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FOCK REPRESENTATION OF THE BINARY SHIFT
ALGEBRA

SIGMUND VIK

Abstract

We modify the Fock representation construction of the CAR-algebra to obtain a new proof for
that the Binary Shift Algebra is isomorphic to the CAR-algebra.

Introduction

If S is a bitstream, i.e. a sequence of 0’s and 1’s, we consider S as the subset
of N given by i € S if and only if the i’th term in the sequence is 1.

Let S C N be a given bitstream and B the corresponding bitstream algebra,
i.e. the C*-algebra generated by a sequence of self-adjoint unitaries that either
commute or anticommute in a certain way depending on the bitstream. More
specifically, if this sequence is denoted by {s;};en, then s; and s; anticommute
if |i — j| € S and commute otherwise. The notation for the bitstream algebra
used here is not common, and in e.g. [7] the bitstream algebra is denoted by
A(S). Since the bitstream can be thought of as fixed throughout this work, we
suppress the dependence and simply denote this algebra by B.

If C (D) is the algebra of continuous functions on the Cantor set, it is known
from a paper by Powers and Price [8] that B will be of the form M,,(C) ® C (D)
if S satisfies a certain periodicity condition, and the CAR-algebra otherwise.
In this work we will see that by imitating the Fock representation construction
of the CAR-algebra we can give an alternative proof for this result.

We will now sketch the approaches in [8] and this work to see their main
differences. Whether the family of self-adjoint unitaries above is indexed over
N or Z does not affect the results, and since many papers (e.g. those dealing
with entropy) use the latter, we state all results with respect to this.

In both approaches the bitstream algebra B is considered as an AF-algebra,

ie. B = (U2, By, where B, is the finite-dimensional subalgebra generated
by {s;}7_,. We denote the center of B, by Z(B,). To describe the embeddings
B, C B, (and thereby the Bratteli diagram corresponding to the AF-algebra
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258 SIGMUND VIK

B) it is essential to know the dimension of Z(B,,) (foralln € N). In[11] this is
done by studying a sequence of matrices with entries in F,. More specifically,
if n € N, the n’th Toeplitz matrix is given by

ao aj a as ap—2 Qp—1
ai ao a a o Gp-3 Ap2
T, = ap ai ag a an—4 dp—3
ap—-1 Qp—2 Qp-3 dp—4 *-- aj ao
where ap = 0 and g; is the i’th term in the bitstream. It is shown that

dim Z(B,) = 2™!7» 5o the nullity of 7,, determines the dimension of Z(B,)).
The sequence {null(7},)},en, called the center sequence, is then calculated from
results on the ranks of the matrices above.

In this work we will avoid all discussions of Toeplitz matrices. The idea is
to mimic the Fock representation construction of the CAR-algebra (see e.g.
[6] and [1]) to obtain an algebra A, with commutation-relations that depend on
the bitstream in such a way that the bitstream algebra occurs as a subalgebra
of A. If the bitstream consists only of 1’s, the construction of A should be
identical to the Fock representation construction of the CAR-algebra. We find
that A is an AF-algebra with finite-dimensional subalgebras A, isomorphic to
M. (C), i.e. A is isomorphic to the CAR-algebra. If B, is defined as above,
B, is a subalgebra of A,. Under the isomorphism above we consider B, as
a subalgebra of M,.(C). We also obtain a nice description of the commutant
of B, in M (C). Next we find how B, is decomposed as a direct sum of
matrix algebras, and we calculate the center sequence in a quite straightforward
manner. With these two results the theorem follows quite easily.

I am grateful to professor Erling Stgrmer who has been my supervisor
during this work, which was a part of my Candidatus Scientiarum degree at
the University of Oslo.

1. The Hilbert spaces 7#®" and A" 77

Let 27 be a Hilbert space with orthonormal basis (&;);cz. For n € Z* define

®n __

C ifn =0,
H Q- QI (ncopies) ifn > 0.

Let S C N be identified with the bitstream ( XS (n))neN and S’ C Z* be given
by xs(0) = 1 and x5 (n) = xs(n) Vrn € N. The reason for introducing S’ is
technical and will soon be clear. Note that, by convention, xs(0) = 0.
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Let .7, denote the symmetric group on #n letters, and forn > 2 and i =
1,...,n — 1 define a unitary operator on #®" by

by, @ Q& &, @&,
— (_l)XS/(lki—kH—ll) £, ® - ® ng Q& ® - Q&,.

n—1

If n € Z*, the group generated by {id e, u;}/_, (i.e. the group generated
by elements (transpositions) uj, up, ..., u,—; and determined by the group
relations u;? = I, ujui;; uj = Uiy U; U4, and uiy = yuy; for [i — j| >
1) contains n! elements, each of which can be indexed by a corresponding
permutation in ., (% is understood to be the trivial group). If u, denotes the
element in this group corresponding to o € .#,, then

u(T Skl ® ®§kn - hn(09 k17 ""kn)gkc'(l) ® ®$kg(,,)v

where h, : &, x " — {£1}. h, is uniquely determined by writing u, as a
product of u;’s, because if | <i < j <nandu, =[] is a factorization of
U, , the number of times (—1)* (%=%D contibutes to the sign in

uo'%_k] ®®gkn = <l_[ui>gkl ®®€kn :iskd(l) ®‘.‘®$ka(n)

is either odd or even, independent of how u, is factorized. Since 4,, is unique,
the mapping o +— u, is indeed a group-isomorphism. We will now give a
recursive expression for the sign function #,,. It is clear that 4y and h; are
constantly equal to 1, soletn > 2. If 0 € .¥,,let j =o(n) and o’ € ., be
givenby o’(i) = o (i) ifo (i) < jand o’(i) =0 (i) — 1 if 0 (i) > j. Then

hn(av kla MR} kn) = - l—[(_l))(s’(‘ki_kjl) hn—l(a/v k17 cee ]\é]a MR} kn)v
i=j

where 1;]- means that k; is removed. The reason for the minus sign in front of
the product is to eliminate the extra minus caused by (—1)%s (ki =kiD,
For n € Z* define

