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CARTAN SUBALGEBRAS AND BIMODULE
DECOMPOSITIONS OF II1 FACTORS

SORIN POPA and DIMITRI SHLYAKHTENKO

Abstract
Let A ⊂ M be a MASA in a II1 factor M . We describe the von Neumann subalgebra of M
generated by A and its normalizer N (A) as the set Nw

q (A) consisting of those elements m ∈ M

for which the bimodule AmA is discrete. We prove that two MASAs A and B are conjugate by
a unitary u ∈ Nw

q (A) iff A is discrete over B and B is discrete over A in the sense defined by
Feldman and Moore [5]. As a consequence, we show that A is a Cartan subalgebra of M iff for
any MASA B ⊂ M , B = uAu∗ for some u ∈ M exactly when A is discrete over B and B is
discrete over A.

1. Introduction

Let M be a type II1 von Neumann algebra with a trace τ . If A ⊂ M is a
maximal abelian subalgebra (MASA), then A is called a Cartan subalgebra
(see [2], [6]), if its normalizer N (A) = {u ∈ U(M) : uAu∗ = A} generates
M . Feldman and Moore [5] characterized pairs A ⊂ M , where A is a Cartan
subalgebra, as those coming from r-discrete transitive measure groupoids with
a finite measure spaceX as base (and a certain cocycle). Given such a groupoid,
the algebra A is L∞(X), and the group of bisections of the groupoid embeds
into the unitary group of M as the normalizer of A. In this paper we make use
of an alternate characterization of a Cartan subalgebra in M: namely, A is a
Cartan subalgebra if the Hilbert space L2(M), viewed as an A,A-bimodule,
is in a certain way discrete.

Recall that if A = L∞(X, νX), B = L∞(Y, νY ) are diffuse commutative
von Neumann algebras, andµ is a measure onX×Y , so that its push-forwards
by the coordinate projections onto X and Y are absolutely continuous with
respect to νX and νY , then L2(X × Y,µ) carries a pair of commuting normal
representations of A and B given by

(a · f )(s, t) = a(s)f (s, t), (f · b)(s, t) = b(t)f (s, t).

for f ∈ L2(X × Y,µ) and a ∈ A, b ∈ B. In this way, L2(X × Y,µ) is an
A,B-bimodule. It can be shown that any (abstract) A,B-bimodule containing

Received November 21, 2000; in revised form June 22, 2001.



94 sorin popa and dimitri shlyakhtenko

a vector ξ for which AξB is dense, is isomorphic to L2(X × Y,µ) for some
measure µ.

Denote by C(A,B) the set of all A,B-bimodules. Then the operation of
relative tensor product of bimodules gives a multiplication ⊗B : C(A,B) ×
C(B,C) → C(A,C). Inside C(A,B), there is a remarkable subset Cd(A,B)

consisting of discrete modules, i.e., modules which are direct sums of L2(X×
Y,µ) for which µ can be disintegrated as µ(s, t) = µt(s)νY (t) with µt(s)

atomic for almost all t . One has Cd(A,B) ⊗B Cd(B,C) ⊂ Cd(A,C). An
example of a module in Cd(A,B) is the bimodule L2(X × Y,µ) for which
µ is supported on the graph of an isomorphism α : X → Y . In this case the
bimodule contains a vector ξ for which a · ξ = ξα(a) and AξB is dense.

If H is any A,B bimodule, one can construct a submodule Hd ⊂ H con-
sisting of those elements ξ ∈ H for which A · ξ · B ∈ Cd(A,B). Hd is the
maximal subbimodule of H which lies in Cd(A,B).

