u~']. Thus, we see that
—gepBuwo is the required element 7.

We will consider the algebra structure of K (£2) by using a minimal model
of (2,d). Let ¢ : (M,d y)—(52,d) be a minimal model of a DGA (£2,d).
Then ¢ induces an isomorphism of algebras K(p): Kf(#4)—K}(£2).
Therefore if a DGA (2,d) is formal, then there exist isomorphisms
K (02,d) = K (M,dy) = K (H(£2),0). It follows immediately that the iso-
morphisms are compatible with the S-action. Since Lemma 1.5 asserts that
any element of K*(£2,0) can be represented by an element with column de-
gree 0, from the definition of S-action, we can get

ProposiTiON 1.6. If a DGA (£2,d) is formal, then the suspension map
S: KH(2)— K () is trivial.

Let (.#,d ) be a free commutative differential graded algebra (AV,d)
over k. We denote by (&(.#),6,3) the double complex defined in [4, Ex-
ample 2] by D. Burghelea and M. Vigue-Poirrier. Namely, &(#) =
A(V @ V), Bis the unique derivation of degree +1 defined by 3v = v and 6 is
the unique derivation of degree —1 which satisfies 6|, = d and 63+ 36 = 0.
Here V is the vector space with V,,; = V,. We here mention that the double
complex induces the complex (&(.#)[u~"],6 + uB) with a product defined by
S wiu x> quT =Y wiBnou". By [4, Theorem 2.4 (i)], we see that the map
© : C(M) — &(AM) defined by O(ag, a1, ..,a,) = 1/p! apfai - - - fa, is a chain
map between the double complexes (C(.#),b,B) and (§(#4), 6, 3). [4, Theo-
rem 2.4 (iii)] shows that the induced map K(©) from K (.#) to
H, (6(AM)[u""],6 +up) is an isomorphism of graded vector spaces. More-
over we have
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PROPOSITION 1.7. The map K(O): K} (M) — H._(E(M)[u™],6 +up) is
an isomorphism of algebras.

The following lemma will be needed to prove that K(©) is a morphism of
algebras.

LEMMA 1.8. Let (. ,d ;) be a free commutative DGA.

(1) The chain map © : C(M) — E(M) is compatible with B : C(§2) — C(£2)
and B : (M) — E(M) : fO = OB.

(ii) Let W be a subspace of C(M) consisting of the elements whose first
factor have even degree: W = {3 (di;..,a; ) € C(M)|deg aj, is even }.
Then O(w-w') =0Ow-Ou for any element ' in W and any element w in
C(AM), here - in the left hand side and right hand side are the shuffle product on
C(A) and the natural product on & (M) respectively.

Proor. It is straightforward to check that identities 86O = @B and
O(w-w') = Ow- Ou hold.

PrROOF OF PROPOSITION 1.7. From the definition of Connes’ B-operator, it
follows that Im B is a subspace of W in Lemma 1.8. By virtue of Lemma 1.8,
we see that O(w - Bw') = Ow - 8O for any element w and ' in C(.#). Thus
we can conclude that K(©) is a morphism of graded algebras.

By virtue of Proposition 1.7, we can determine K ({2) explicitly as an al-
gebra when the homology of ({2, d) is generated with one generator.

THEOREM 1.9. For any formal DGA (£2,d),
K (£2) = HH,_(£2)/Im(Bygy o I : HH, »(2)
— HH,_ (2) & k{l,u ", u?,.}

as an algebra, whereﬂdfg Uk =2k+1 wsx =w-BJ, wxu* =0 for any
elements w and ' in HH, (2)/Im(Byy o I) and u™ * u™ = 0. In particular,
(1) when deg x is even,

K (K[x]/ (")) = @rz01<k{B0,6)} @ k{1u ' u?, .},

where deg B(j,k) =j deg x + k((s+ 1)deg x +2) + 1, wxw =0 for any ele-
ments w and o' in K (k[x]/(x*T1)), and
(i) when deg y is odd,

K (A() = Gieok{B(k)} @ k{l,u™",u 2, .}

where deg [(k)=deg y+k(deg y+1)+1,8(k) * 8()=0(k+j+1),1 * 8(k) =0
and B(k) * u™" = 0.