/\jf:{ée%”‘@”:ugé:é‘v’aeyn},

so \" . is a closed subspace of .#®" (note that A\’ # = C since .% is
trivial). If n € Z*, define an operator P, on s#®" by

1
PH=EZuU.

=
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If ¢ € \" A, then P, § = &, and since u, P, = P, Vo € .7, it follows
that P, maps #®" onto /\" 2# and P,2> = P,. Calculation of the adjoint of
P, gives that P* = # Zaey‘n u, ' = % de.(/n uy-1 = Py, hence P, is the
orthogonal projection of 7" onto \" .

Define the outer product A by

n
/\:%x-nxt%”—)/\t%”,
M, o) MA AN, =Vl P @ - Q1.
Observe that A is linear and continuous in each variable, and if o € ., then

Ska(l) ARRRRA Ska(n) =+n! Py gkau) - gkn(’o

= V! Pohy (o ki, k) Uy ® - @ &,
=hn(0',k1,...,kn)§kl/\"'/\fkn.

Since xs (0) = 1 this implies that if two k;’s are equal, then the outer product
is 0. Because this is a property of the outer product in the Fock-representation
construction of the CAR-algebra, the outer product defined here should also
behave like this. This is the reason for using S’ instead of S. We conclude this
section with some lemmas that will be needed in the sequel.

LemmA 1.1. Ifn € € and 0 € %, then

7]/\%'](”“)/\---/\é:ka(n):hn(o’,kl,...,kn)ﬂ/\gkI /\"'/\Skn.

PrOOF. Letn = ), ;A& € A ando € .. Let o’ € 7,4 be given
byo'(1) =lando’(j+1) =0(j)+ 1forl < j < n.Fori € Z define

L= 00, 10) = Gk, ... k,) € 2. Then

DA G A Ay = D hi&i Ay A AN,
iel
= Z A& ANEH A A&
o’ (1) o’ (2) o' (n+1)
iel
= hihp (o, 1} 1D YVEo AED A AEa
- in+1 ) sty [5‘) [é’) [r(LlJ)r]
iel
= hihn(o ki, k) E ANEG A AE
iel

:h;1(07k1,---,kn)77Agk|/\"'/\Skn-
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LEMMA 1.2. Let 57 be a Hilbert space with orthonormal basis (&€;);cz. Then
Ex, N NEk ke where k = (ky, ka, ..., k) withk) <k, < -+ <k, isan
orthonormal basis for |\ 7.

ProoF. Letk,l € 7" where k = (k1, ko, ..., k,) withk; <k, < --- <k,
and! = (I1,l»,...,I,) withl; <, < --- < [,. Then

E A A& EA S NE) =06 Q@ Q& , P& ® - ®E,)
= Z(Sk1®"'®§k"aua§l1®"'®§l,,)

=

= Z hn(U,ll, . aln)l_[(%-kt ’ SZU("))
ced, i=1

. { 1 ifk=I,

o itk

M e A A B k= (s k) €20 < e < K]

=lin{&, A A&, k= (ki,..., k) €Z")
=lin{P, &, ® - ®&, 1 k= (ki,..., k) € Z"}
=P, lin{&, @ - @&, 1 k=(ki,...,.ky) €Z"}

=P, %" = /\%”

For the next result the classical theory applies verbatim (see [6]).

LEMMA 1.3. Let 4 and 5% be two Hilbert spaces, n € 7T, and 1. €
%’(i/j@",%). If L satisfies Lu, = L Yo € ., then Ly A -+ A1, =
VrILn ® - @ .

PRrROOF.

Lnl/\"'/\nn=\/ELPn771®"'®nn

vn!
=L um®: - ®n)
n!
ogE.Yy
vn!
=TZL”1® & N
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2. The operators A, (¢) and a,(§)

Let 2 be a Hilbert space with orthonormal basis (&;);cz. For & € J# and
n € Z* define an operator A, (&) by
n+1
M) % > N B @l ——E A A AT
n . ’ n \/m n-

If m € Nand {;}/_, C C, then

HAH@D 1@ @
i=1

NICEY) ” ; ;
N e SN SUTE VSRS
° i=1

< n+1

m
Y hten e o
i=1

=vn+1]&]

9’

m
Dok’ @ ®n
i=1

s0 A, (€) extends to a bounded operator on 5Z7®" with ||A,(§)|| < v/n + 1 ||&].
If o € ., then

1
A g, @ -+ @&, = ﬁhn(gskl,---,kn)s/\ék,,(l) A N
1
:Ts/\gkl/\"'/\sk,,

n!
=An(€) &k, A A,

where the second equality follows from Lemma 1.1. It now follows from
Lemma 1.3 that

AEYMA - AN =V AE M@ @Iy =EAN A~ AT,

Forn € Z+ let a,(£) = A, (£)

INE & SO

n+1

an): \o# - N\,

MA A > EAN A ATy
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and ||a,(§)|| < +/n + 1]|&]| (we will later see that this norm is independent of
n when & = &;). The adjoint of a, (&) will be denoted by a*(§).

ProrosiTiON 2.1. If i, j € Z, then
ang1(&) an(§) —(— DD ay (5 an(&) =0
and
ay (&) an(§) —(=D™ "V ay (G ay_ (5) = (&, &) idpr -
The first equation is valid for n € 7+ and the second for n € N.