Denote by Cd(A) ⊂ Cd(A,A) ⊂ C(A,A) the set of such bimodules
H ∈ Cd(A,A) for which H̄ ∈ Cd(A,A) as well (here H̄ is H with the oppos-
ite Hilbert space structure and the right and left actions of A switched). Equi-
valently, Cd(A) is the maximal subset C in C(A,A) satisfying Cd(B,A)⊗A

C ⊗A Cd(A,C) ⊂ Cd(B,C).
Returning now to the situation thatA ⊂ M is a MASA,L2(M) is a bimodule

overA, since elements ofA act onL2(M)by right and left multiplication. Every
element x ∈ M defines a subbimodule AxA ⊂ L2(M). Denoting by Nw

q (A)

the set of all elements x for which AxA ∈ Cd(A) we obtain a certain subset
of M . Because Cd(A) is closed under tensor products, Nw

q (A) is a subalgebra
(in fact, a von Neumann subalgebra) of M . Every element in the normalizer
of A is in Nw

q (in fact, its associated bimodule is the bimodule constructed
out of an automorphism α of A above). We show that Nw

q (A) is exactly the
von Neumann subalgebra of M generated by A and its normalizer. Hence A
is a Cartan subalgebra iff Nw

q (A) = M , i.e., L2(M, τ) ∈ Cd(A).
One can similarly consider two MASAs in M and the subset Nw

q (A,B)

of x ∈ M for which AxB ∈ Cd(A,B) and Bx∗A ∈ Cd(B,A). It turns out
that the condition that 1 ∈ Nw

q (A,B) is equivalent to the condition that A is
discrete over B in the sense of Feldman and Moore [5].

Feldman and Moore proved that two Cartan subagebras A and B are con-
jugate by a unitary u ∈ M iff B is discrete overA andA is discrete over B. We
show that this characterization of conjugacy characterizes Cartan subalgebras:
A is a Cartan subalgebra of M iff uAu∗ is discrete over A for all unitaries
u ∈ M (i.e., Cartan subalgebras are precisely the subalgebras of M for which
the Feldman-Moor criterion of inner conjugacy applies). More generally, we
prove that A is discrete over B and B is discrete over A iff A and B are
conjugate by a unitary from Nw

q (A).
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2. Quasi-normalizer of a MASA

Let X be a measure space. By a local Borel map from X to X we mean a triple
(φ,D,R), where D,R ⊂ X are Borel subsets, and φ : D → R is a Borel
map. We further say that (φ,D,R) is a local isomorphism, if φ is a measure-
preserving Borel isomorphism of D with R. For a function f ∈ L∞(X), we
write φ(f ) for the function χR · φ(f · χD).

Whenever A,B are commutative finite W ∗-algebras with fixed finite traces
and η : A → B is a completely-positive map, we can identify A ∼= L∞(X,µ)
andB ∼= L∞(Y, ν) so that the fixed traces onA andB correspond to integration
with respect to µ and ν, respectively. With this identification, there exists a
measure η̂ on X × Y , so that:

(1) The push-forwards of η̂ onto X and Y via projections maps are abso-
lutely-continuous with respect to µ and ν, respectively;

(2) For all f ∈ A and g ∈ B,∫
g(y)η(f )(y) dν(y) =

∫∫
f (x)g(y) dη̂(x, y).

The measure η̂ can be disintegrated along the y direction: there is a measurable
family of measures η̂y on X, for which∫∫

f (x, y)η̂(x, y) =
∫ (∫

f (x, y) dη̂y(x)

)
dy.

Definition 2.1. (cf. [5]) A completely-positive map η : A → B is called
discrete, if the measures ηy are atomic for almost all y ∈ Y .

Notice that if φ : C → B is an isomorphism, then η ◦ φ is discrete if and
only if η is discrete.

Let M be a type II1 factor and A ⊂ M be a MASA. Let x ∈ M be an
element. Then x defines a completely positive map ηx : A → A by:

ηx(a) = EA(x
∗ax).

Identifying A with L∞[0, 1], ηx determines a finite positive measure µx = η̂x
on [0, 1]2, by:∫∫

a(t)b(s) dµx(t, s) = τ(aηx(b)) = τ(ax∗bx), ∀a, b ∈ A = L∞[0, 1].

If x is self-adjoint, the measure µx is symmetric; more precisely, if T :
[0, 1]2 → [0, 1]2 is given by T (t, s) = (s, t), then T∗µx = µx . The push-
forwards of µx by the coordinate projections from [0, 1]2 onto the first copy
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and second copies of [0, 1] are absolutely continuous with respect to Lebesgue
measure. For each t ∈ [0, 1], µx can be disintegrated along the t-axis: there
exists a family of measures µx

t , so that∫∫
f (s, t)dµx(s, t) =

∫∫
f (s, t)dµx

t (s)dt.

