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ON WEIGHTED MULTIDIMENSIONAL EMBEDDINGS
FOR MONOTONE FUNCTIONS

SORINA BARZA, LARS-ERIK PERSSON and VLADIMIR D. STEPANOV∗

Abstract

We characterize the inequality(∫
RN+

f qu

)1/q

≤ C

(∫
RN+

f pv

)1/p

, 0 < q, p < ∞,

for monotone functions f ≥ 0 and nonnegative weights u and v. The case q < p is new and the
case 0 < p ≤ q < ∞ is extended to a modular inequality with N-functions. A remarkable fact
concerning the calculation of C is pointed out.

1. Introduction

Let RN+ := {(x1, . . . , xN); xi ≥ 0, i = 1, 2, . . . , N} and R+ := R1+. Assume
that f : RN+ → R+ is monotone which means that it is monotone with respect
to each variable. We denote f ↓, when f is decreasing (=nonincreasing) and
f ↑ when f is increasing (=nondecreasing).

Given 0 < p, q < ∞ and the weights u ≥ 0 and v ≥ 0 we consider the
inequality

(1)

(∫
RN+
f qu

)1/q

≤ C

( ∫
RN+
f pv

)1/p

for all f ↓ or f ↑.
In the one dimensional case the inequality (1) was characterized in ([4],

Proposition 1) for both alternative cases 0 < p ≤ q < ∞ and 0 < q < p < ∞
as follows:

(a) If N = 1, 0 < p ≤ q < ∞, then (1) is valid for all f ↓ if and only if

(2) A0 := sup
t>0

(∫ t

0
u

)1/q (∫ t

0
v

)−1/p

< ∞

and the constant C = A0 is sharp.

∗ Partially supported by the Swedish Institute grant 97-1331, by the INTAS project 94-881 and
by the RFBR grant 97-01-00604.

Received May 12, 1998



304 sorina barza, lars-erik persson and vladimir d. stepanov

(b) If N = 1, 0 < q < p < ∞, 1/r = 1/q − 1/p, then (1) is true for all
f ↓ if and only if

(3) B0 :=
(∫ ∞

0

(∫ t

0
u

)r/p (∫ t

0
v

)−r/p

u(t) dt

)1/r

< ∞.

Moreover, (
q2

pr

)1/p

B0 ≤ C ≤
(
r

q

)1/r

B0

and

(4) Br
0 = q

r

(∫ ∞
0 u

)r/q
(∫ ∞

0 v
)r/p + q

p

∫ ∞

0

(∫ t

0
u

)r/q (∫ t

0
v

)−r/q

v(t) dt.

(c) The same characterizations are valid, when f ↑, with the only replace-
ment of the integrals over [0, t] by the integrals over [t,∞].

Since the one dimensional inequality (1) expresses the embedding of clas-
sical Lorentz spaces, the further generalizations and references in this dir-
ections can be found in [2]. The multidimensional case was treated in ([1],
Theorem 2.2), where, in particular the inequality (1) was characterized in the
case 0 < p ≤ q < ∞ and the sharp value of the constant C was given as

(5) C = AN := sup
D∈Dd

(∫
D
u
)1/q(∫

D
v
)1/p

and supremum is taken over the set Dd of all “decreasing” domains. Moreover
it was shown ([1], Theorem 2.5) that if u(x) and v(x) are product weights, i.e.,
if

(6) u(x) = u1(x1) . . . uN(xN), v(x) = v1(x1) . . . vN(xN),

then the constant C can be calculated in the following way:

(7) C = A
(1)
N := sup

ai>0

(∫ a1

0 . . .
∫ aN

0 u
)1/q(∫ a1

0 . . .
∫ aN

0 v
)1/p .