Prookr. Itis sufficient to show that the equations are valid for an orthonormal
basis for /\" J (see Lemma 1.2),soletn € Nand k = (k1, k>, ..., k,) € Z"
with ky < k, < --- < k,. Then

1D an(§) i A A Xk, =EAE A Xy A A X,
and
1§ an(E) X, AN A Xk, =5 ANEA Xy AN A X,

= (=D NG A S A A K

SO ant1 (&) an(§) = (=% U=iD a1 (&) an(&) (in the case n = 0 exchange
Xig N+ A Xk, With 1 € /\0 ¢ in the computations above).

To show the second equation we need an expression for a; (£;). We will use
the following notation: If an element is marked with an”, then this element is to
be omitted, and if i € Z, k = (ky, ..., k,) € Z", then §; ;,, shall equal 1 if there
exists an m such that i = k,, and O otherwise. If §; ;,, = 0, then all expressions
where k,, is present are set to zero. Let i), : 2" — {£1, 0} be given by

h,(o, ki, ..., k,) if there exists o € .%, such that
h(kiy ... ky) = koty < ko) < -+ < ko),
0 otherwise.

Observe that /), is well-defined since a permutation that strictly orders a given
set of integers must be unique.
Letk € 7"t 1 € 7" where k = (ki, kp, ..., ky1) withky < ky < --- <
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kpprandl = (Iy, 1, ..., 1) withl; <l < --- < I,. Then

Otk A A Xirs anED Yy A= AY,)
= (Xt A A Kb & AV A AY,)

WGkt ks hagt) ik =1k =1y ok =
= km+1 :lm,”-,kn—i-l = Iy,

0 otherwise
= <8i,kmh;l+](iv k17 LR ]\éma LR kn+1)

Xkl /\"'/\)V(km /\"'/\Xk,,ﬂawl] /\"'/\wl,,)y
soifn € Z* (for n = 0 exchange ¥, A --- A ¥, with 1 above), then

ar (&) X A A Xk

7 . Y v
= iy M1 (k1 ook oo s ke D Xieg Ao A Xy A A Xy -

With this expression at hand, we are ready to verify the second equation in
the proposition. Assume first thati = j. If §; ;, = 1, then

arE)anE) X A Axk, =0
and

an—1(&) ag_ (&) X, A A X,
=an 1) Ry ki k) X A A Xy A A X,
=R kps o k) i A NEA A,
= Xk Nt AN Xk
so a; (&) an(§) +an—1(&) a;_; (&) = idp» 4. The case §; 4, = 0 is similar, so
assume thati < j. Then
a (&) an(§) xu, A A X,
= a:(gi)hllfl-}-l(]”kl, ""kn)Xk] /\/\éj /\/\an
X T RO STV N IR PRI USRI U )

Xig N AN Xigy A e NEFA A Xi

n
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and

an—1(§)ar_ (&) xi, Ao A X,

= a0 1(§) i, (o krs oo s k)X A A Ry A A X,
=8ip b Gokiy ks k)R Gk e s - k)
Xkl .../\ka/\.../\gj/\.../\xkh.

By observing that /2’ +1(],k1,.. k, )hn+l(i kl,...,l;m,...,j,...,k,,)=
(=) Ui=iDp! (i Ky, .. K, - k)R (k. K, - - ., kn), we get the se-

cond equation. The case i > j is similar.
3. The antisymmetric Fock space and the CAR-algebra

Let 7 be an infinite-dimensional, separable Hilbert space. Define the Full

Fock space of 7 as
EXP() = P 2"

n>0
and the bitstream Fock space of 7 as

F(H) = @/\%,

n>0

so Z (4€) can be identified with a closed subspace of EXP(s). (If the bit-
stream consists only of 1’s, then .# (J¢) is the antisymmetric Fock space of
) Proposition 2.1 gives that

(az (&) an(&))2 = a:(fi)(id/\wl o — A (&) ang (6)) an (&) = af (&) an (&),
so ay (&) a, (&) is a projection (£ 0), hence ||a, (§)] = 1.

Letn € F (), s0 1 = (Ny)nez+ Where 0, € \" 5, and for i € Z, define
the operators

a§), a'&): FH) > F(AN),
a)n = @E) ), a"E)n = (ay&) m+1).

Since ||ay(&;)] is independent of n, we get that

la&) nll* = Znan(a) nall* < Znan@au 174117

< Znnnn2 = Inl*,



266 SIGMUND VIK
soa(§) € B(F (). 1fn,n' € F(H), then

@@ n, ) =Y (anED 0> mr) = Y (1> a5 E) M)

n n

= (71, a*(fi) 71/),

soa(&)* = a*(&). Furthermore, a(&;) satisfies the same commutation-relations
as a, (&): Since aj(&) ap(§) = (§;, &) id/\o - it follows from Proposition 2.1

that o
a&)aE) — (=) a@E)aE) =0

and

a* (&) a§) — (=N ag)a* (&) = &, &) idzur -

Define
CARy(#) = C*(a(§) : i € 2),

so CARy () is a C*-subalgebra of @(9(%)).

REMARK. If S = 111---, CARy(5¢) as defined here will equal the usual
CAR-algebra, and in the next section we will see that CAR( () = Q" M»(C)
which justifies the notation. In the Fock representation construction of the
CAR-algebra the canonical map a : 5 — %’(ﬁ(%ﬂ)), & > a(§¢) is an
isometry, so CAR() = C*(a(§) : £ € ) = C*(a(§&) : i € Z). Hence, if
S=111..., |la(§)]| = |I&]l, but it is easy to see that this need not be the case
when S = 111....