Lemma 2.2. The Hilbert space H(x) = {a1xa2 : a1, a2 ∈ A} ⊂ L2(M)

can be isometrically identified with L2([0, 1]2, µx), in such a way that x is
identified with the constant function 1 on [0, 1]2, and the element a1xa2 is
identified with the function a1(s)a2(t) ∈ L2([0, 1]2, µx). In the case that x is
self-adjoint, the restriction of the Tomita conjugation operator J to H(x) is
given by J (f (x, y)) = f (y, x).

Notation 2.3. We consider the following sets of elements in M:

(1) N (A) = {u ∈ M unitary : uAu∗ = A}, the normalizer of A;

(2) G N (A) = {v ∈ M partial isometry : vAv∗ ⊂ A, v∗Av ⊂ A}, the full
group of the normalizer of A;

(3) N1(A) = {x ∈ M : there is a local isomorphism φ : A → A, s.t.
φ(a)x = xa,∀a ∈ A};

(4) Nq(A) = {x ∈ M : µx
t , µ

x∗
t are both atomic with a finite number of

atoms for all most all t}, the quasi-normalizer of A;

(5) Nw
q (A) = {x ∈ M : µx, µx∗ are both discrete}, the weak quasi-norma-

lizer of A.

Note that Nq(A) and Nw
q (A) are ∗-subalgebras of M . Indeed, if µx, µx∗

and µy, µy∗ are discrete, the support of the measure µxy
t is contained in the

set {s : ∃t ′ s.t. µx
t ({t ′}) · µy

t ′({s}) �= 0}, which is finite if x, y ∈ Nq(A) and
countable if x, y ∈ Nw

q (A).

Lemma 2.4. Let x = x∗ ∈ M , and let f, g be bounded µx-measurable
functions on [0, 1]2, such that supp(f ), supp(g) ⊂ ,, where

, =
N⋃
j=1

{ (s, φj (s)) ; x ∈ [0, 1] } ∪ { (φj (s), s) : s ∈ [0, 1] }

and φj are local isomorphisms. Identify AxA with L2([0, 1]2, µx) as in Lem-
ma 2.2. Let f · x be the element in AxA, corresponding via this identification
to f ∈ L2([0, 1]2, µx).

Then:

(1) f · x ∈ M .
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(2) µf ·x = |f |2µx .

(3) g · (f · x) = (gf ) · x (Chain rule).

(4) If f is symmetric (i.e., f (s, t) = f (t, s)), then f · x is self-adjoint.

Proof. Let ai, bi ∈ A, i = 1, . . . , n be functions in A. Then if y =∑
aixbi , we have that µy = ∣∣(∑ ai(s)bi(t)

)∣∣2
µx . Note that

∥∥∥∑
aixbi

∥∥∥ =
∥∥∥∥∥∥( a1 . . . an )


 x . . . 0
...

. . .
...

0 . . . x





 b1

...

bn




∥∥∥∥∥∥
≤ ‖x‖ ·

∥∥∥∑
a∗i ai

∥∥∥1/2 ·
∥∥∥∑

b∗i bi
∥∥∥1/2

.

Choose now a
(k)
i , b

(k)
i in such a way that

∥∥∑
a∗i ai

∥∥, ∥∥∑
b∗i bi

∥∥ ≤ 4N2‖f ‖2,
and

∣∣∑ ai(s)bi(t)
∣∣ → f in L2([0, 1]2, µx). This is possible because of the

assumptions on f : for sufficiently fine partitionsA(k)
1 , . . . , A(k)

p , k = 1, . . . , N
and i = pj + r , 0 ≤ r < N , one can take a(k)p to be the characteristic function

of A(r−1)
j and b(k)p be a constant times the characteristic function of φr(A

(r)
j ).

Then yk = ∑
i a

(k)
i xb

(k)
i converges in L2(M) to some vector y ∈ L2(M).