PrOOF. By Proposition 1.6, the suspension map S : K (£2) — K ,(2) is
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trivial. From this fact and Connes’ exact sequence (1.1) obtained by using {2
instead of a DGA (2, it follows that the map 7 : HH,_{(£2) — K. (£2) is sur-
jective and that the kernel of [ is the image of Bygol:
HH, ,(£2) — HH._(£2). Thus we can conclude that K'(£2) =K (02)®
k{1,u' w2 .} ~HH, (2)/Im(Bugol)® k{l,u"',u2,.} as algebras.
From Proposition 1.7 and the explicit formulas of the Hochschild homology
of k[x]/(x**1) and A(y) in [15], we can get (i) and (ii).

REMARK. In Theorem 1.9, the elements 3(j, k) and 3(k) correspond to the
elements X'« and y7* in [15, Proposition 1.1(ii)], respectively.

As mentioned before Proposition 1.3, the algebra K (£2) does not have an
unit. Since K (£2) is non zero in general, the algebra K (£2) may be have an
unit. However, the results of Theorem 1.9 (i) and (ii) enable us to conjecture
that the reduced additive K-theory K does not have an unit for any DGA
either. The first assertion in the following proposition is an answer to the
conjecture.

PrROPOSITION 1.10. (i) Let (2,d) be a DGA. Assume that KX (£2) # 0. Then
the algebra K (£2) does not have an unit.

(i) If deg QH(12,d) > n, then there exist n elements x|, x, .. , x, in K7 (§2)
such that xyxxyx---xx, #0, where QH(§2,d) denotes the space of in-
decomposable elements in the graded algebra H(2,d).

ProoF. From the usual argument on a minimal model of {2, we can as-
sume that (2 is free.

(i) Suppose that there exists an element e in K (£2) such that e  x = x for
any x in K (£2). Let us consider the Hodge decomposition of Hochschild
homology ([3], [4, Theorem 3.1]): HH,(f2) = ®oHH(£2). Since
Bun : K () — HH, (£2) is a morphism of algebras by Theorem 0.1, it fol-
lows that Bup(e) - Buu(x) = Buu(x). We see that Byp(e) belongs to
HH((£2) because deg Buu(e) = 0. The definition of the Hodge decomposi-
tion and Lemma 1.8 (i) enables us to deduce that Im Byy is included in
@[Zlﬁl/{f)(()). Thus we have Bmp(e) =0. On the other hand, we see that
S¥e = 0 for some sufficient large integer N. If Byg(x) = 0 for all x € K (12),
then the map S: I~<j+2((2) — K*() is epimorphism. Therefore, for any
x € KX (£2), there is an element x’ € K} (£2) such that SVx' = x. It follows
from Proposition 1.3 that x=exx =e* SVX = SVexx' =0 for any x,
which a contradiction. Thus Byp(x) # 0 for some x € K(£2). However,
Bun(x) = Bun(e) - Bun(x) = 0. The result now follows.

(ii) We can choose n elements of {2 corresponding to x; in K (£2) which
are part of generators of (2. We represent the elements with the same nota-
tion xp, ..., X, respectively. Under the isomorphism H(O) in [4, Theorem 2.4
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(>i1)], BHH(xl kooe ek xn) = Byggx;----- Buux, = X1---X, 1n H*(TOt 5(9),6)
Since Im 6 consists of elements whose factors have an element in {2, it fol-
lows that X; ---X, # 0 in HH.(£2) = H.(Tot &£(52),6). By virtue of Proposi-
tion 1.7, we can see that xj % --- x x,, 2 0 in K (£2).

From Proposition 1.10 (ii), Theorem 1.9 (i) and (ii), we can conclude that
K () has trivial algebra structure if and only if the homology of (£2,d) is
generated by one element with even degree.

§2. Applications of Connes’ B-maps Byy and B

Let M be a simply connected manifold and LM the space of C*-free loops
on M. When an SO(n)-bundle P — M over M has a spin structure Q — M,
the string class p(Q), which belongs to H*(LM;Z), is defined as an obstruc-
tion to lift the structure group LSpin(n) of LQ — LM to LSpin(n), for de-
tails see [18]. Here LSpin(#n) is the universal central extension of LSpin(n) by
the circle. One of important properties for the string class u(Q) is the fact
that the class p(Q) is the image of % p1 by the map [g 0ev': H*(M;Z) —
H*(LM x §';Z) — H*"'(LM;Z), where p; is the first Pontrjagin class of the
bundle P — M, ev : LM x S' — M is the evaluation map and fsl is the in-
tegration along S'. Let G be a linear Lie group and £ : Q — M a G-bundle
over M. Let Ch?*!(¢) be the Chern character of the bundle ¢. The higher
string classes CP(LE) (p > 1) (see [2]) in H?+!'(LM;C) defined for the LG-
bundle L¢: LQO — LM has a similar property to the ordinary string class
1(Q). Indeed, the pth string class CP(LE) is the image of
—@mV/=1""'pICh 1 (¢) by the map Jsioev. As mentioned in the in-
troduction, in the study of the problem of whether the map | g1 0 €v' s in-
jective, the Connes’ B-map Byp : K (2(M)) — HH.(2(M)) = H*(LM;R)
plays an important role. We will have the following theorem which is a
generalization of [14, Theorem 2]. We may call a simply connected manifold
formal if its de Rham complex is formal (see [10]).