4. The AF-algebras A and B

Fori € Zlet x; = a(§) and s; = a(&)+a*(E). Ifi,j € Z, then s; is a
self-adjoint operator, and the commutation-relations give that

o { (_])XS(|i—j|)sjsi ifi # j,
v idz ) ifi = j,

SO {si}iez is a family of self-adjoint, unitary operators satisfying s;s; =
(_I)XS(”*]'DSJ.SI.'

For notational reasons the Hilbert spaces will from now on have an ortho-
normal basis indexed over N instead of over Z. The results below have cor-
responding proofs for N and Z, and where there are differences they will be
commented on. So fori € N, x; = a(§;) and s; = x; + x]".

For n € N, define

A, =C*(x; 11 <i <n), A=C*(x;:i eN)
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and
B, =C*(s; : 1 <i <n), B=C*@s;:i €N,

s0 A = CAR\ (). Observe that A and B are AF-algebras with A = [ J2 | A,

n=1

and B = Un: B,,. (If the index setis Z, let A, = C*(x, : %" <i< %) and
A=C*(x;:i €l etc.)
The commutation-relations will now read:

x7 =0, xixp = (=D (i # )

and o
x'x +xixl =1, xix; = (—I)XS(l’_”)xjx;“ i #j).
ProprosITION 4.1. If n € N, then A,, = M. (C).

Proor. Forl <i <nlet
H(XJ — X7 X)),

where the product is taken over those j < i which satisfy x;x; = —x;x; (if no
such j’s exist, set u; = 1). Since

()cj)cj’.k - )cj’-‘)cj)2 = )cj)cj’-*xj)c?k + x’.“xjxj xj
= x;(1 — x;x; )x +x (1 - x;‘xj)xj

=1,

then

i . i . (oexy — xpx) (xxf — xix;) if j # k,
(xjxj —X; X)) (e xy — xgxp) = ‘ '

if j =k.
From this it follows that each u; is a self-adjoint unitary operator and that
u,-uj = uju,-.
We now use the u;’s to construct n pairwise commuting systems of 2 x 2

matrix units. This construction is standard and yields the result (see e.g. the
discussion following Definition 1.2 in [12] and Lemma 7.16 in [6]).

From this result the following theorem is immediate.

THEOREM 4.2. If S€ is an infinite-dimensional, separable Hilbert space,
then

CARy () = Q) Ma(C).
1
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5. Description of B, and B,

By the isomorphism in the proof of Proposition 4.1, B, C A, is identified with
a subalgebra of M. (C). By abuse of notation we will also denote this algebra
by B,, and the elements in M (C) corresponding to s; an u; (1 < i < n)
by s; and u;, respectively. Since B, is generated by {s;};_, and the s;’s either
commute or anticommute, it is clear that

B, =1in{l,s;---s;, : 1 <iy <+ <ip < n},

hence B, is a 2"-dimensional subalgebra of My (C). In what follows we will
give a closer description of this subalgebra.
Leta, b, ¢, d € M,(C) be given by

10 0 1 ~1 0 0 1
(0 0) o=(o) = (o) o=(0)

and let (a;);ien C M>(C) be defined by
a if xs@) =0,
“= {c if xs(i) = 1.
For n € N the isomorphism in the proof of Proposition 4.1 gives that in
M5 (C) we have that
S1=bQ@a®---®Ra®a-u; (m—1a’s)
$5=a@b® ---Qa®a-u

Sn=d®a®"‘®a®b‘un’

where Ui =a ®a &K a R Qa Qa

a ®a Qa ®---Qa Qa
Uz =a» Qa a KR Qa Ra

Uz

Up =01 Q2@ 0 3@+ Qar®a.
Hence,if 1 <i <n,thens; =a¢;_1Ra; 2@ - ®a1QbRaQ - Qa.
REMARK. If 1 <i < j <n, then
585 =0;-1Q---®a®bR®a®---Ra®---Qa
41 ®- R4 i11®a_ Qa1 Q- QbR -Qa

— (—I)XS(lj_”)sti,
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because ba;_; = (—1)*1/~1Dg;_;b and the rest of the terms commute.

If B/ denotes the commutant of B, in M (C), define the map « to be linear

and

. / <.
kK :B, — B,, si—5j,

where 5; means s; “read backwards”,ie.5; =a® - - Qa®bRa; R -+ ®
a_, ®a;_;.
Leti, jbesuchthati 4+ j > n+ 1, and set k = n — i. Then
55 =a® - Qa®bR®a; Q- ®aj_1k Q- Qa1
‘ajfl®"'®aj7k®aj7]7k®aj727k®"'®b®”'®a

= 5jSi-

Since itis clear that's; and s; commute when i+ j < n-+1,  really maps B, into
B, . Itis clear that k is an injective x-homomorphism, so dim B;, > dim B,. We
will soon see that dim B, = dim B, from which it follows that « is surjective.

6. The state wgq
Let 2 denote the vector 1 € /\0 H C F (), and for n € N define
J, = B,Q.

Since {€2, s;,---5;,2:1 <1i; <--- < iy < n}isan orthonormal basis for .77,
it follows that .7, is a 2"-dimensional subspace of .# ().

REMARK. %, = A,Q, because if 1 < i < - < iy < nmnand 1 <
i < n,then x;---x, Q2 = s5;,---5,2, x;Q = 0, and x} (x,»]--~xik52) =
+x;,- - X, - - x;, Q2 if there exists m € {1,...,k} such that i = iy, and 0
otherwise.
LEMMA 6.1.
o

U Ay = F(H).
n=1

PROOF. Let e > 0 and n € F (), s0 n = (N,)nez+, Where 0, € " .

