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FOCK REPRESENTATION OF THE BINARY SHIFT
ALGEBRA

SIGMUND VIK

Abstract

We modify the Fock representation construction of the CAR-algebra to obtain a new proof for
that the Binary Shift Algebra is isomorphic to the CAR-algebra.

Introduction

If S is a bitstream, i.e. a sequence of 0’s and 1’s, we consider S as the subset
of N given by i ∈ S if and only if the i’th term in the sequence is 1.

Let S ⊂ N be a given bitstream and B the corresponding bitstream algebra,
i.e. the C∗-algebra generated by a sequence of self-adjoint unitaries that either
commute or anticommute in a certain way depending on the bitstream. More
specifically, if this sequence is denoted by {si}i∈N, then si and sj anticommute
if |i − j | ∈ S and commute otherwise. The notation for the bitstream algebra
used here is not common, and in e.g. [7] the bitstream algebra is denoted by
�(S). Since the bitstream can be thought of as fixed throughout this work, we
suppress the dependence and simply denote this algebra by B.

IfC(�) is the algebra of continuous functions on the Cantor set, it is known
from a paper by Powers and Price [8] that B will be of the form Mn(C)⊗C(�)

if S satisfies a certain periodicity condition, and the CAR-algebra otherwise.
In this work we will see that by imitating the Fock representation construction
of the CAR-algebra we can give an alternative proof for this result.

We will now sketch the approaches in [8] and this work to see their main
differences. Whether the family of self-adjoint unitaries above is indexed over
N or Z does not affect the results, and since many papers (e.g. those dealing
with entropy) use the latter, we state all results with respect to this.

In both approaches the bitstream algebra B is considered as an AF-algebra,
i.e. B = ⋃∞

n=1 Bn, where Bn is the finite-dimensional subalgebra generated
by {si}ni=1. We denote the center of Bn by Z(Bn). To describe the embeddings
Bn ⊂ Bn+1 (and thereby the Bratteli diagram corresponding to the AF-algebra
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B) it is essential to know the dimension of Z(Bn) (for all n ∈ N). In [11] this is
done by studying a sequence of matrices with entries in F2. More specifically,
if n ∈ N, the n’th Toeplitz matrix is given by

Tn =




a0 a1 a2 a3 an−2 an−1

a1 a0 a1 a2 · · · an−3 an−2

a2 a1 a0 a1 an−4 an−3
...

an−1 an−2 an−3 an−4 · · · a1 a0


 ,

where a0 = 0 and ai is the i’th term in the bitstream. It is shown that
dim Z(Bn) = 2null(Tn), so the nullity of Tn determines the dimension of Z(Bn).
The sequence {null(Tn)}n∈N, called the center sequence, is then calculated from
results on the ranks of the matrices above.

In this work we will avoid all discussions of Toeplitz matrices. The idea is
to mimic the Fock representation construction of the CAR-algebra (see e.g.
[6] and [1]) to obtain an algebra A, with commutation-relations that depend on
the bitstream in such a way that the bitstream algebra occurs as a subalgebra
of A. If the bitstream consists only of 1’s, the construction of A should be
identical to the Fock representation construction of the CAR-algebra. We find
that A is an AF-algebra with finite-dimensional subalgebras An isomorphic to
M2n (C), i.e. A is isomorphic to the CAR-algebra. If Bn is defined as above,
Bn is a subalgebra of An. Under the isomorphism above we consider Bn as
a subalgebra of M2n (C). We also obtain a nice description of the commutant
of Bn in M2n (C). Next we find how Bn is decomposed as a direct sum of
matrix algebras, and we calculate the center sequence in a quite straightforward
manner. With these two results the theorem follows quite easily.

I am grateful to professor Erling Størmer who has been my supervisor
during this work, which was a part of my Candidatus Scientiarum degree at
the University of Oslo.

1. The Hilbert spaces H ⊗n and
∧n H

Let H be a Hilbert space with orthonormal basis (ξi)i∈Z. For n ∈ Z+ define

H ⊗n =
{

C if n = 0,

H ⊗ · · · ⊗ H (n copies) if n > 0.

Let S ⊂ N be identified with the bitstream
(
χS(n)

)
n∈N and S′ ⊂ Z+ be given

by χS′(0) = 1 and χS′(n) = χS(n) ∀n ∈ N. The reason for introducing S′ is
technical and will soon be clear. Note that, by convention, χS(0) = 0.
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Let Sn denote the symmetric group on n letters, and for n ≥ 2 and i =
1, . . . , n − 1 define a unitary operator on H ⊗n by

ui ξk1 ⊗ · · · ⊗ ξki ⊗ ξki+1 ⊗ · · · ⊗ ξkn

= (−1)χS′ (|ki−ki+1|) ξk1 ⊗ · · · ⊗ ξki+1 ⊗ ξki ⊗ · · · ⊗ ξkn .

If n ∈ Z+, the group generated by {idH ⊗n , ui}n−1
i=1 (i.e. the group generated

by elements (transpositions) u1, u2, . . . , un−1 and determined by the group
relations ui

2 = I, ui ui+1 ui = ui+1 ui ui+1, and ui uj = uj ui for |i − j | >

1) contains n! elements, each of which can be indexed by a corresponding
permutation in Sn (S0 is understood to be the trivial group). If uσ denotes the
element in this group corresponding to σ ∈ Sn, then

uσ ξk1 ⊗ · · · ⊗ ξkn = hn(σ, k1, . . . , kn) ξkσ(1) ⊗ · · · ⊗ ξkσ(n) ,

where hn : Sn × Zn → {±1}. hn is uniquely determined by writing uσ as a
product of ui’s, because if 1 ≤ i < j ≤ n and uσ = ∏

ui is a factorization of
uσ , the number of times (−1)χS′ (|ki−kj |) contibutes to the sign in

uσ ξk1 ⊗ · · · ⊗ ξkn =
(∏

ui

)
ξk1 ⊗ · · · ⊗ ξkn = ±ξkσ(1) ⊗ · · · ⊗ ξkσ(n)

is either odd or even, independent of how uσ is factorized. Since hn is unique,
the mapping σ �→ uσ is indeed a group-isomorphism. We will now give a
recursive expression for the sign function hn. It is clear that h0 and h1 are
constantly equal to 1, so let n ≥ 2. If σ ∈ Sn, let j = σ(n) and σ ′ ∈ Sn−1 be
given by σ ′(i) = σ(i) if σ(i) < j and σ ′(i) = σ(i) − 1 if σ(i) > j . Then

hn(σ, k1, . . . , kn) = −
n∏

i=j

(−1)χS′ (|ki−kj |) hn−1(σ
′, k1, . . . , ǩj , . . . , kn),

where ǩj means that kj is removed. The reason for the minus sign in front of
the product is to eliminate the extra minus caused by (−1)χS′ (|kj−kj |).

For n ∈ Z+ define

n∧
H = {ξ ∈ H ⊗n : uσ ξ = ξ ∀σ ∈ Sn},

so
∧n H is a closed subspace of H ⊗n (note that

∧0 H = C since S0 is
trivial). If n ∈ Z+, define an operator Pn on H ⊗n by

Pn = 1

n!