It was also pointed out in [1], Example 3.1, that if u(x) and v(x) are not
product weights, then the equality AN = A

(1)
N is not true in general. In fact,

in this paper we even prove the remarkable fact that theconstants AN and A(1)
N

are not comparable in general (for N ≥ 2).
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Section 2 of the present paper is devoted to the modular inequality of the
form

(8) �−1
2

(∫
RN+
�2 (ω(x)f (x)) u(x) dx

)
≤ �−1

1

(∫
RN+
�1 (Cf (x)) v(x) dx

)
,

where �1 and �2 are N-functions [3] such that

(9)
∑
n

�2 ◦�−1
1 (an) ≤ K�2 ◦�−1

1

(∑
n

an

)

for all an ≥ 0 with a constant K ≥ 1 independent on {an}.
In Section 3 we consider the particular case of (1), when N = 2, 0 < p ≤

q < ∞, u(x, y) = u(xy), v(x, y) = v(xy) and find an explicit criterion for
this case. One important consequence of this result is that there is no uniform
constant c > 0 such that cA(1)

N ≥ AN , i.e., AN and A(1)
N are not comparable in

general.
The case 0 < q < p < ∞ of (1) is characterized in Section 4.

Conventions and notations. Products and quotients of the forms 0 ·∞,
∞
∞ , 0

0 are taken to be 0. Z stands for the set of all integers and χE denotes the
characteristic function of a set E.

Acknowledgment. The third named author wishes to thank all colleagues
at the department of Mathematics at Luleå University of Technology for hos-
pitality and interesting discussions during the research stay March-April 1998.

2. A modular integral inequality

Let 0 ≤ h(x) ↓ and t > 0. Denote

Dh,t := {x ∈ RN
+; h(x) > t},

and
Dd :=

⋃
0≤h↓

⋃
t>0

Dh,t .

The set Dd consists of all “decreasing” domains Dh,t . In particular, χDh,t
is

decreasing in each variable.
Let � : R+ → R+ be a nonnegative, convex function such that

lim
x→0

�(x)

x
= 0, lim

x→∞
�(x)

x
= ∞.
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Following [3] we call � an N-function. In particular,

(10) �(x) ≤ 1

a
�(ax) for all a ≥ 1, x > 0.

Theorem 2.1. Let �1, �2 be two N-functions satisfying (9). Given weight
functions ω(x) ≥ 0, u(x) ≥ 0, v(x) ≥ 0 the inequality (8) holds for all
0 ≤ f ↓ if and only if there exists a constant A = A(�1,�2, u, v, ω) such
that, for all ε > 0 and Dh,t ∈ Dd

(11) �−1
2

(∫
Dh,t

�2 (εω(x)) u(x) dx

)
≤ �−1

1

(
�1 (Aε)

∫
Dh,t

v(x) dx

)
.

Proof. The necessity follows, if we replace f in (8) by f = εχDh,t
.

For sufficiency we define for a fixed f ↓
"n := {x ∈ RN

+; 2n < f (x) ≤ 2n+1}, n ∈ Z,

Dn := {x ∈ RN
+; f (x) > 2n},

and note that

Dn ⊃ Dn+1, Dn =
⋃
k≥n

"k, RN
+ =

⋃
n

"n.

Obviously, "n

⋂
"k = ∅ for n �= k. We have, using (10)∫

RN+
�2 (ω(x)f (x)) u(x) dx ≤ 1

K

∫
RN+
�2

(
Kω(x)f (x)

)
u(x) dx

= 1

K

∑
n

∫
"n

�2
(
Kω(x)f (x)

)
u(x) dx

≤ 1

K

∑
n

∫
"n

�2
(
2n+1Kω(x)

)
u(x) dx

≤ 1

K

∑
n

∫
Dn

�2
(
2n+1Kω(x)

)
u(x) dx

[applying (11) with ε = 2n+1K]

≤ 1

K

∑
n

�2 ◦�−1
1

(
�1

(
AK2n+1

) ∫
Dn

v

)
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[applying (9)]
≤ �2 ◦�−1

1

(∑
n

�1
(
AK2n+1

) ∑
k≥n

∫
"k

v

)

= �2 ◦�−1
1

(∑
k

(∫
"k

v

) ∑
n≤k

�1
(
AK2n+1

))

[using the convexity of �1]

≤ �2 ◦�−1
1

(∑
k

(∫
"k

v

)
�1

(
4AK2k

))

≤ �2 ◦�−1
1

(∑
k

∫
"k

�1
(
4AKf (x)

)
v(x) dx

)

= �2 ◦�−1
1

(∫
RN+
�1

(
4AKf (x)

)
v(x) dx

)
.