Then there exists ' = (1))pez+ € F () and N € Z* such that |n — /|| < §
and n, = 0 forn > N. Since sy, -5k, 2 = &, A--- A&, if 1 < ki <

ky <--- <k, (kH <k <--- <k, if the index set is Z), and these vectors
constitute a basis for /\" S, then for each i € {0, ..., N} there exists n; € N
and b € B, with b’ = 0 for j # i such that ||} — b"Q| < T

Then YN bPQ € %, where m = max,; n; and || — Y, bOQ|?> =
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i 2 2 ,
Yicollnf = b QI% < XL, s5emm = §- Hence lln — X0, 6O < In —
'l = b0l < 5+ 5 =esone U,
COROLLARY 6.2. Q is cyclic for B (and hence for A).
ProoF. BQ = |2, B,Q = F ().
LeEmMmA 6.3. Ifn € N, then Q2 is separating for B, on J,.

Proor. Since 2 is cyclic for B, on %, Q2 is separating for B, . This gives

/

that the linear map B, — .#,, b — b is injective, so dim B, = dim B, €2.
Hence dim %, = dimA,Q > dim B,Q = dim B, > dim B, = dim.%,,
where the last inequality follows from that « is injective. Since .7, is finite
dimensional, this gives that B/ Q2 = ./, so Q is cyclic for B, on .%,, hence Q
is separating for B, = B,,.

COROLLARY 6.4. «k is a x-isomorphism.

Proofr. The only thing left to prove is that k is surjective, but that follows
from the inequalities in the previous lemma.

Define the state wg on A by wq(x) = (x Q, Q) Recall that by Proposi-
tion4.1 A,, = M (C), so wq | 4 can be regarded as a state on the full matrix
algebra M, (C).

PROPOSITION 6.5. wq is a pure state on A. Moreover, if n € N and Tr is
the usual trace on M. (C) with Tr (1) = 2", then C()Q|A = ¢, where

¢p i Mp(C) —> C, x — Tr(@ <(l) 8)x>

1

ProoOF. Itis enough to show thatif n € N, then wg | 4 isapure state on A,,

because A = (J7, A,. By the commutation-relations we have

An=lin{1,x2-~~x}’jx,~,--~x,~r 1l <iy<ip<---<i,<n and

1 <ji<j,<---<js <n (eitherr ors can be 0)}.
We evaluate wg on the basisvectors:

a)Q(xjt...x;;xil...xir) e (xil...xirQ’ le.“'xst)

=(€i1 /\"‘/\gi,» Sjl /\/\gls)
:{1 ifilzj],i2:j27"'air:js7
0 otherwise.
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Let ¢, be defined as above. Since Q) ( 0) is a 1-dimensional projection,
¢, is a pure state on M, (C). We will show that if n € N, then a)g| = ¢y,
and to do so we inductively use the systems of matrix units from the proof of
Proposition 4.1:

¢>1(x;*<x1)=Tr(<(1) 8)4?):1, ¢1(xf)=Tr<<(1) 8)e}‘;)=0
and (b](xl):Tr(((l) 8) “))_o

SO wQ{Al = ¢;. Assume that (,()Q|A = ¢,_1 for an n > 2. We evaluate

¢, on the basisvector x = xj x]lxl, -x;, where 1 < i) < i) < -+ <

i <nand1 < j; < j» < --- < j; < n (either r or s can be 0). Assume
~

first that i, j; # n. Since x € A,_

10
xjs lexl,,- X, ® (0 1) € M»:(C), so

¢n(x)=Tr(®((1) 8>x;f;- -x;xi,--~-xi,®((1) ‘1)))
1
n—1
1 0\ . « 1 0 10
(B D)o D) )
1

n—1
1 0 1 0
=Tr(®(0 O)x]fi---)g;xii---xir>Tr(o O):qbn_l(x).

1

My:-1(C), then x is identified with

If i, = j; = n, observe that ®"(1 0) = [T, xFxi, so x, ®'1'((1) g)x; =

(T2 xx) ey = (T2 7)) xxy = @1 (o o) ® () 1)s 50
¢n(~x) =TI'(® (0 0 . lext, "xn)
1

n—1
1 0 0 0 .
- Tr((@ (O O) ® (0 1>>xj“l XX 'xirl)

—¢n 1(

—_
=]
N——"
=
S %

o x,l X ).

Assume at last that j; = n,i, # n (the case j; # n,i, = n is similar).
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Observe that x* = e\3u, = ( 771((1) (1)) ® (8 é))un, S0

(1 0) .. .
00 =11(® (g ) xivi i n)
1

n n—1
1 0 1 0 0 1 *
:Tr(@(o 0)<®<0 1>®<0 0))14,1)(;:1...xj]x,~l_...xir>

n—1
1 0 " * 0 1
:Tr(®(0 0)”")6/}1"'xj1xif"'xir>Tr(0 O):O
1

From all this we get that ¢, (x;i- . -xj’."

Xipe X)) = wo(X XX g,
so the result follows by induction.

J1

COROLLARY 6.6. A acts irreducibly on F (€).

PrOOF. Since Q € % () is acyclic unit vector which is such that wg (x) =
(x Q, Q), the triple (id 4, .% (J2), Q) satisfies the conditions in the GNS-con-
struction. Since wg, is a pure state on A, id, is an irreducible representation,
and the corollary follows.

7. The center of B,

We start this section with some definitions and explain the notation that will
be used.