∑
σ∈Sn

uσ .
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If ξ ∈ ∧n H , then Pn ξ = ξ , and since uσ Pn = Pn ∀σ ∈ Sn, it follows
that Pn maps H ⊗n onto

∧n H and Pn
2 = Pn. Calculation of the adjoint of

Pn gives that P∗
n = 1

n!

∑
σ∈Sn

uσ
−1 = 1

n!

∑
σ∈Sn

uσ−1 = Pn, hence Pn is the
orthogonal projection of H ⊗n onto

∧n H .
Define the outer product ∧ by

∧ : H × · · · × H →
n∧

H ,

(η1, . . . , ηn) �→ η1 ∧ · · · ∧ ηn = √
n! Pn η1 ⊗ · · · ⊗ ηn.

Observe that ∧ is linear and continuous in each variable, and if σ ∈ Sn, then

ξkσ(1) ∧ · · · ∧ ξkσ(n) = √
n! Pn ξkσ(1) ⊗ · · · ⊗ ξkσ(n)

= √
n! Pn hn(σ, k1, . . . , kn) uσ ξk1 ⊗ · · · ⊗ ξkn

= hn(σ, k1, . . . , kn) ξk1 ∧ · · · ∧ ξkn .

Since χS′(0) = 1 this implies that if two ki’s are equal, then the outer product
is 0. Because this is a property of the outer product in the Fock-representation
construction of the CAR-algebra, the outer product defined here should also
behave like this. This is the reason for using S′ instead of S. We conclude this
section with some lemmas that will be needed in the sequel.

Lemma 1.1. If η ∈ H and σ ∈ Sn, then

η ∧ ξkσ(1) ∧ · · · ∧ ξkσ(n) = hn(σ, k1, . . . , kn) η ∧ ξk1 ∧ · · · ∧ ξkn .

Proof. Let η = ∑
i∈Z λiξi ∈ H and σ ∈ Sn. Let σ ′ ∈ Sn+1 be given

by σ ′(1) = 1 and σ ′(j + 1) = σ(j) + 1 for 1 ≤ j ≤ n. For i ∈ Z define
li = (

l
(i)
1 , l

(i)
2 , . . . , l

(i)
n+1

) = (i, k1, . . . , kn) ∈ Zn+1. Then

η ∧ ξkσ(1) ∧ · · · ∧ ξkσ(n) =
∑
i∈Z

λi ξi ∧ ξkσ(1) ∧ · · · ∧ ξkσ(n)

=
∑
i∈Z

λi ξl(i)
σ ′(1)

∧ ξ
l
(i)

σ ′(2)
∧ · · · ∧ ξ

l
(i)

σ ′(n+1)

=
∑
i∈Z

λihn+1(σ
′, l(i)1 , . . . , l

(i)
n+1) ξl(i)1

∧ ξ
l
(i)
2

∧ · · · ∧ ξ
l
(i)
n+1

=
∑
i∈Z

λihn(σ, k1, . . . , kn) ξi ∧ ξk1 ∧ · · · ∧ ξkn

= hn(σ, k1, . . . , kn) η ∧ ξk1 ∧ · · · ∧ ξkn .
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Lemma 1.2. Let H be a Hilbert space with orthonormal basis (ξi)i∈Z. Then
(ξk1 ∧ · · · ∧ ξkn)k∈Zn where k = (k1, k2, . . . , kn) with k1 < k2 < · · · < kn is an
orthonormal basis for

∧n H .

Proof. Let k, l ∈ Zn where k = (k1, k2, . . . , kn) with k1 < k2 < · · · < kn
and l = (l1, l2, . . . , ln) with l1 < l2 < · · · < ln. Then(
ξk1 ∧ · · · ∧ ξkn , ξl1 ∧ · · · ∧ ξln

) = n!
(
ξk1 ⊗ · · · ⊗ ξkn , Pn ξl1 ⊗ · · · ⊗ ξln

)
=

∑
σ∈Sn

(
ξk1 ⊗ · · · ⊗ ξkn , uσ ξl1 ⊗ · · · ⊗ ξln

)

=
∑
σ∈Sn

hn(σ, l1, . . . , ln)

n∏
i=1

(
ξki , ξlσ(i)

)

=
{

1 if k = l,

0 if k �=l

and
lin {ξk1 ∧ · · · ∧ ξkn : k = (k1, . . . , kn) ∈ Zn, k1 < · · · < kn}

= lin {ξk1 ∧ · · · ∧ ξkn : k = (k1, . . . , kn) ∈ Zn}
= lin {Pn ξk1 ⊗ · · · ⊗ ξkn : k = (k1, . . . , kn) ∈ Zn}
= Pn lin {ξk1 ⊗ · · · ⊗ ξkn : k = (k1, . . . , kn) ∈ Zn}

= Pn H ⊗n =
n∧

H .

For the next result the classical theory applies verbatim (see [6]).

Lemma 1.3. Let H1 and H2 be two Hilbert spaces, n ∈ Z+, and L ∈
B(H ⊗n

1 ,H2). If L satisfies L uσ = L ∀σ ∈ Sn, then L η1 ∧ · · · ∧ ηn =√
n! L η1 ⊗ · · · ⊗ ηn.

Proof.

L η1 ∧ · · · ∧ ηn = √
n! L Pn η1 ⊗ · · · ⊗ ηn

=
√
n!

n!
L(

∑
σ∈Sn

uσ η1 ⊗ · · · ⊗ ηn)

=
√
n!

n!

∑
σ∈Sn

L η1 ⊗ · · · ⊗ ηn

= √
n! L η1 ⊗ · · · ⊗ ηn.
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2. The operators An(ξ) and an(ξ)

Let H be a Hilbert space with orthonormal basis (ξi)i∈Z. For ξ ∈ H and
n ∈ Z+ define an operator An(ξ) by

An(ξ) : H ⊗n →
n+1∧

H , η1 ⊗ · · · ⊗ ηn �→ 1√
n!

ξ ∧ η1 ∧ · · · ∧ ηn.

If m ∈ N and {λi}mi=1 ⊂ C, then

∥∥∥∥An(ξ)

m∑
i=1

λi η
(i)
1 ⊗ · · · ⊗ η(i)n

∥∥∥∥
=

∥∥∥∥
√
(n + 1)!√

n!
Pn+1

m∑
i=1

λi ξ ⊗ η
(i)
1 ⊗ · · · ⊗ η(i)n

∥∥∥∥
≤ √

n + 1

∥∥∥∥
m∑
i=1

λi ξ ⊗ η
(i)
1 ⊗ · · · ⊗ η(i)n

∥∥∥∥
= √

n + 1 ‖ξ‖
∥∥∥∥

m∑
i=1

λi η
(i)
1 ⊗ · · · ⊗ η(i)n

∥∥∥∥,
so An(ξ) extends to a bounded operator on H ⊗n with ‖An(ξ)‖ ≤ √

n + 1 ‖ξ‖.
If σ ∈ Sn, then

An(ξ) uσ ξk1 ⊗ · · · ⊗ ξkn = 1√
n!

hn(σ, k1, . . . , kn) ξ ∧ ξkσ(1) ∧ · · · ∧ ξkσ(n)

= 1√
n!