Thus, the least possible constant C in (8) satisfies

A ≤ C ≤ 4AK.

Theorem 2.1 is proved.

3. Explicit criteria for some cases

As we mentioned in the Introduction in the case of product weights (see (6))
the least possible constant C in (1) satisfies (7). The natural and important
question is whether the constants AN (5) and A

(1)
N (7) are comparable in the

general case. Clearly, A(1)
N ≤ AN , but the converse inequality AN ≤ cA

(1)
N

with a constant c independent on weights was so far uncertain. Below we give
a negative answer to this question with the help of the following result:

Theorem 3.1. Let 0 < p ≤ q < ∞ and u(s) ≥ 0, v(s) ≥ 0 be two
measurable functions on R+ such that U(t) := ∫ t

0 u < ∞, V (t) := ∫ t

0 v < ∞
for all t > 0.

Then the inequality

(12)

(∫
R2+
f q(x, y)u(xy) dx dy

)1/q

≤ C

(∫
R2+
f p(x, y)v(xy) dx dy

)1/p

holds for all f (x, y) ≥ 0 decreasing in x and y with a finite constant C > 0
independent on f if and only if

(13) A = Ap,q := sup
t>0

(
U(t)

V (t)

)1/q (∫ t

0
V (x)

dx

x

)1/q−1/p

< ∞.
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Moreover,

(14) C = A , if p = q

and

(15) 2−1/pA ≤ C ≤
(
p

q

)1/q

A , if p < q

Proof. We know from (5) that C = I , where

(16) I = sup
t>0,h↓

Ih(t) := sup
t>0,h↓

(∫ t

0 dx
∫ h(x)

0 u(xy) dy
)1/q

(∫ t

0 dx
∫ h(x)

0 v(xy) dy
)1/p

and thus, by changing variables, we find that

(17) Ih(t) =
(∫ t

0 U
(
xh(x)

)
dx
x

)1/q

(∫ t

0 V
(
xh(x)

)
dx
x

)1/p .

We begin with the upper bound. By using (13) we obtain

∫ t

0
U

(
xh(x)

) dx
x

≤ A q

∫ t

0

(∫ xh(x)

0
V (s)

ds

s

)q/p−1

V
(
xh(x)

) dx
x

[changing the variables: s = h(x)ξ ]

= A q

∫ t

0

(∫ x

0
V

(
ξh(x)

) dξ
ξ

)q/p−1

V
(
xh(x)

) dx
x

[h(x) ≤ h(ξ) if ξ ∈ (0, x)]

≤ A q

∫ t

0

(∫ x

0
V

(
ξh(ξ)

) dξ
ξ

)q/p−1

V
(
xh(x)

)dx
x

= p

q
A q

(∫ t

0
V

(
ξh(ξ)

) dξ
ξ

)q/p

.

This implies that

Ih(t) ≤
(
p

q

)1/q

A
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for all t > 0 and h ↓. Thus, (16) brings the upper bound (15) and, in particular,
C ≤ A when p = q.

For the lower bound let 0 < δ < t < ∞ and hδ(s) be defined as follows

hδ(s) =




1 if 0 ≤ s < δ.

δ

s
if δ ≤ s < t .

0 if s ≥ t .

Then, by using (17), we find in the case p < q that

(18) I
q

δ (t) := I
q

hδ
(t) =

∫ δ

0 U(x)
dx
x

+ U(δ) log t
δ(∫ δ

0 V (x)
dx
x

+ V (δ) log t
δ

)q/p .