Since ‖yk‖ is bounded, we get that y ∈ M . Define f · x to be equal to y.
The claimed properties of · follow easily. To show that f · x is self-adjoint
if f is symmetric, notice that in this case a(k)i and b

(k)
i can be chosen so that∑

i a
(k)
i (s)b

(k)
i (t) is symmetric. But then it follows that Jyk = yk , so that

Jy = y, so that f · x = y is self-adjoint.

Lemma 2.5. Assume that x = x∗ ∈ Nw
q (M) and ε > 0. Then there exists

y ∈ Nq(M), so that ‖x − y‖2 ≤ ε.

Proof. By [5, Theorem 1] (see also [1, Lemma 3 (a)]), there exists local
isomorphisms σi : Ai → Bi , Ai, Bi ⊂ X, so that the support of the measure
µx is contained in the union of graphs ,σj = {(x, σj (x)) : x ∈ Aj }, and the
graphs are disjoint. By Lemma 2.4, denoting by fj the characteristic function
of ,σj , we find elements xj = fj · x ∈ M , so that µxj = fj · µx . It follows
that xj ∈ L2(M) are perpendicular, and x = ∑

j xj . Moreover, each xj ∈
Nq(M). Now, given ε > 0, there exists N so that if we set y = ∑N

j=1 xj , then
‖x − y‖2 ≤ ε. Since Nq is an algebra, y ∈ Nq .

Proposition 2.6. Nw
q (A) is a von Neumann subalgebra of M .

Proof. Let xn ∈ Nw
q (A) be a sequence of elements, converging ∗-strongly

to an element x ∈ M and such that ‖xj‖ ≤ ‖x‖. By Lemma 2.5 we may assume
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that xn ∈ Nq . We must show that x ∈ Nw
q (M). If not, then let X ⊂ [0, 1]2 be

the set of atoms ofµx
t , t ∈ [0, 1], and we have thatµx(X) = ‖x‖2−δ for some

δ > 0. Hence we have that for any f satisfying the hypothesis of Lemma 2.4
and valued in {0, 1}, ‖x − f · x‖2

2 ≥ δ. On the other hand, we clearly have for
all such f that ‖f · xn − f · x‖2

2 = ‖f · (xn − x)‖2
2 ≤ ‖xn − x‖2

2, since f is
valued in {0, 1}. Now choose xn so that ‖xn − x‖2

2 < δ2/4; then there is an f
for which f · xn = xn. Hence ‖f · xn − f · x‖2

2 ≤ δ2/4, and it follows that

‖x − f · x‖2 ≤ ‖x − xn‖2 + ‖f · xn − f · x‖2 < δ,

which is a contradiction.

Theorem 2.7. Let A ⊂ M be a MASA. Then the sets N (A), G N (A),
N1(A), Nq(A) and Nw

q (A) generate the same von Neumann subalgebras in
M .

Proof. Note that A is contained in all of the sets listed in the statement.
Clearly N (A) ⊂ G N (A); also, Nq(A) ⊂ Nw

q (A). If x ∈ N1(A), then
for a certain local isomorphism φ : [0, 1] → [0, 1], µx

t and µx∗
t are suppor-

ted on {φ(t), φ−1(t)} if t is in the domain of φ, and zero otherwise. Hence
W ∗(N1(A)) ⊂ W ∗(Nq(A)).

By Lemma 2.5 and Proposition 2.6, we have that W ∗(Nq(A)) = Nw
q (A).

By a result of H. Dye (cf. [3], [4]), we have that G N (A) = N (A)A, so
that W ∗(G N (A)) = W ∗(N (A)).

Summarizing, we have:

W ∗(N (A)) = W ∗(G N (A)) ⊂ W ∗(N1(A)) ⊂ W ∗(Nq(A)) = Nw
q (A).

Next, we prove that Nq(A) ⊂ W ∗(N1(A)). Assume that x = x∗ ∈ Nq(A).