ξ ∧ ξk1 ∧ · · · ∧ ξkn

= An(ξ) ξk1 ∧ · · · ∧ ξkn ,

where the second equality follows from Lemma 1.1. It now follows from
Lemma 1.3 that

An(ξ) η1 ∧ · · · ∧ ηn = √
n! An(ξ) η1 ⊗ · · · ⊗ ηn = ξ ∧ η1 ∧ · · · ∧ ηn.

For n ∈ Z+ let an(ξ) = An(ξ)
∣∣∧n H

, so

an(ξ) :
n∧

H →
n+1∧

H ,

η1 ∧ · · · ∧ ηn �→ ξ ∧ η1 ∧ · · · ∧ ηn



fock representation of the binary shift algebra 263

and ‖an(ξ)‖ ≤ √
n + 1 ‖ξ‖ (we will later see that this norm is independent of

n when ξ = ξi). The adjoint of an(ξ) will be denoted by a∗
n(ξ).

Proposition 2.1. If i, j ∈ Z, then

an+1(ξi) an(ξj)−(−1)χS′ (|i−j |) an+1(ξj) an(ξi) = 0

and

a∗
n(ξi) an(ξj)−(−1)χS′ (|i−j |) an−1(ξj) a∗

n−1(ξi) = (ξj , ξi) id∧n H .

The first equation is valid for n ∈ Z+ and the second for n ∈ N.

Proof. It is sufficient to show that the equations are valid for an orthonormal
basis for

∧n H (see Lemma 1.2), so let n ∈ N and k = (k1, k2, . . . , kn) ∈ Zn

with k1 < k2 < · · · < kn. Then

an+1(ξi) an(ξj) χk1 ∧ · · · ∧ χkn = ξi ∧ ξj ∧ χk1 ∧ · · · ∧ χkn

and

an+1(ξj) an(ξi) χk1 ∧ · · · ∧ χkn = ξj ∧ ξi ∧ χk1 ∧ · · · ∧ χkn

= (−1)χS′ (|i−j |) ξi ∧ ξj ∧ χk1 ∧ · · · ∧ χkn,

so an+1(ξi) an(ξj) = (−1)χS′ (|i−j |) an+1(ξj) an(ξi) (in the case n = 0 exchange
χk1 ∧ · · · ∧ χkn with 1 ∈ ∧0 H in the computations above).

To show the second equation we need an expression for a∗
n(ξi). We will use

the following notation: If an element is marked with an ,̌ then this element is to
be omitted, and if i ∈ Z, k = (k1, . . . , kn) ∈ Zn, then δi,km shall equal 1 if there
exists an m such that i = km and 0 otherwise. If δi,km = 0, then all expressions
where km is present are set to zero. Let h′

n : Zn → {±1, 0} be given by

h′
n(k1, . . . , kn) =



hn(σ, k1, . . . , kn) if there exists σ ∈ Sn such that

kσ(1) < kσ(2) < · · · < kσ(n),

0 otherwise.

Observe that h′
n is well-defined since a permutation that strictly orders a given

set of integers must be unique.
Let k ∈ Zn+1, l ∈ Zn where k = (k1, k2, . . . , kn+1) with k1 < k2 < · · · <
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kn+1 and l = (l1, l2, . . . , ln) with l1 < l2 < · · · < ln. Then

(
χk1 ∧ · · · ∧ χkn+1 , an(ξi) ψl1 ∧ · · · ∧ ψln

)
= (

χk1 ∧ · · · ∧ χkn+1 , ξi ∧ ψl1 ∧ · · · ∧ ψln

)

=


h′
n+1(i, k1, . . . , ǩm, . . . , kn+1) if k1 = l1, k2 = l2, . . . , km = i

km+1 = lm, . . . , kn+1 = ln,

0 otherwise

=
(
δi,kmh

′
n+1(i, k1, . . . , ǩm, . . . , kn+1)

χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ χkn+1 , ψl1 ∧ · · · ∧ ψln

)
,

so if n ∈ Z+ (for n = 0 exchange ψl1 ∧ · · · ∧ ψln with 1 above), then

a∗
n(ξi) χk1 ∧ · · · ∧ χkn+1

= δi,kmh
′
n+1(i, k1, . . . , ǩm, . . . , kn+1)χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ χkn+1 .

With this expression at hand, we are ready to verify the second equation in
the proposition. Assume first that i = j . If δi,km = 1, then

a∗
n(ξi) an(ξi) χk1 ∧ · · · ∧ χkn = 0

and

an−1(ξi) a∗
n−1(ξi) χk1 ∧ · · · ∧ χkn

= an−1(ξi) h
′
n(i, k1, . . . , kn)χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ χkn

= h′
n(i, k1, . . . , kn)

2χk1 ∧ · · · ∧ ξi ∧ · · · ∧ χkn

= χk1 ∧ · · · ∧ χkn,

so a∗
n(ξi) an(ξi)+ an−1(ξi) a∗

n−1(ξi) = id∧n H . The case δi,km = 0 is similar, so
assume that i < j . Then

a∗
n(ξi) an(ξj) χk1 ∧ · · · ∧ χkn

= a∗
n(ξi) h

′
n+1(j, k1, . . . , kn)χk1 ∧ · · · ∧ ξj ∧ · · · ∧ χkn

= δi,kmh
′
n+1(j, k1, . . . , kn)h

′
n+1(i, k1, . . . , ǩm, . . . , j, . . . , kn)

χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ ξj ∧ · · · ∧ χkn
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and

an−1(ξj) a∗
n−1(ξi) χk1 ∧ · · · ∧ χkn

= an−1(ξj) δi,kmh
′
n(i, k1, . . . , ǩm, . . . , kn)χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ χkn

= δi,kmh
′
n(i, k1, . . . , ǩm, . . . , kn)h

′
n(j, k1, . . . , ǩm, . . . , kn)

χk1 ∧ · · · ∧ χ̌km ∧ · · · ∧ ξj ∧ · · · ∧ χkn .

By observing that h′
n+1(j, k1, . . . , kn)h

′
n+1(i, k1, . . . , ǩm, . . . , j, . . . , kn) =

(−1)χS′ (|i−j |)h′
n(i, k1, . . . , ǩm, . . . , kn)h

′
n(j, k1, . . . , ǩm, . . . , kn), we get the se-

cond equation. The case i > j is similar.

3. The antisymmetric Fock space and the CAR-algebra

Let H be an infinite-dimensional, separable Hilbert space. Define the Full
Fock space of H as

EXP(H ) =
⊕
n≥0

H ⊗n

and the bitstream Fock space of H as

F (H ) =
⊕
n≥0

n∧
H ,

so F (H ) can be identified with a closed subspace of EXP(H ). (If the bit-
stream consists only of 1’s, then F (H ) is the antisymmetric Fock space of
H .) Proposition 2.1 gives that(

a∗
n(ξi) an(ξi)

)2 = a∗
n(ξi)

(
id∧n+1 H − a∗

n+1(ξi) an+1(ξi)
)

an(ξi) = a∗
n(ξi) an(ξi),

so a∗
n(ξi) an(ξi) is a projection ( �= 0), hence ‖an(ξi)‖ = 1.