A word in B,, is an element of the form w = slf‘ slz‘z- . sﬁ”, where the vector
(ki, ko, ..., k,) € F;. If at least one of the k;’s is 1, the word w is called
non-trivial, and if all the k;’s are 0, we define w to be 1 (the trivial word).
If w occures (e.g. in a computation) where the sign is not important, i.e. we
can replace w by —w without affecting the result, we do so if it is convenient.
If C C B, is a family of words, then C is called an independent family (of
words) if none of the words in C can be written as a product (up to a sign)
of the other words in C. Note that if C is an independent family, then 1 € C
implies C = {1). 16 C = {w;}", # {1} and w; = s* 55", then C is
an independent family if and only if {(k\", ..., k")) is a set of linearly
independent vectors in F7.

If k = (ki,...,k,) is a vector in FZ, then let k denote the reversed vector
(kn, k,,_l, ey kl) € Fg

A bitstream S C N is called mirror-periodic if the sequence ( XS(|n|))n€Z is
periodic. Observe that S is mirror-periodic if and only if there exists m € N

such that xs(j) = xs(Im — jI) Vj € Z*.
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LEMMA 7.1. Ifn € N, then (,()Q|B =tr|,, where tr is the normalized trace
on My (C). Morover, if w is a non-trivial word in B, then wq(w) = 0.

PRrOOF. Since B, is generated by the words it contains (see section 5), it is
enough to check the equality for these elements. It is clear that wq(1) = tr 1,

soletw = sf‘- - sk be a non-trivial word in B,. Let j be such that k; = 1 and

ki = Ofori > j.Sincew = s{”- . -sfffsj =b1®b,Q® - -®b;_1Q®bRa®- - -®a,

where by, by, ..., bj_; € M»(C), it follows that
trw=trbitrby---trbj_jtrbtra---tra =0.

From Proposition 6.5 we get that

(1 0
wQ(w)ZTT<®<O 0>b1®bz®~-®b,-_1®b®a®~~®a>:0.
1

The next lemma can be found in [8]. We include the proof for completeness.

LEMMA 7.2. Denote by Z(B,) the center of B,. Every element in Z(B,)
can be written as a linear combination of words in Z(B,,).

PrROOF. Letv € Z(B,). We may assume that v # 0, so there exists a family
of words {w;}/_, such that v = ) . A;w;, where each A; # 0. Assume there
exists a j such that w; ¢ Z(B,), i.e. there exists a word w € B, such that
ww; = —w;w. Then v = w*vw = ), Lw*w;w = ), £A;w; with minus
fori = j,soA; = —A;, hence A; = 0.

LeEmma 7.3. Let D,(C) denote the subalgebra of M, (C) consisting of the
diagonal matrices. If n € N, then there exist c,, d, € Z* such that

B, = M54, (C) ® Dy (C).

Proor. If Z(B,) = Cl, then B, is isomorphic to a full matrix algebra, so
in this case n must be even since dim B, = 2". Hence ¢, = 0 and d,, = % If
Z(B,) # C1, then Lemma 7.2 gives that there exists an independent family of
words, C = {w;}iL,, generating Z(B,). For j =1,...,m define

1 _ 1
qf = 5(1 + Ajw;) and ¢ = 5(1 — Ajw;)),

where A; € C equals 1 if w; is self-adjoint and i otherwise (if w; is not self-
adjoint, then w; = —wy;). This gives rise to 2" orthogonal central-projections

of the form ¢,q; - - - g,,, Where each g; is either qj+ or g; , so let {pi}l.zi] be
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the family consisting of these projections. Since Z(B,) is a 2" -dimensional
commutative algebra, it follows that the p;’s are the minimal projections in
Z(B,). Hence, to each p; there exists a corresponding n; € N such that

om

B, = @ Mni (C) ® CMi C My (C)’

i=1

where u; € N is the multiplicity of the representation of p; B, (= M,,(C)) in
%(piC¥) and C,, = C1 C M,, (C). The commutant of @, M,,(C) ® C,, is
@7, C,, ® M, (C), so the fact that B, is isomorphic to its commutant (Corol-
lary 6.4) gives that @7, C,, ® M,,, (C) has dimension 2", hence " | u? = 2".
Since B, contains 1 € M. (C), we get that Zf: | Hin; = 2", and by calculating
the dimension of B, we also get that 212:1 ”12 = 2". Morover, if p; is a minimal
projection in Z(B,), then p; = q1--- g = %(l + Awq)... %(l + Aawn),
which equals zll plus a linear combination of products of the form [ [, ., w;,
where I C {1,...,m]}. Since C is an independent family, Lemma 7.1 im-

plies that tr [[,_, w; = 0 foreach I C {1,...,m},sotrp; = ZL This yields

that the product u;n; is independent of i, so Z?:l uin; = 2" uin; = 2",
Thus 2" = Y7 w2 =30, % s0 Y, nlz = 2?m=" Now the Cauchy-
Schwarz inequality gives us that

om om

2" 2
22 = (Z nni) < (Zn,?) (Z iz) =2". 2 = 2,
=1 izt

! i=1 i

Equality in the Cauchy-Schwarz inequality implies that there exists a constant
csuchthat (ny,...,nm) = c(nl—], e m%), so all the n;’s are equal. It follows

n—m

2

thatc, = mand d, = , which concludes the proof.

REMARK 1. It follows from the proof of this lemma thatif n € N, then there
exists an independent family C = {w;};", when ¢, # 0 and C = {1} when
¢, = 0 which generates Z(B,,), and it is clear that any independent family in
Z(B,) consisting of ¢, words, generates Z(B,,).

REMARK 2. If J: xQ +— x*Q, thenJ p; ] = p; and J B, ] = B, see [2,
Ch. I §5]. From this it follows that u; = n; above.

REMARK 3. For a shorter and quite different proof of this result (which also
includes Lemma 7.5) see [3].

COROLLARY 7.4. Ifn € N, then n = 2d,, + c,.