As in Lemma 2.4, by finding suitable functions fi , we can write x = ∑
fi · x,

xi = fi ·x ∈ Nq(A), so that µxi is supported on the set {(s, φ(s)}∪{(φ(s), s)}
for some local isomorphism φ (depending on i). It is therefore sufficient to
consider those x, for which µx is supported on such a set. Letting g be the
characteristic function of {(s, φ(s) : s ∈ [0, 1]} and h be the characteristic
function of {(φ(s), s) : s ∈ [0, 1]}, we get that x = g · x+h · x−hg · x. Now,
y1 = g · x satisfies y1a = φ(a)y1 for all a ∈ A, hence y1 ∈ N1(A). Similarly,
y2 = h ·x is in N1(A). Lastly, y3 = hg ·x satisfies y3a = χXay3 for all a ∈ A,
where X is the projection of the support of hg onto the t axis; it follows that
y3 ∈ N1(A). Thus W ∗(Nq(A)) ⊂ W ∗(N1(A)).

Lastly, we prove that N1(A) ⊂ W ∗(G N (A)). Assume that x ∈ N1(A).
There exists a local isomorphism φ : A → A, so that xa = φ(a)x, for all
a ∈ A. Let x = v(x∗x)1/2 be the polar decomposition of x; let D and R

be the domain and range of φ. Then (x∗x)1/2χD = (x∗x)1/2. Moreover, for
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a ∈ A, we have x∗xa = x∗φ−1(a)x = ax∗x, so that [a, (x∗x)1/2] = 0. Since
A is a MASA, this implies that (x∗x)1/2 ∈ A. Since A ⊂ W ∗(G N (A)) and
v ∈ G N (A), x ∈ W ∗(G N (A)).

The same proof works to show the following:

Theorem 2.8. For an arbitrary diffuse unital abelian subalgebra A ⊂ M ,
we have W ∗(N1(A)) = W ∗(Nq(A)) = Nw

q (A).

3. Conjugacy of MASAs

Let A,B ⊂ M be diffuse commutative subalgebras. Let η : B → A be the
restriction toB of the conditional expectation fromM ontoA. As a completely
positive map, E defines a measure η̂ on [0, 1]2 by∫∫

f (s)g(t) dη̂(s, t) = τ(fE(g)) = τ(fg), f ∈ A, g ∈ B.

Recall [5, Part II, Definition 5.3] thatB is called discrete overA ifE : A → B

is discrete as a completely positive map. That is to say, in the disintegration
η̂(s, t) = η̂t (s) dt the measures η̂t are atomic for almost all t .

Let x ∈ M . Define the completely-positive maps λx : A → B and ρx :
B → A by

λx(a) = EB(xax
∗), ρx(b) = EA(x

∗bx), a ∈ A, b ∈ B.

Definition 3.1. The relative quasi-normalizer Nw
q (A,B) is defined to be

the set of all x ∈ M , for which both λx and ρx are discrete.

Note that Nw
q (A,B) = Nw

q (B,A)
∗.

Theorem 3.2. (compare [5]) Let A,B ⊂ M be two MASAs in M . The
following are equivalent:

(1) A is discrete over B and B is discrete over A;

(2) A = uBu∗ for some u ∈ Nw
q (A);

(3) Nw
q (A,B) = Nw

q (A);

(4) A ⊂ Nw
q (A,B);

(5) 1 ∈ Nw
q (A,B).

Proof. We prove (1) ⇔ (2), (3) ⇒ (4) ⇒ (5) ⇒ (1) and (2) ⇒ (3).
We first prove that (1) implies (2); the proof is based on [5].
Consider N = M2×2(M). Let

D =
(
A 0
0 B

)
⊂ N
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be a commutative subalgebra, and let

u∗ = u =
(

0 1
1 0

)
∈ N.

Let
d =

(
a 0
0 b

)
∈ D.

Then

ηu(d) = ED(udu
∗) = ED

(
b 0
0 a

)
=

(
EA(b) 0

0 EB(a)

)
.