Let η ∈ F (H ), so η = (ηn)n∈Z+ where ηn ∈ ∧n H , and for i ∈ Z, define
the operators

a(ξi), a∗(ξi) : F (H ) → F (H ),

a(ξi) η = (an(ξi) ηn), a∗(ξi) η = (a∗
n(ξi) ηn+1).

Since ‖an(ξi)‖ is independent of n, we get that

‖a(ξi) η‖2 =
∑
n

‖an(ξi) ηn‖2 ≤
∑
n

‖an(ξi)‖2 ‖ηn‖2

≤
∑
n

‖ηn‖2 = ‖η‖2 ,
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so a(ξi) ∈ B
(
F (H )

)
. If η, η′ ∈ F (H ), then

(
a(ξi) η , η

′) =
∑
n

(
an(ξi) ηn , η

′
n+1

) =
∑
n

(
ηn , a∗

n(ξi) η
′
n+1

)
= (

η , a∗(ξi) η
′),

so a(ξi)
∗ = a∗(ξi). Furthermore, a(ξi) satisfies the same commutation-relations

as an(ξi): Since a∗
0(ξi) a0(ξj) = (ξj , ξi) id∧0 H , it follows from Proposition 2.1

that
a(ξi) a(ξj)−(−1)χS′ (|i−j |) a(ξj) a(ξi) = 0

and
a∗(ξi) a(ξj)−(−1)χS′ (|i−j |) a(ξj) a∗(ξi) = (ξj , ξi) idF (H ) .

Define
CAR0(H ) = C∗(a(ξi) : i ∈ Z),

so CAR0(H ) is a C∗-subalgebra of B
(
F (H )

)
.

Remark. If S = 111 · · ·, CAR0(H ) as defined here will equal the usual
CAR-algebra, and in the next section we will see that CAR0(H ) ∼= ⊗∞

1 M2(C)
which justifies the notation. In the Fock representation construction of the
CAR-algebra the canonical map a : H → B

(
F (H )

)
, ξ �→ a(ξ) is an

isometry, so CAR(H ) = C∗(a(ξ) : ξ ∈ H ) = C∗(a(ξi) : i ∈ Z). Hence, if
S = 111 . . ., ‖a(ξ)‖ = ‖ξ‖, but it is easy to see that this need not be the case
when S �= 111 . . ..

4. The AF-algebras A and B

For i ∈ Z let xi = a(ξi) and si = a(ξi)+ a∗(ξi). If i, j ∈ Z, then si is a
self-adjoint operator, and the commutation-relations give that

sisj =
{
(−1)χS(|i−j |)sj si if i �= j ,

idF (H ) if i = j ,

so {si}i∈Z is a family of self-adjoint, unitary operators satisfying sisj =
(−1)χS(|i−j |)sj si .

For notational reasons the Hilbert spaces will from now on have an ortho-
normal basis indexed over N instead of over Z. The results below have cor-
responding proofs for N and Z, and where there are differences they will be
commented on. So for i ∈ N, xi = a(ξi) and si = xi + x∗

i .
For n ∈ N, define

An = C∗(xi : 1 ≤ i ≤ n), A = C∗(xi : i ∈ N)
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and
Bn = C∗(si : 1 ≤ i ≤ n), B = C∗(si : i ∈ N),

so A = CAR0(H ). Observe that A and B are AF-algebras with A = ⋃∞
n=1 An

and B = ⋃∞
n=1 Bn. (If the index set is Z, let An = C∗(xi : 1−n

2 ≤ i ≤ n
2

)
and

A = C∗(xi : i ∈ Z) etc.)
The commutation-relations will now read:

x2
i = 0, xixj = (−1)χS(|i−j |)xj xi (i �= j)

and
x∗
i xi + xix

∗
i = 1, x∗

i xj = (−1)χS(|i−j |)xj x∗
i (i �= j).

Proposition 4.1. If n ∈ N, then An
∼= M2n (C).

Proof. For 1 ≤ i ≤ n let

ui =
∏
j

(xjx
∗
j − x∗

j xj ),

where the product is taken over those j < i which satisfy xixj = −xjxi (if no
such j ’s exist, set ui = 1). Since

(xjx
∗
j − x∗

j xj )
2 = xjx

∗
j xjx

∗
j + x∗

j xjx
∗
j xj

= xj (1 − xjx
∗
j )x

∗
j + x∗

j (1 − x∗
j xj )xj

= 1,

then

(xjx
∗
j − x∗

j xj )(xkx
∗
k − x∗

k xk) =
{
(xkx

∗
k − x∗

k xk)(xjx
∗
j − x∗

j xj ) if j �= k,

1 if j = k.

From this it follows that each ui is a self-adjoint unitary operator and that
uiuj = ujui .

We now use the ui’s to construct n pairwise commuting systems of 2 × 2
matrix units. This construction is standard and yields the result (see e.g. the
discussion following Definition 1.2 in [12] and Lemma 7.16 in [6]).

From this result the following theorem is immediate.

Theorem 4.2. If H is an infinite-dimensional, separable Hilbert space,
then

CAR0(H ) ∼=
∞⊗
1

M2(C).
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5. Description of Bn and B ′
n

By the isomorphism in the proof of Proposition 4.1, Bn ⊂ An is identified with
a subalgebra of M2n (C). By abuse of notation we will also denote this algebra
by Bn, and the elements in M2n (C) corresponding to si an ui (1 ≤ i ≤ n)
by si and ui , respectively. Since Bn is generated by {si}ni=1 and the si’s either
commute or anticommute, it is clear that

Bn = lin {1, si1 · · · sik : 1 ≤ i1 < · · · < ik ≤ n},
hence Bn is a 2n-dimensional subalgebra of M2n (C). In what follows we will
give a closer description of this subalgebra.

Let a, b, c, d ∈ M2(C) be given by

a =
(

1 0
0 1

)
, b =

(
0 1
1 0

)
, c =

( −1 0
0 1

)
, d =

(
0 1

−1 0

)
,

and let (ai)i∈N ⊂ M2(C) be defined by

ai =
{
a if χS(i) = 0,

c if χS(i) = 1.

For n ∈ N the isomorphism in the proof of Proposition 4.1 gives that in
M2n (C) we have that

s1 = b ⊗ a ⊗ · · · ⊗ a ⊗ a · u1 (n − 1 a’s)

s2 = a ⊗ b ⊗ · · · ⊗ a ⊗ a · u2

...

sn = a ⊗ a ⊗ · · · ⊗ a ⊗ b · un ,
where

u1 = a ⊗ a ⊗ a ⊗ · · · ⊗ a ⊗ a

u2 = a1 ⊗ a ⊗ a ⊗ · · · ⊗ a ⊗ a

u3 = a2 ⊗ a1 ⊗ a ⊗ · · · ⊗ a ⊗ a

...

un = an−1 ⊗ an−2 ⊗ an−3 ⊗ · · · ⊗ a1 ⊗ a.