Since log t
δ

takes all the values of (0,∞), when t > δ, we can choose such a
tδ so that

log
tδ

δ
= 1

V (δ)

∫ δ

0
V (x)

dx

x
.

With this tδ (18) gives

I
q

δ (tδ) =
∫ δ

0 U(x)
dx
x

+ U(δ)

V (δ)

∫ δ

0 V (x)
dx
x

2
q/p

(∫ δ

0 V (x)
dx
x

)q/p ≥ 2−q/p U(δ)

V (δ)

(∫ δ

0
V (x)

dx

x

)1−q/p

.

Since δ > 0 is arbitrary this implies that

C ≥ 2−1/pA , p < q.

In the case p = q we find from (18), that

I
p

δ (t) =
∫ δ

0 U(x)
dx
x

+ U(δ) log t
δ∫ δ

0 V (x)
dx
x

+ V (δ) log t
δ

and observe that the right hand side tends to U(δ)/V (δ), when t → ∞, so
that

C ≥ A , p = q

and the proof is finished.
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Now, let I denote the constant given by (7) when N = 2 and u(x, y) =
u(xy), v(x, y) = v(xy). Thus,

I := sup
0<a, b<∞

(∫ a

0

∫ b

0 u(xy) dx dy
)1/q

(∫ a

0

∫ b

0 v(xy) dx dy
)1/p .

Moreover by using (17) with h(x) ≡ b and changing variable we obtain

I := sup
t>0

(∫ t

0 U(x)
dx
x

)1/q

(∫ t

0 V (x)
dx
x

)1/p .

Obviously, Theorem 3.1 yields

I ≤ I ≤ (p/q)1/qA

and since I and A are comparable because of (14) and (15) the question is
whether there exists a constant c > 0 independent on u and v such that

(19) A ≤ cI .

Applying the l’Hôspital test we note, that

lim
t→0

∫ t

0 U(x)
dx
x(∫ t

0 V (x)
dx
x

)q/p = p

q
lim
t→0

U(t)

V (t)

(∫ t

0
V (x)

dx

x

)1−q/p

and a similar equality is valid for the limits at infinity. Since the functions
involved are continuous, we conclude, that A and I are comparable in a
sense, that if I < ∞, then A < ∞. However, the estimate (19) is no longer
uniform, which can be seen from the following example:

Example 3.2. Let 0 < ε < 1 and let Vε(t) and U0(t) be defined by

(20) U0(t) = t if 0 < t < ∞
and

(21) Vε(t) =
{
t ε if 0 < t ≤ 1,

t1/ε if t > 1.

Then
A p
p,p = sup

t>0

U0(t)

Vε(t)
= 1.
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We have ∫ t

0
U0(x)

dx

x
= t, t > 0

and ∫ t

0
Vε(x)

dx

x
=

{ 1
ε
tε if 0 < t ≤ 1,

1
ε

+ ε(t1/ε − 1) if t > 1.

Thus,

I p
ε (t) :=

∫ t

0 U0(x)
dx
x∫ t

0 Vε(x)
dx
x

=



εt1−ε if 0 < t ≤ 1

t
1
ε

+ ε(t1/ε − 1)
if t > 1

and

I p
ε := sup

t>0
I p
ε (t) = ε

1 + ε

(
1 + ε

ε

)ε

→ 0, when ε → 0.

Consequently, there exists no constant c > 0, independent on u and v

such that, in general, the inequality (19) is true, i.e., so that A ≤ cI . In
particular, this means that the constants A(1)

N and AN from the introduction are
not equivalent in general.

4. The case 0 < q < p < ∞
Throughout this section we let h(x) ≥ 0, h �= 0 a.e., denote a decreasing
function on RN+ and t > 0 and use the following notations:

Dh,t := {x ∈ RN
+;h(x) > t}

and for an increasing sequence {tk} ⊂ R+ we set

Dk = Dh,k := {x ∈ RN
+;h(x) > tk}, k ∈ Z.