PROOF. 2" = dim B, = dim(Mai (C) ® Do (C)) = (2%)2 . 260
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In what follows we will describe the behaviour of the sequence (c,);2; in
order to understand the AF-algebra B = | Jo- | B,.

n=1
LEMMA 7.5. If n € N, then ¢,y = ¢, £ 1. Morover ¢,y = ¢, +1 <—
dn+l = dn

Proor. Letn € N. It follows from Lemma 7.3 that d,,| > d,, so assume
firstthatd,; = d,. Then Corollary 7.4 gives that 2d,, | +c,+1 = 2d,,+c¢,+1,
S0 cp+1 = ¢, + 1 (this calculation also gives the reverse implication). If d, | >
d,, then the same corollary givesthat2 < 2(d,+1—d,) = n+1—c, 11— (n—cy),
80 Cy+1 < ¢, —1. Fromthis it follows thatc,, > 1, so there exists an independent
family of words, C = {w; }l |» that generates Z(B,). Since ¢,y1 < ¢, — 1,
there exists j € {1,...,c,} such that w; ¢ Z(B,y1). If w; € C\ Z(B,41)
(i # J), this means that w; anticommutes with s, ;, and since the same is
true for w; it follows that w;w; € Z(B,+). Hence, by replacing the words
w; € C\ Z(Bpy1) (i # j) with wjw;, we get that ¢,41 > ¢, — 1. (It is clear
that the family obtained by this replacement is independent.)

LEMMA 7.6. ¢,y1 = ¢+ 1 < Z(B,) C Z(By+1).

PROOF. Assume that ¢, = ¢, + 1. If ¢, = 0, the implication is trivial,
so we may assume that ¢, > 1. Let C = {wl} | be an independent fam-
ily of words generating Z(B,), and assume that Z(B ) & Z(B,11). The
same argument as in the proof of Lemma 7.5 gives that w., ¢ Z(B,1) and
{w; }C"_1 C Z(B,+1) (by modifying and rearranging some of the w;’s if neces-
sary). Now, since ¢, 11 = ¢, + 1, there must exist two words w’, w” € Z(B,41)
such that {w’, w”} U {w;}i" "is an independent family of words generating
Z(B,11). This, however, is 1mpossib1e, since then at least one of the words
w’, w”, w'w” does not contain s, 1, i.e. is contained in Z(B,). This violates
the fact that C generates Z(B,,). The reverse implication is immediate from
Lemma 7.5.

LEmma 7.7. If s1 s2 ... sk is a word in B,, then 5 sé” .5k e Z(By) if

n n

and only if s, s§ “l..ske Z(By).

n

ProOF. By symmetry it is enough to show one of the implications. Let

w = sf' . ,’f be awordin Z(B,,) and 1 <i < n. Observe that

n
k., k, i i ) k, k,
i85y 8" sk = (l_[(—l)XS(’ Jl)k”+1‘1>sl”s2” Lok,

j=1
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so we must show that H;zl(—l)xs(“—ﬂ)kw—j = 1. Since w € Z(B,), then

n
_ _ nl—i—jk;
WSyt1—i = Sp1—iW = <H(—1)X5( 7 ’)wsn+1—i,
j=1

hence [T;_, (= 1)*s"*+!1=#=/V5 = 1. Now the lemma follows by the substitution
k=n+1-—j.

The next proposition describes the sequence (c,); -, completely. To make
the notation easier we define By = C1, so ¢cg = 0. Since ¢; = 1, Lemma 7.5 is
also valid for n = 0.

ProrosITION 7.8. Let S C N be a given bitstream. Then there exists a

strictly increasing sequence (n,),cj of even integers, where I = {1,2,..., N}
(N € Nand set ny, = 00) or I =N, such that ny = 0 and if m = "=,
then { j Fo<j<m,
Cn+j = .. .
2m —j if m < j <2m.

Furthermore, S is mirror-periodic if and only if I is finite.

PRrOOF. It is enough to show that if n € Z* is such that ¢, = 0, then c,4;
will behave like in the proposition for all j € N until ¢,; = 0. The result
then follows by induction. Let n € N be such that ¢, = 0. By Lemma 7.5
there exists k = (ky, ..., ky11) € Fg’“ such that the word w; = s]f‘- . s,]fJ:I'
generates Z(B,+1). Lemma 7.7 implies that k = k,andifk; = k,+1 = 0, then
w; € Z(B,), so k; = 1. By Lemma 7.5 again, there exists m € N U {oo} such
thatc,,; = jforl < j <mandcyymy1 =m—1.Forl <i <mlet

w; =sf1---sff:i‘.
We claim that {wi}{zl generates Z(B,y;j) forl < j <m,soletl <r <
m be such that {w;}/_, generates Z(B,,). Since ¢,4,+1 = r + 1, Lemma

. k ky
7.6 gives that Z(By4,) C Z(Buir41), SO Wy = sy -5, 150 50 .| €
Z(By4r+1). Lemma 7.7 then imply that sfj:l" - Sr]:er-}—l € Z(B,tr+1), hence,
+1

since k = &, W41 € Z(Bytr41). Because {w;}:1] is an independent family
of r + 1 words in Z(B,,+r+1), it generates Z(B,+,+1), and the claim follows

by induction. If m = 1 (which implies ¢,y,+1 = 0) or m = oo, we are
done, so assume 1 < m < oo. Since [w;, Spamri]l = (Wi, Spam] = 0
for 2 < i < m, it follows that {w;}{", generates Z(B,.+1). Hence w; ¢
Z(Byym+1), 1.e. wy anticommutes with s,4,,41, soif j € {1,..., m}, then w;

anticommutes with s,,4,,4 ;. From this we get that wy, ..., w; ¢ Z(Buyim+j)-
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Because [w;, Spym+j] = [wi—j, Sugm] = 0 for j < i < m, it follows that
{w,-}}’ﬂrl C Z(Buym+j) (by induction, where {w;};, ., = C1). Lemma 7.6 and
7.5 now implies that {w; }"H generates Z (B4 ).