Hence, if 1 ≤ i ≤ n, then si = ai−1 ⊗ ai−2 ⊗ · · · ⊗ a1 ⊗ b ⊗ a ⊗ · · · ⊗ a.

Remark. If 1 ≤ i < j ≤ n, then

sisj = ai−1 ⊗ · · · ⊗ a1 ⊗ b ⊗ a ⊗ · · · ⊗ a ⊗ · · · ⊗ a

· aj−1 ⊗ · · · ⊗ aj−i+1 ⊗ aj−i ⊗ aj−i−1 ⊗ · · · ⊗ b ⊗ · · · ⊗ a

= (−1)χS(|j−i|)sj si,
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because baj−i = (−1)χS(|j−i|)aj−ib and the rest of the terms commute.

If B ′
n denotes the commutant of Bn in M2n (C), define the map κ to be linear

and
κ : Bn → B ′

n, si �→ si,

where si means si “read backwards”, i.e. si = a ⊗ · · · ⊗ a ⊗ b ⊗ a1 ⊗ · · · ⊗
ai−2 ⊗ ai−1.

Let i, j be such that i + j > n + 1, and set k = n − i. Then

sisj = a ⊗ · · · ⊗ a ⊗ b ⊗ a1 ⊗ · · · ⊗ aj−1−k ⊗ · · · ⊗ ai−1

· aj−1 ⊗ · · · ⊗ aj−k ⊗ aj−1−k ⊗ aj−2−k ⊗ · · · ⊗ b ⊗ · · · ⊗ a

= sj si .

Since it is clear that si and sj commute when i+j ≤ n+1, κ really mapsBn into
B ′
n. It is clear that κ is an injective ∗-homomorphism, so dim B ′

n ≥ dim Bn. We
will soon see that dim B ′

n = dim Bn, from which it follows that κ is surjective.

6. The state ω�

Let $ denote the vector 1 ∈ ∧0 H ⊂ F (H ), and for n ∈ N define

Kn = Bn$.

Since {$, si1 · · · sik$ : 1 ≤ i1 < · · · < ik ≤ n} is an orthonormal basis for Kn,
it follows that Kn is a 2n-dimensional subspace of F (H ).

Remark. Kn = An$, because if 1 ≤ i1 < · · · < ik ≤ n and 1 ≤
i ≤ n, then xi1 · · · xik$ = si1 · · · sik$, x∗

i $ = 0, and x∗
i

(
xi1 · · · xik$

) =
±xi1 · · · x̌im · · · xik$ if there exists m ∈ {1, . . . , k} such that i = im, and 0
otherwise.

Lemma 6.1. ∞⋃
n=1

Kn = F (H ).

Proof. Let ε > 0 and η ∈ F (H ), so η = (ηn)n∈Z+ , where ηn ∈ ∧n H .
Then there exists η′ = (η′

n)n∈Z+ ∈ F (H ) and N ∈ Z+ such that ‖η− η′‖ < ε
2

and η′
n = 0 for n > N . Since sk1 · · · skn$ = ξk1 ∧ · · · ∧ ξkn if 1 ≤ k1 <

k2 < · · · < kn (k1 < k2 < · · · < kn if the index set is Z), and these vectors
constitute a basis for

∧n H , then for each i ∈ {0, . . . , N} there exists ni ∈ N
and b(i) ∈ Bni with b

(i)
j = 0 for j �= i such that ‖η′

i − b
(i)
i $‖ < ε

2
√
N+1

.

Then
∑N

i=0 b
(i)$ ∈ Km where m = maxi ni and ‖η′ − ∑N

i=0 b
(i)$‖2 =
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∑N
i=0 ‖η′

i − b
(i)
i $‖2 <

∑N
i=0

ε2

4(N+1) = ε2

4 . Hence ‖η − ∑N
i=0 b

(i)$‖ ≤ ‖η −
η′‖ + ‖η′ − ∑N

i=0 b
(i)$‖ < ε

2 + ε
2 = ε, so η ∈ ⋃∞

n=1 Kn.

Corollary 6.2. $ is cyclic for B (and hence for A).

Proof. B$ = ⋃∞
n=1 Bn$ = F (H ).

Lemma 6.3. If n ∈ N, then $ is separating for Bn on Kn.

Proof. Since $ is cyclic for Bn on Kn, $ is separating for B ′
n. This gives

that the linear map B ′
n → Kn, b �→ b$ is injective, so dim B ′

n = dim B ′
n$.

Hence dim Kn = dim An$ ≥ dim B ′
n$ = dim B ′

n ≥ dim Bn = dim Kn,
where the last inequality follows from that κ is injective. Since Kn is finite
dimensional, this gives that B ′

n$ = Kn, so $ is cyclic for B ′
n on Kn, hence $

is separating for B ′′
n = Bn.

Corollary 6.4. κ is a ∗-isomorphism.

Proof. The only thing left to prove is that κ is surjective, but that follows
from the inequalities in the previous lemma.

Define the state ω$ on A by ω$(x) = (
x $ , $

)
. Recall that by Proposi-

tion 4.1 An
∼= M2n (C), so ω$

∣∣
An

can be regarded as a state on the full matrix
algebra M2n (C).

Proposition 6.5. ω$ is a pure state on A. Moreover, if n ∈ N and Tr is
the usual trace on M2n (C) with Tr (1) = 2n, then ω$

∣∣
An

= φn, where

φn : M2n (C) → C, x �→ Tr

( n⊗
1

(
1 0
0 0

)
x

)
.

Proof. It is enough to show that if n ∈ N, then ω$

∣∣
An

is a pure state on An,

because A = ⋃∞
n=1 An. By the commutation-relations we have

An = lin {1, x∗
js
· · · x∗

j1
xi1 · · · xir : 1 ≤ i1 < i2 < · · · < ir ≤ n and

1 ≤ j1 < j2 < · · · < js ≤ n (either r or s can be 0)}.
We evaluate ω$ on the basisvectors:

ω$(x
∗
js
· · · x∗

j1
xi1 · · · xir ) = (

xi1 · · · xir$ , xj1 · · · xjs$
)

= (
ξi1 ∧ · · · ∧ ξir , ξj1 ∧ · · · ∧ ξjs

)
=

{
1 if i1 = j1, i2 = j2, . . . , ir = js ,

0 otherwise.
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Let φn be defined as above. Since
⊗n

1

( 1 0
0 0

)
is a 1-dimensional projection,

φn is a pure state on M2n (C). We will show that if n ∈ N, then ω$

∣∣
An

= φn,
and to do so we inductively use the systems of matrix units from the proof of
Proposition 4.1:

φ1(x
∗
1x1) = Tr

((
1 0
0 0

)
e
(1)
11

)
= 1, φ1(x

∗
1 ) = Tr

((
1 0
0 0

)
e
(1)
12

)
= 0

and φ1(x1) = Tr

((
1 0
0 0

)
e
(1)
21

)
= 0,

so ω$

∣∣
A1

= φ1. Assume that ω$

∣∣
An−1

= φn−1 for an n ≥ 2. We evaluate
φn on the basisvector x = x∗

js
· · · x∗

j1
xii · · · xir where 1 ≤ i1 < i2 < · · · <

ir ≤ n and 1 ≤ j1 < j2 < · · · < js ≤ n (either r or s can be 0). Assume
first that ir , js �= n. Since x ∈ An−1

∼= M2n−1(C), then x is identified with
x∗
js
· · · x∗

j1
xii · · · xir ⊗ ( 1 0

0 1

) ∈ M2n (C), so

φn(x) = Tr

( n⊗
1

(
1 0
0 0

)
x∗
js
· · · x∗

j1
xii · · · xir ⊗

(
1 0
0 1

))

= Tr

(( n−1⊗
1

(
1 0
0 0

)
x∗
js
· · · x∗

j1
xii · · · xir

)
⊗

(
1 0
0 0

) (
1 0
0 1

))

= Tr

( n−1⊗
1

(
1 0
0 0

)
x∗
js
· · · x∗

j1
xii · · · xir

)
Tr

(
1 0
0 0

)
= φn−1(x).