Obviously, Dk ⊃ Dk+1 and we define

"k = "h,k := Dk \Dk+1.

Hence, "k

⋂
"n = ∅, k �= n and RN+ = ⋃

k "k .
Let 0 < q < p < ∞ and r ∈ R+ be determined from the equation

1/r = 1/q − 1/p.
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If u(x) ≥ 0 and v(x) ≥ 0 are measurable functions on RN+ we define the
following quantities:

(22) Br := sup
0≤h↓

∫ ∞

0

(∫
Dh,t

v

)−r/p

d

(
−

(∫
Dh,t

u

)r/q)
,

and

(23) Br := sup
0≤h↓

sup
{tk}↑

∑
k

(∫
"k

u

)r/q (∫
Dk

v

)−r/p

.

Theorem 4.1. Let 0 < q < p < ∞.
(i) The inequality (1) is valid for all decreasing functions with a finite

constant C > 0 independent of f if and only if B < ∞. Moreover,

(24) B ≤ C ≤ 41/qB.

(ii) The following inequality is true:

(25) B ≤ B ≤ 21/q(2r/q + 2r/p)1/rB.

(iii) The following representation takes place:

(26) Br :=
(∫

RN+
u
)r/q

(∫
RN+
v
)r/p + sup

0≤h↓

∫ ∞

0

(∫
Dh,t

u

)r/q

d

((∫
Dh,t

v

)−r/p)
.

Proof. For a fixed 0 ≤ h ↓ and an increasing sequence {tk} we define the
function fh(x) by

fh(x) =
∑
k

(∑
n≤k

(∫
"n

u

)r/q (∫
Dn

v

)−r/q)1/p

χ"k
(x).

Then fh(x) ≥ 0 is a decreasing function and

∫
RN+
f
p

h v =
∑
k

(∑
n≤k

(∫
"n

u

)r/q (∫
Dn

v

)−r/q) ∫
"k

v

[changing the order of sums]

=
∑
n

(∫
"n

u

)r/q (∫
Dn

v

)−r/q ∑
k≥n

∫
"k

v
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[using
∑

k≥n
∫
"k
v = ∫

Dn
v, −r/q + 1 = −r/p]

(27) =
∑
n

(∫
"n

u

)r/q (∫
Dn

v

)−r/p

:= Br
h,{tk}.

Suppose now that (1) is valid with a finite constant C > 0, and assume
temporarily that B ∈ (0,∞). Then, for any h ↓ and {tk} such that Br

h,{tk} > 0,
we obtain by using the representation formula (27),

Cq
(
Bh,{tk}

)qr/p = Cq

(∫
RN+
f
p

h v

)q/p

≥
∫

RN+
f
q

h u

=
∑
k

∫
"k

u

(∑
n≤k

(∫
"n

u

)r/q (∫
Dn

v

)−r/q)q/p

[reducing the interior sum to one term with k = n]

≥
∑
k

(∫
"k

u

)r/q (∫
Dn

v

)−r/p

= Br
h,{tk}.

Hence,
C ≥ Bh,{tk}

and the lower bound (24) follows. The temporary assumption B ∈ (0,∞) can
be removed in the usual way (see [4], p. 178).

Next we consider the upper bound. Given f ↓ we define

U(t) =
∫
Df,t

u; V (t) =
∫
Df,t

v.

Obviously, U(t) and V (t) are decreasing functions.
Now we construct a special increasing sequence {τk} ⊂ R+ as follows: Put

τ0 = 1,

τk+1 = inf

{
t : min

(
V (τk)

V (t)
,
U(τk)

U(t)

)
= 2

}
, k ≥ 0,

τk−1 = sup

{
t : min

(
V (t)

V (τk)
,
U(t)

U(τk)

)
= 2

}
, k ≤ 0,
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and let

(28)

Z1 =
{
k ∈ Z : V (τk+1) = 1

2
V (τk)

}
,

Z2 =
{
k ∈ Z : U(τk+1) = 1

2
U(τk)

}
.