THEOREM 2.1. Let M be a simply connected manifold and formal.

(i) For any SO(n)-bundle P — M with a spin structure Q — M, if H*>(M;Z)
is torsion free, then the string class p(Q) vanishes if and only if % p1 vanishes.

(ii)) Let G be a linear Lie algebra and £ : Q — M a G-bundle. The string
class CP (L&) vanishes if and only if the Chern character Ch'*'(€) of the bundle
& vanishes.

By virtue of [14, Proposition 2.1], we can regard the map [g oev":
H*(M;R) — H*'(LX;R) as the map a: H*(M;R) — HH_,(2(M),d) de-
fined by «a(x) = (1,x) under the identification by the iterated integral map
o:HH_.(2(M)) — H*(LM;R) ([8]), where 2_;(M) is the ith de Rham
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complex (2. gp.m(M) and the differential d : 2_;(M) — 2_;_1(M) is the ex-
terior differential on the de Rham complex (2, ;... (M). Thus, to prove
Theorem 2.1, it suffices to show that the map « is injective when M is for-
mal. Note that, for any DGA (f2,d), we can define the map
a: H,(£2) — HH,(£2) by a(x) = (1, x). The definition of the map « allows us
to deduce that « factors through Connes’ B-map Byy as follows:
a=Bugoloi, where i: H.(2) — HH,(f2) and I : HH,(2) — K ({2) are
the homomorphisms induced by the natural inclusions (2 — C({2) and
C(£2) — C(2)[u—1] respectively. For any DGA ({2,d), we have

LEMMA 2.2. The map H_.(2) — HH_,(2) - K*, |

(92) is injective.
Proor. It suffices to prove that Lemma 2.2 holds when (2 is free. In this
case, we can identify K (£2) with the homology of the complex
(E(D)[u"],8 + upB) by Proposition 1.7. Since Im(6 + u3) N §2 is contained in
Im d which is a subspace of (2, it follows that if Zi(x) is zero in K (£2), then

so is x in H,.(£2).

PrROOF OF THEOREM 2.1. The reduced additive K-theory K (£2) includes
Im(/oi: H.1(£2) — K[ (£2)) for x < 1. By Proposition 1.6, Connes’ B-map

Bun : K (2) — HH.(£2) is injective. Therefore we can have Theorem 2.1 by
virtue of Lemma 2.2.

In general case, we can show that Ii(Ker a))(=Im(/ o i) N Ker Bpy) is
contained in the space of annihilators of K (2).

ProrosITiON 2.3. For any DGA (2,d), K (2) * {Im(I o i) N Ker By} = 0.

ProoF. For any element w in Im(Z o i) N Ker Byy, we can write fw = én
for some element 7 in &({2). For any element «’ in Ker(u8 + ) which is the
subspace of &(2)[u"!],

(B +6)(w - m) = (= D)o - (uB+ 8)n
= ()" (0 + fw)

(—l)deg“/w’ * W

Note that #n = 0 in &(£2)[u"]. Thus we see that &' * w = 0 in K} (£2).
We will describe some applications of Connes’ B-map B: K} (2) —
HC, (£2).

ProOPOSITION 2.4. The following diagram is commutative:
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KA —2- HC(0)

sl ls
K*tz(g) T Hc;z(Q)

ProOOF. For any element w = > wu~" in Ker(h + uB), by the definition of
the S-action, we have that BSw = Bw;. On the other hand, SBw = Bwyu.
Since bwg + Bw; = 0, it follows that Bwou — Bw; = (b 4+ uB)wy. Thus we have
SBw = BSw in HC_ (£2).

If the S-action on }’I\CJI:(Q) is trivial, then we can represent the algebra
structure of the negative cyclic homology HC, (£2) with the *-product on
K ().

THEOREM 2.5. (i) The map B: kj(())—ﬂ%;(ﬂ) induced by Connes’ B-
map is an isomorphism of algebras.