If ir = js = n, observe that
⊗n

1

( 1 0
0 0

) = ∏n
i=1 x

∗
i xi , so xn

⊗n
1

( 1 0
0 0

)
x∗
n =(∏n−1

i=1 x∗
i xi

)
xnx

∗
nxnx

∗
n = (∏n−1

i=1 x∗
i xi

)
xnx

∗
n = ⊗n−1

1

( 1 0
0 0

) ⊗ ( 0 0
0 1

)
, so

φn(x) = Tr

( n⊗
1

(
1 0
0 0

)
x∗
n · · · x∗

j1
xii · · · xn

)

= Tr

(( n−1⊗
1

(
1 0
0 0

)
⊗

(
0 0
0 1

))
x∗
js−1

· · · x∗
j1
xii · · · xir−1

)

= φn−1(x
∗
js−1

· · · x∗
j1
xii · · · xir−1).

Assume at last that js = n, ir �= n (the case js �= n, ir = n is similar).
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Observe that x∗
n = e

(n)
12 un =

(⊗n−1
1

( 1 0
0 1

) ⊗ ( 0 1
0 0

))
un, so

φn(x) = Tr

( n⊗
1

(
1 0
0 0

)
x∗
nx

∗
js−1

· · · x∗
j1
xii · · · xir

)

= Tr

( n⊗
1

(
1 0
0 0

)( n−1⊗
1

(
1 0
0 1

)
⊗

(
0 1
0 0

))
unx

∗
js−1

· · · x∗
j1
xii · · · xir

)

= Tr

( n−1⊗
1

(
1 0
0 0

)
unx

∗
js−1

· · · x∗
j1
xii · · · xir

)
Tr

(
0 1
0 0

)
= 0

From all this we get that φn(x
∗
js
· · · x∗

j1
xi1 · · · xir ) = ω$(x

∗
js
· · · x∗

j1
xi1 · · · xir ),

so the result follows by induction.

Corollary 6.6. A acts irreducibly on F (H ).

Proof. Since$ ∈ F (H ) is a cyclic unit vector which is such thatω$(x) =(
x $ , $

)
, the triple (idA,F (H ),$) satisfies the conditions in the GNS-con-

struction. Since ω$ is a pure state on A, idA is an irreducible representation,
and the corollary follows.

7. The center of Bn

We start this section with some definitions and explain the notation that will
be used.

A word in Bn is an element of the form w = s
k1
1 s

k2
2 · · · sknn , where the vector

(k1, k2, . . . , kn) ∈ Fn2 . If at least one of the ki’s is 1, the word w is called
non-trivial, and if all the ki’s are 0, we define w to be 1 (the trivial word).
If w occures (e.g. in a computation) where the sign is not important, i.e. we
can replace w by −w without affecting the result, we do so if it is convenient.
If C ⊂ Bn is a family of words, then C is called an independent family (of
words) if none of the words in C can be written as a product (up to a sign)
of the other words in C. Note that if C is an independent family, then 1 ∈ C

implies C = {1}. If C = {wi}mi=1 �= {1} and wi = s
k
(i)
1

1 · · · sk(i)n
n , then C is

an independent family if and only if {(k(i)1 , . . . , k(i)n )}mi=1 is a set of linearly
independent vectors in Fn2 .

If k = (k1, . . . , kn) is a vector in Fn2 , then let k denote the reversed vector
(kn, kn−1, . . . , k1) ∈ Fn2 .

A bitstream S ⊂ N is called mirror-periodic if the sequence
(
χS(|n|))

n∈Z is
periodic. Observe that S is mirror-periodic if and only if there exists m ∈ N
such that χS(j) = χS(|m − j |) ∀j ∈ Z+.
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Lemma 7.1. If n ∈ N, then ω$

∣∣
Bn

= tr
∣∣
Bn

, where tr is the normalized trace
on M2n (C). Morover, if w is a non-trivial word in Bn, then ω$(w) = 0.

Proof. Since Bn is generated by the words it contains (see section 5), it is
enough to check the equality for these elements. It is clear that ω$(1) = tr 1,
so let w = s

k1
1 · · · sknn be a non-trivial word in Bn. Let j be such that kj = 1 and

ki = 0 for i > j . Sincew = s
k1
1 · · · skj−1

j−1 sj = b1⊗b2⊗· · ·⊗bj−1⊗b⊗a⊗· · ·⊗a,
where b1, b2, . . . , bj−1 ∈ M2(C), it follows that

tr w = tr b1 tr b2 · · · tr bj−1 tr b tr a · · · tr a = 0.

From Proposition 6.5 we get that

ω$(w) = Tr

( n⊗
1

(
1 0
0 0

)
b1 ⊗ b2 ⊗ · · · ⊗ bj−1 ⊗ b ⊗ a ⊗ · · · ⊗ a

)
= 0.

The next lemma can be found in [8]. We include the proof for completeness.

Lemma 7.2. Denote by Z(Bn) the center of Bn. Every element in Z(Bn)

can be written as a linear combination of words in Z(Bn).

Proof. Let v ∈ Z(Bn). We may assume that v �= 0, so there exists a family
of words {wi}mi=1 such that v = ∑

i λiwi , where each λi �= 0. Assume there
exists a j such that wj �∈ Z(Bn), i.e. there exists a word w ∈ Bn such that
wwj = −wjw. Then v = w∗vw = ∑

i λiw
∗wiw = ∑

i ±λiwi with minus
for i = j , so λj = −λj , hence λj = 0.

Lemma 7.3. Let Dn(C) denote the subalgebra of Mn(C) consisting of the
diagonal matrices. If n ∈ N, then there exist cn, dn ∈ Z+ such that

Bn
∼= M2dn (C) ⊗ D2cn (C).