We assume without a loss of generality that

(29) Z = Z1

⋃
Z2

and note that Z1
⋂

Z2 = ∅. Now, we write

I :=
∫

RN+
f qu =

∑
k

∫
"k−1

f qu

where
"k := "f,k = Df,k \Df,k+1 := Dk \Dk+1.

Since
τk < f (x) ≤ τk+1, x ∈ "k,

we find

I ≤
∑
k

τ
q

k

∫
"k−1

u =
∑
k

τ
q

k

(∫
"k−1

u
)q/p

(∑
n≤k

(∫
"n−1

u
)r/p

V −r/p(τn)
)q/r

·
(∫

"k−1

u

)1−q/p(∑
n≤k

(∫
"n−1

u

)r/p

V −r/p(τn)

)q/r

[applying Hölder’s inequality with p

q
and r

q
]

≤

∑

k

τ
p

k

∫
"k−1

u(∑
n≤k

(∫
"n−1

u
)r/p

V −r/p(τn)
)p/r




q/p

·
(∑

k

(∫
"k−1

u

) ∑
n≤k

(∫
"k−1

u

)r/q

V −r/p(τn)

)q/r

:= I
q/p

1 I
q/r

2 .

We have

∑
n≤k

(∫
"n−1

u

)r/p

V −r/p(τn) ≥
(∫

"k−1

u

)r/p

V −r/p(τn).
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Thus,
I1 ≤

∑
k

τ
p

k V (τk).

We also note that the sequence {τk} is constructed in such a way that

(30) V (τk) ≥ 2V (τk+1), U(τk) ≥ 2U(τk+1) for all k ∈ Z.

Therefore, in particular,

V (τk) =
∫
"k

v + V (τk+1) ≥ 2V (τk+1).

Hence,

V (τk+1) ≤
∫
"k

v

and, consequently,

(31) V (τk) ≤ 2
∫
"k

v.

This implies that

I1 ≤ 2
∑
k

τ
p

k

∫
"k

v ≤ 2
∑
k

∫
"k

f pv ≤ 2
∫

RN+
f pv.

Now we return to the estimate of I2. Write

I2 =
∑
n

(∫
"n−1

u

)r/p

V −r/p(τn)
∑
k≥n

∫
"k−1

u

=
∑
n

(∫
"n−1

u

)r/p

V −r/p(τn)U(τn−1) := I2,1 + I2,2,

where, using (29), we put

I2,1 =
∑

n:n−1∈Z1

(∫
"n−1

u

)r/p

V −r/p(τn)U(τn−1),

and

I2,2 =
∑

n:n−1∈Z2

(∫
"n−1

u

)r/p

V −r/p(τn)U(τn−1).
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Similar to the derivation of (31) we obtain that

(32) U(τk) ≤ 2
∫
"k

u.

Hence, by using (28) and (32), we find that

I2,1 ≤ 2
∑

n:n−1∈Z1

(∫
"n−1

u

)r/q (
1

2
V (τn−1)

)−r/p

≤ 21+r/p
∑
n

(∫
"n

u

)r/q

V −r/p(τn) ≤ 21+r/pBr .

For the second term we use again (28) and (32). We have

U(τn−1) = 2U(τn), n− 1 ∈ Z2,∫
"n−1

u = U(τn−1)− U(τn) = U(τn) ≤ 2
∫
"n

u.

Thus,

I2,2 ≤ 21+r/p
∑

n:n−1∈Z2

(∫
"n

u

)r/q

V −r/p(τn) ≤ 21+r/pBr .

Summarizing the above estimates we obtain the upper bound(∫
RN+
f qu

)1/q

≤ 41/qB

(∫
RN+
f pv

)1/p

and the part (i) of the Theorem 4.1 is proved.
For the proof of the lower bound (25) we fix 0 ≤ h(x) ↓ and define

"k,t = {x : t < h(x) ≤ tk+1}.
Then(∫

"k

u

)r/q

=
∫ tk+1

tk

d

(
−

(∫
"k,t

u

)r/q)
= r

q

∫ tk+1

tk

(∫
"k,t

u

)r/p

d

(
−

∫
"k,t

u

)
.