(i1)) The S-action on Kj(()) is trivial if and only if so is the S-action on
HC_ ().

(iii) If the S-action on HC, () is trivial, then HC, (£2) = k[u] @ K (2) =~
k[u] ® PTIqu(QMIm(BHH o) as algebras. By the assertions (i) and (ii), we
see that k[u] ® HC, (£2) = k[u] & K (£2) as an algebra.

ProOF. (i) The result [9, Theorem III.5.1] enables us to conclude that
HCP(£2) = k[u,u"']. From Connes’ exact sequence (1.2) for {2, we can get
(i). From (i) and Proposition 2.4, we have (ii). Since the S-action on HC, ({2)
is trivial, it follows that HC, (2) = k[u] @ HC_ ({2) as an algebra. From the
proof of Theorem 1.9, we deduce the results of (iii).

We can now prove Theorem 0.2.

ProoF ofF THeOREM 0.2. If H*(X;R) is isomorphic to the algebra
R[x]/(x*t1) or A(y), then X is a formal. By virtue of Theorem 2.5 (iii), we see
that H;(LX;R)~HC” (2(X)) = HC” (H*(X;R)) = R[u] ® K*,(H*(X;R)).
Therefore, Theorem 1.9 yields Theorem 0.2. In particular, we deduce (i) and
(i1) by virtue of Theorem 1.9 (i) and (ii).

Let M be a simply connected manifold (simplicial complex) and 2* (M) its
de Rham algebra of differential forms (simplicial differential forms) with
coefficient in k = R,C (k = R,C,Q). Then the isomorphism B : K (£2) —
If{\é*_ ($2) in  Theorem 2.5 (i) agrees with the isomorphism
by : HC_. 1(2(M)) —Hz(LM:;Xk) in [3, Theorem B]. Therefore, if we regard
K} () as a graded algebra with the *-product, the isomorphism 5,, becomes
a morphism of algebras.
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Let (£2,d) and (§2,d') be DGAs over a field k of characteristic zero. If one
wants to know about the k-module structure of the negative cyclic homology
HC; (2 ® §2'), the use of the Kiinneth theorem [11, Theorem 3.1 (a)] for ne-
gative cyclic homology theory may be effective, because the exact sequence

0 — HC; () @y HC (2) — HC, (26 ©) —
Torg(HC; (), HC. (). | — 0

is split. However, it is not easy to determine the algebra structure of
HC; (2 ® (') from the exact sequence even if 2 and 2 are formal. Theorem
2.5 (ii) enables us to represent the graded algebra structure of HC, (2 ® §2')
with the Hochschild homologies HH. (£2), HH,.({2') and the *-product when
2 and (2 are formal. In term of spaces, we also assert that the T-equivariant
cohomology of the space of loops on the product space M x M’ can be re-
presented with the cohomologies of the spaces of loops on M and M’, Con-
nes’ B-map Byy and *-product.

COROLLARY 2.6. Let M and M' be formal simply connected manifolds.
Then

Hi(L(M x M');R) =
{(H*(LM;R) ® H*(LM';R)/Im(BoI®1+1® Bo 1))} @R[y

as an algebra, where deg u = 2. Here the multiplication x of the algebra on the
right hand side is given as follows: wuW *xu=0 WRJ*xnXY =
wow - (BInoy +(-)yeBIy) for any w®d and nen in
H (LM;R)® H*(LM';R)/Im (BoI® 1+ 1® Bol), where - is the cup pro-
duct on H*(LM;R) ® H*(LM"; R).

Proo¥. Let (.#,d) and (.#',d) be minimal models of de Rham complexes
(2(M),d) and (2(M'),d) respectively. We know that HH_,(#) =
H*(LM;R) and HC” (/) =~ H{(LM;R) as algebras ([8]). By virtue of [22,
Proposition 5], the S-action on HC” (.#) is trivial. Therefore, it follows
from Theorem 2.5 (ii) that, as algebras,
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10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

KATSUHIKO KURIBAYASHI AND TOSHIHIRO YAMAGUCHI
Hi(L(M x M");R) =~ HC_, (M & .4')

~HH ., (M @ .#)/Im(Bun o I) ® R[]

~H_, (&M @ 4'))/Im(Buy o I) & R[u]

=~ {H.(6(M) @ H(&(M"))/
Im(Bol®@1+1®Bol)} ,  &R[Y

~ {H*(LM;R) ® H*(LM';R)/
Im(Bol®1+1®Bol)}"" @R[u.
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