Proof. If Z(Bn) = C1, then Bn is isomorphic to a full matrix algebra, so
in this case n must be even since dim Bn = 2n. Hence cn = 0 and dn = n

2 . If
Z(Bn) �= C1, then Lemma 7.2 gives that there exists an independent family of
words, C = {wj }mj=1, generating Z(Bn). For j = 1, . . . , m define

q+
j = 1

2
(1 + λjwj ) and q−

j = 1

2
(1 − λjwj ),

where λj ∈ C equals 1 if wj is self-adjoint and i otherwise (if wj is not self-
adjoint, then w∗

j = −wj ). This gives rise to 2m orthogonal central-projections
of the form q1q2 · · · qm, where each qi is either q+

j or q−
j , so let {pi}2m

i=1 be
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the family consisting of these projections. Since Z(Bn) is a 2m-dimensional
commutative algebra, it follows that the pi’s are the minimal projections in
Z(Bn). Hence, to each pi there exists a corresponding ni ∈ N such that

Bn =
2m⊕
i=1

Mni (C) ⊗ Cµi
⊂ M2n (C),

where µi ∈ N is the multiplicity of the representation of piBn (∼= Mni (C)) in
B(piC2n ) and Cµi

= C1 ⊂ Mµi
(C). The commutant of

⊕2m

i=1 Mni (C) ⊗ Cµi
is⊕2m

i=1 Cni ⊗Mµi
(C), so the fact that Bn is isomorphic to its commutant (Corol-

lary 6.4) gives that
⊗2m

i=1 Cni ⊗Mµi
(C) has dimension 2n, hence

∑2m

i=1 µ
2
i = 2n.

SinceBn contains 1 ∈ M2n (C), we get that
∑2m

i=1 µini = 2n, and by calculating
the dimension ofBn we also get that

∑2m

i=1 n
2
i = 2n. Morover, ifpi is a minimal

projection in Z(Bn), then pi = q1 · · · qm = 1
2 (1 ± λ1w1) . . .

1
2 (1 ± λmwm),

which equals 1
2m 1 plus a linear combination of products of the form

∏
i∈I wi ,

where I ⊂ {1, . . . , m}. Since C is an independent family, Lemma 7.1 im-
plies that tr

∏
i∈I wi = 0 for each I ⊂ {1, . . . , m}, so tr pi = 1

2m . This yields

that the product µini is independent of i, so
∑2m

i=1 µini = 2mµini = 2n.
Thus 2n = ∑2m

i=1 µ
2
i = ∑2m

i=1
22n−2m

n2
i

, so
∑2m

i=1
1
n2
i

= 22m−n. Now the Cauchy-
Schwarz inequality gives us that

22m =
( 2m∑

i=1

ni
1

ni

)2

≤
( 2m∑

i=1

n2
i

)( 2m∑
i=1

1

n2
i

)
= 2n · 22m−n = 22m.

Equality in the Cauchy-Schwarz inequality implies that there exists a constant
c such that (n1, . . . , n2m) = c( 1

n1
, . . . , 1

n2m
), so all the ni’s are equal. It follows

that cn = m and dn = n−m
2 , which concludes the proof.

Remark 1. It follows from the proof of this lemma that if n ∈ N, then there
exists an independent family C = {wi}cni=1 when cn �= 0 and C = {1} when
cn = 0 which generates Z(Bn), and it is clear that any independent family in
Z(Bn) consisting of cn words, generates Z(Bn).

Remark 2. If J : x $ �→ x∗ $, then Jpi J = pi and JBn J = B ′
n, see [2,

Ch. I §5]. From this it follows that µi = ni above.

Remark 3. For a shorter and quite different proof of this result (which also
includes Lemma 7.5) see [3].

Corollary 7.4. If n ∈ N, then n = 2dn + cn.

Proof. 2n = dim Bn = dim(M2dn (C) ⊗ D2cn (C)) = (2dn)2 · 2cn .
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In what follows we will describe the behaviour of the sequence (cn)
∞
n=1 in

order to understand the AF-algebra B = ⋃∞
n=1 Bn.

Lemma 7.5. If n ∈ N, then cn+1 = cn ± 1. Morover cn+1 = cn + 1 ⇐⇒
dn+1 = dn.

Proof. Let n ∈ N. It follows from Lemma 7.3 that dn+1 ≥ dn, so assume
first that dn+1 = dn. Then Corollary 7.4 gives that 2dn+1+cn+1 = 2dn+cn+1,
so cn+1 = cn+1 (this calculation also gives the reverse implication). If dn+1 >

dn, then the same corollary gives that 2 ≤ 2(dn+1−dn) = n+1−cn+1−(n−cn),
so cn+1 ≤ cn−1. From this it follows that cn ≥ 1, so there exists an independent
family of words, C = {wi}cni=1, that generates Z(Bn). Since cn+1 ≤ cn − 1,
there exists j ∈ {1, . . . , cn} such that wj /∈ Z(Bn+1). If wi ∈ C \ Z(Bn+1)

(i �= j ), this means that wi anticommutes with sn+1, and since the same is
true for wj it follows that wjwi ∈ Z(Bn+1). Hence, by replacing the words
wi ∈ C \ Z(Bn+1) (i �= j ) with wjwi , we get that cn+1 ≥ cn − 1. (It is clear
that the family obtained by this replacement is independent.)

Lemma 7.6. cn+1 = cn + 1 ⇐⇒ Z(Bn) ⊂ Z(Bn+1).

Proof. Assume that cn+1 = cn + 1. If cn = 0, the implication is trivial,
so we may assume that cn ≥ 1. Let C = {wi}cni=1 be an independent fam-
ily of words generating Z(Bn), and assume that Z(Bn) �⊂ Z(Bn+1). The
same argument as in the proof of Lemma 7.5 gives that wcn /∈ Z(Bn+1) and
{wi}cn−1

i=1 ⊂ Z(Bn+1) (by modifying and rearranging some of the wi’s if neces-
sary). Now, since cn+1 = cn+1, there must exist two wordsw′, w′′ ∈ Z(Bn+1)

such that {w′, w′′} ∪ {wi}cn−1
i=1 is an independent family of words generating

Z(Bn+1). This, however, is impossible, since then at least one of the words
w′, w′′, w′w′′ does not contain sn+1, i.e. is contained in Z(Bn). This violates
the fact that C generates Z(Bn). The reverse implication is immediate from
Lemma 7.5.

Lemma 7.7. If s
k1
1 s

k2
2 · · · sknn is a word in Bn, then s

k1
1 s

k2
2 · · · sknn ∈ Z(Bn) if

and only if s
kn
1 s

kn−1
2 · · · sk1

n ∈ Z(Bn).

Proof. By symmetry it is enough to show one of the implications. Let
w = s

k1
1 · · · sknn be a word in Z(Bn) and 1 ≤ i ≤ n. Observe that

sis
kn
1 s

kn−1
2 · · · sk1

n =
( n∏
j=1

(−1)χS(|i−j |)kn+1−j

)
s
kn
1 s

kn−1
2 · · · sk1

n si,



276 sigmund vik

so we must show that
∏n

j=1(−1)χS(|i−j |)kn+1−j = 1. Since w ∈ Z(Bn), then

wsn+1−i = sn+1−iw =
( n∏
j=1

(−1)χS(|n+1−i−j |)kj
)
wsn+1−i ,

hence
∏n

j=1(−1)χS(|n+1−i−j |)kj = 1. Now the lemma follows by the substitution
k = n + 1 − j .