Since∫
"k,t

u ≤ U(t); d
(

−
∫
"k,t

u

)
= d

(
−U(t)+

∫
Dk+1

u

)
= d

(−U(t)
)
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we obtain(∫
"k

u

)r/q

≤ r

q

∫ tk+1

tk

Ur/p(t) d
(−U(t)

) =
∫ tk+1

tk

d
(−Ur/q(t)

)
.

Applying this estimate and that

(∫
Dk

v

)−r/p

= V −r/p(tk) ≤ V −r/p(t), t ∈ [tk, tk+1],

we find

∑
k

(∫
"k

u

)r/q (∫
Dk

v

)−r/p

≤
∑
k

∫ tk+1

tk

V −r/p(t) d
(−Ur/q(t)

)

≤
∫ ∞

0
V −r/p(t) d

(−Ur/q(t)
) ≤ Br.

Thus,
B ≤ B.

For the proof of the upper bound (25) we observe that for 0 ≤ h(x) ↓ and
an increasing sequence {tk} ⊂ R+ we have

Br
h :=

∫ ∞

0
V −r/p(t) d

(−Ur/q(t)
) =

∑
k

∫ tk+1

tk

V −r/p(t) d
(−Ur/q(t)

)

≤
∑
k

V −r/p(tk+1)U
r/q(tk) := I .

Now suppose that {tk} is taken in the same way as the sequence {τk} was
taken in the proof of part (i), that is tk = τk , k ∈ Z. Then

I =
∑
k∈Z1

+
∑
k∈Z2

:= I1 + I2.

Therefore, by using (30), (31) and (32), we find that

I1 ≤ 2r/q+r/p
∑
k∈Z1

V −r/p(τk)

(∫
"k

u

)r/q

,

I2 ≤ 22r/q
∑
k∈Z2

V −r/p(τk+1)

(∫
"k+1

u

)r/q

.
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Thus,

I ≤ 2r/q(2r/q+r/p)
∑
k∈Z

V −r/p(τk)

(∫
"k

u

)r/q

≤ 2r/q(2r/q+r/p)Br .

This implies that
B ≤ 21/q(2r/q+r/p)1/rB

and, hence, the upper bound (25) is proved.
For the proof of part (iii) we suppose first that B < ∞. Then by putting,

for a fixed 0 ≤ h(x) ↓,

V (t) =
∫
Dh,t

v, U(t) =
∫
Dh,t

u,

we see that

∞ > Br ≥
∫ ∞

τ

V −r/q(t) d
(−Ur/q(t)

) → 0, τ → ∞.

Hence,∫ ∞

τ

V −r/p(t) d
(−Ur/q(t)

) ≥ V −r/q(τ )Ur/q(τ ) → 0, τ → ∞.

This implies, by integration by parts, that∫ ∞

0
V −r/p(t) d

(−Ur/q(t)
) = Ur/q(0)

V r/p(0)
+

∫ ∞

0
Ur/q(t) dV −r/p(t)

and the inequality

(33) ∞ > Br ≥
(∫

RN+
u
)r/q

(∫
RN+
v
)r/p + sup

0≤h

∫ ∞

0

(∫
Dh,t

u

)r/q

d

(∫
Dh,t

v

)−r/p

follows.
Now suppose that the right hand side of (26) is finite. Then, for a fixed h ↓,

integration by parts gives∫ ∞

0
Ur/q(t) dV −r/p(t) ≥ −Ur/q(0)

V r/p(0)
+

∫ ∞

0
V −r/p(t) d

(−Ur/q(t)
)

and we obtain the reversed inequality to (33). Thus, also (26) is proved and
the proof is complete.

Example 4.2. Let v = u ∈ L1(RN+). Then Br = r
q

∫
RN+
v.
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