Assume S is mirror-periodic with period p. If j € N, then

1—j 1—j
S1Sp418] = (_1)Xs(\17+ Jl)(_l)XS(\ Jl)sjslspJrl
1—j 1—j
— (_I)Xs(\ JI)(_I)Xs(I J\)S],Slsp_‘_1
= SjS18p+1,

S0 §1Sp41 € Z(By) forn > p + 1, hence I is finite.

Assume [ is finite. By the first part of the proposition there exists a word
w) = s{“- . -s,’f", where n is odd, k = (ky, . .., k,) satisfies k = k, and k; = 1,
such that w; € Z(B,y;) forall j € Zt.Ifn = 1, w; = s, so in this case
S consists of only 0’s. Since this S is mirror-periodic we may assume that
n > 1.For j € Zdefine ; = (xs(1j). xs(lj + 1). ... xs(j +n—1))e Fy
and l; € Fgfl as the vector obtained from /; by deleting its last entry. Let
A € M,_(F,) be given by

0 1 0 0

0 1 0
A= : .. ,

0 0 0 1

k1 kz k3 kn—l

and let j > 1 — n. By calculating the sign in s;,w; = *w;s;4, and using
that wy € Z(B,4;) forall j € Z*, we get that )+, xs(|j +n —iDk; = 0.
Since k = k, this yields that 0 = Y axs(j—1+n+1—iDkyyi—; =
Zl'-':l xs(lj —1+iDk; =1; -k forall j > 1 — n (where the middle equality
follows by substituting n + 1 —i). If j < 1 —n, then; -k = [; - k =
l_j—-1y -k =li_n_j -k = 0, because k = k, sol; -k = O forall j € Z
Since k, = k; = 1 this implies that lj’.+1 = Alj’. for all j € Z, and since A is
invertible over F,, there exists m € N such that A” = 1. From this it follows

that [}, ,, = [; forall j € Z, so S is mirror-periodic.

REMARK 1. The calculation used to show that S is mirror-periodic implies
that / is finite can also be found in [4], and the proof of the reverse implication
is due to [10].

REMARK 2. If B, = C*(s; : 1%” <i < 3), the proof of Proposition 7.8 is

ki1 } "

SRR e} P and so

the same, but we must exchange {wi}{zl with {sf‘ﬁ
2
on.
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REMARK 3. We see from the proof of Proposition 7.8 that for a given
sequence (n,),e; C N, where I = {1,2,..., N} or I = N which satisfies
ny = 0, n, even, and n, < n,y, there exists a bitstream S C N giving rise to
this sequence. This is Theorem 6.6. in [9].

THEOREM 7.9. Let S C N be a bitstream. Then there exists a family of self-
adjoint, unitary operators, {s;};cz, such that s;s; = (—1)U=iDs;s; and if
B =C*(s; :i € 2), then

M»(C) ® Q®T° D2(C) if S is mirror-periodic,
X7 M1 (C) if S is not mirror-periodic.

Proor. Let I C N be the index set given by Proposition 7.8. If I =
{1,..., N}, there exists n € N such that ¢, ; = j for all j € 7T, so
dyyj = d, for all j € Z* by Lemma 7.5. Lemma 7.3 now implies that
B = M., (0)® ®f° D, (C). If I = N, Lemma 7.3 and Proposition 7.8 implies
that B, = Ma, (C) for infinitly many n’s, so B = Q]° M>(C).

REFERENCES

1. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, I and
11, Springer, 1979 and 1981.

2. J. Dixmier, Les algebres d’opérateurs dans I’espace hilbertien (algebres de von Neumann),
2¢ édition, Gauthier-Villars, 1969.

3. E.Enomoto, M. Nagisa, Y. Watatani, and H. Yoshida, Relative commutant algebras of Powers’
binary shifts on the hyperfinite 11 factor, Math. Scand. 68 (1991), 115-130.

4. V. Ya. Golodets and E. Stgrmer, Entropy of C*-dynamical systems defined by bitstreams,
Ergodic Theory Dynamical Systems 18 (1998), 1-16.

5. Guichardet, Ifroduits tensoriels infinis et représentations des relations d’anticommutation,
Ann. Sci. Ecole Norm. Sup. 83 (1966), 1-52.

6. P.de la Harpe and V. Jones, An introduction to C*-algebras, Université de Genéve, 1995.

7. R.T.Powers, An index theory for semigroups of x-endomorphisms of B() and 11; factors,
Canad. J. Math. 40 (1988), 86-114.

8. R.T.Powers and G. L. Price, Binary shifts on the hyperfinite 11| factor, Contemp. Math. 145
(1993), 453-464.

9. R.T.Powers and G. L. Price, Cocycle conjugacy classes of shifts on the hyperfinite 11| factor,
J. Funct. Anal. 121 (1994), 275-295.

10. G. L. Price, Shifts on type 111 factors, Canad. J. Math. 39 (1987), 492-511.

11. G. L. Price, Shifts on the Hyperfinte 11| factor, J. Funct. Anal. 156 (1998), 121-169.

12. R.T.Powers and E. Stgrmer, Free States of the Canonical Anticommutation Relations. Comm.
Math. Phys. 16 (1970), 1-33.

SOFIENBERGGATA 5

0551 OSLO

NORWAY

E-mail: sigmunvi@math.uio.no