The next proposition describes the sequence (cn)
∞
n=1 completely. To make

the notation easier we define B0 = C1, so c0 = 0. Since c1 = 1, Lemma 7.5 is
also valid for n = 0.

Proposition 7.8. Let S ⊂ N be a given bitstream. Then there exists a
strictly increasing sequence (nr)r∈I of even integers, where I = {1, 2, . . . , N}
(N ∈ N and set nN+1 = ∞) or I = N, such that n1 = 0 and if m = nr+1−nr

2 ,
then

cnr+j =
{
j if 0 ≤ j < m,

2m − j if m ≤ j ≤ 2m.

Furthermore, S is mirror-periodic if and only if I is finite.

Proof. It is enough to show that if n ∈ Z+ is such that cn = 0, then cn+j

will behave like in the proposition for all j ∈ N until cn+j = 0. The result
then follows by induction. Let n ∈ N be such that cn = 0. By Lemma 7.5
there exists k = (k1, . . . , kn+1) ∈ Fn+1

2 such that the word w1 = s
k1
1 · · · skn+1

n+1

generates Z(Bn+1). Lemma 7.7 implies that k = k, and if k1 = kn+1 = 0, then
w1 ∈ Z(Bn), so k1 = 1. By Lemma 7.5 again, there exists m ∈ N ∪ {∞} such
that cn+j = j for 1 ≤ j ≤ m and cn+m+1 = m − 1. For 1 ≤ i ≤ m let

wi = s
k1
i · · · skn+1

n+i .

We claim that {wi}ji=1 generates Z(Bn+j ) for 1 ≤ j ≤ m, so let 1 ≤ r <

m be such that {wi}ri=1 generates Z(Bn+r ). Since cn+r+1 = r + 1, Lemma
7.6 gives that Z(Bn+r ) ⊂ Z(Bn+r+1), so w1 = s

k1
1 · · · skn+1

n+1 s
0
n+2· · · s0

n+r+1 ∈
Z(Bn+r+1). Lemma 7.7 then imply that skn+1

r+1 · · · sk1
n+r+1 ∈ Z(Bn+r+1), hence,

since k = k, wr+1 ∈ Z(Bn+r+1). Because {wi}r+1
i=1 is an independent family

of r + 1 words in Z(Bn+r+1), it generates Z(Bn+r+1), and the claim follows
by induction. If m = 1 (which implies cn+m+1 = 0) or m = ∞, we are
done, so assume 1 < m < ∞. Since [wi, sn+m+1] = [wi−1, sn+m] = 0
for 2 ≤ i ≤ m, it follows that {wi}mi=2 generates Z(Bn+m+1). Hence w1 /∈
Z(Bn+m+1), i.e. w1 anticommutes with sn+m+1, so if j ∈ {1, . . . , m}, then wj

anticommutes with sn+m+j . From this we get that w1, . . . , wj /∈ Z(Bn+m+j ).
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Because [wi, sn+m+j ] = [wi−j , sn+m] = 0 for j < i ≤ m, it follows that
{wi}mj+1 ⊂ Z(Bn+m+j ) (by induction, where {wi}mm+1 = C1). Lemma 7.6 and
7.5 now implies that {wi}mj+1 generates Z(Bn+m+j ).

Assume S is mirror-periodic with period p. If j ∈ N, then

s1sp+1sj = (−1)χS(|p+1−j |)(−1)χS(|1−j |)sj s1sp+1

= (−1)χS(|1−j |)(−1)χS(|1−j |)sj s1sp+1

= sj s1sp+1,

so s1sp+1 ∈ Z(Bn) for n ≥ p + 1, hence I is finite.
Assume I is finite. By the first part of the proposition there exists a word

w1 = s
k1
1 · · · sknn , where n is odd, k = (k1, . . . , kn) satisfies k = k, and k1 = 1,

such that w1 ∈ Z(Bn+j ) for all j ∈ Z+. If n = 1, w1 = s1, so in this case
S consists of only 0’s. Since this S is mirror-periodic we may assume that
n > 1. For j ∈ Z define lj = (

χS(|j |), χS(|j + 1|), . . . , χS(|j + n − 1|))∈ Fn2
and l′j ∈ Fn−1

2 as the vector obtained from lj by deleting its last entry. Let
A ∈ Mn−1(F2) be given by

A =




0 1 0 · · · 0
0 0 1 0

...
. . .

0 0 0 1
k1 k2 k3 · · · kn−1


 ,

and let j ≥ 1 − n. By calculating the sign in sj+nw1 = ±w1sj+n and using
that w1 ∈ Z(Bn+j ) for all j ∈ Z+, we get that

∑n
i=1 χS(|j + n − i|)ki = 0.

Since k = k, this yields that 0 = ∑n
i=1 χS(|j − 1 + n + 1 − i|)kn+1−i =∑n

i=1 χS(|j − 1 + i|)ki = lj · k for all j ≥ 1 − n (where the middle equality
follows by substituting n + 1 − i). If j < 1 − n, then lj · k = lj · k =
l−j−(n−1) · k = l1−n−j · k = 0, because k = k, so lj · k = 0 for all j ∈ Z.
Since kn = k1 = 1 this implies that l′j+1 = Al′j for all j ∈ Z, and since A is
invertible over F2, there exists m ∈ N such that Am = 1. From this it follows
that l′j+m = l′j for all j ∈ Z, so S is mirror-periodic.

Remark 1. The calculation used to show that S is mirror-periodic implies
that I is finite can also be found in [4], and the proof of the reverse implication
is due to [10].

Remark 2. If Bn = C∗(si : 1−n
2 ≤ i ≤ n

2 ), the proof of Proposition 7.8 is

the same, but we must exchange {wi}ji=1 with {sk1
− n

2 +i
· · · skn+1

n
2 +i

} 1−j

2 ≤i≤ j

2
and so

on.
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Remark 3. We see from the proof of Proposition 7.8 that for a given
sequence (nr)r∈I ⊂ N, where I = {1, 2, . . . , N} or I = N which satisfies
n1 = 0, nr even, and nr < nr+1, there exists a bitstream S ⊂ N giving rise to
this sequence. This is Theorem 6.6. in [9].

Theorem 7.9. Let S ⊂ N be a bitstream. Then there exists a family of self-
adjoint, unitary operators, {sj }j∈Z, such that sisj = (−1)χS(|i−j |)sj si , and if
B = C∗(si : i ∈ Z), then

B ∼=
{
M2n (C) ⊗ ⊗∞

1 D2(C) if S is mirror-periodic,⊗∞
1 M2(C) if S is not mirror-periodic.

Proof. Let I ⊂ N be the index set given by Proposition 7.8. If I =
{1, . . . , N}, there exists n ∈ N such that cn+j = j for all j ∈ Z+, so
dn+j = dn for all j ∈ Z+ by Lemma 7.5. Lemma 7.3 now implies that
B ∼= M2dn (C)⊗⊗∞

1 D2(C). If I = N, Lemma 7.3 and Proposition 7.8 implies
that Bn

∼= M2dn (C) for infinitly many n’s, so B ∼= ⊗∞
1 M2(C).
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