Since EA and EB are both discrete, it follows that ηu = ηu∗ is discrete. Hence
u ∈ Nw

q (D). Identify A ∼= L∞(X,µ) and B ∼= L∞(Y, ν), D ∼= L∞(X �
Y,µ � ν). Then µu is supported inside the set {(s, t) ∈ (X � Y )2 : s ∈
X, y ∈ Y or x ∈ Y, y ∈ X}. Since u is a unitary, for a. e. x ∈ X, there is a
y ∈ Y , so that µu

x({y}) �= 0. Since µu
x is symmetric, it follows that there exists

an measure-preserving isomorphism φ : X → Y , so that for each x ∈ X,
µx({φ(x)}) = µφ(x)({x}) �= 0. Let f ∈ L2((X � Y )2, µu) be the function
given by

f (s, t) =
{

0 if s �= φ(t) and t �= φ(s),

1 if s = φ(t) or t = φ(s).

Let y = f · u, and v be the polar part in the polar decomposition of y. Then v
has the form (

0 w

w∗ 0

)

for some w ∈ M , and [wAw∗, B] = {0}. Since A and B are MASAs, this
implies that wAw∗ = B. Since ηw(a) = EA(waw

∗) = (EA|B)(waw∗), it
follows that ηw is discrete; since ηw∗(a) = EA(w

∗aw) = w(EB |A)(a)w∗,
also ηw∗ is discrete. Hence w ∈ Nw

q (A).
Next, we prove that (2) implies (1). Indeed, if w ∈ Nw

q (A), ηw and ηw∗ are
discrete. If B = wAw∗, it follows that EA|B(b) = ηw(w

∗bw) and EB |A(a) =
wηw(a)w

∗ are both discrete.
Clearly, (3) implies (4), since A ⊂ Nw

q (A).
Clearly, (4) implies (5), since 1 ∈ A.
We now prove that (5) implies (1). If (5) holds, then 1 ∈ A ⊂ Nq(A,B),

and hence B � b  → EA(b) and A � a  → EB(a) are both discrete, hence (1).
We next prove that (2) implies (3). If (2) holds, then for x ∈ Nw

q (A) we
have for a ∈ A,

λx(a) = EB(xax
∗) = uEA(u

∗xax∗u)u∗ = uηu∗x(a)u
∗,
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which is discrete, since u∗ ∈ Nw
q (A), x ∈ Nw

q (A) and hence u∗x ∈ Nw
q (A).

Similarly, for b ∈ B,

ρx(b) = EA(x
∗bx) = EA(x

∗uu∗buu∗x) = ηxu∗(u
∗bu),

which is discrete since u∗x ∈ Nw
q (A).

Corollary 3.3. If A is discrete over B and B is discrete over A, then
Nw
q (B) = Nw

q (A); in particular, A ⊂ Nw
q (B) and B ⊂ Nw

q (A).

Proof. By Theorem 3.2, B = uAu∗ for some u ∈ Nw
q (A). Hence

Nw
q (B) = uNw

q (A)u
∗ = Nw

q (A), since Nw
q (A) is an algebra.

Corollary 3.4. If 1 ∈ Nw
q (A,B), then A ⊂ Nw

q (A,B) and also
Nw
q (A,B) = Nw

q (B,A) = Nw
q (A) = Nw

q (B).

Proof. If 1 ∈ Nw
q (A,B), then A ⊂ Nw

q (A,B) by Theorem 3.2. If A ⊂
Nw
q (A,B), thenA is discrete overB andB is discrete overA, by Theorem 3.2.

Hence Nw
q (B,A) = Nw

q (B) by the same theorem. Lastly, by Corollary 3.3,
Nw
q (A) = Nw

q (B).

4. Cartan subalgebras

Theorem 4.1. Let A ⊂ M be a MASA. Then the following conditions are
equivalent:

(1) A is a Cartan subalgebra of M .

(2) The weak quasi-normalizer Nw
q (A) is equal to all of M .

(3) The quasi-normalizer Nq(A) is dense in M .

(4) For a self-adjoint set of unitaries uk in M , which are strongly dense in
the unitary group U(M) of M , the algebras ukAu∗k are discrete over A.

(5) For any unitary u ∈ M , uAu∗ is discrete over A.

Proof. Statement (1) is equivalent to saying that W ∗(N (A),A) = M .
Hence (1), (2) and (3) are equivalent, by Theorem 2.7. The condition that uAu∗
is discrete over A and A is discrete over uAu∗ is equivalent to the condition
that u ∈ Nw

q (A), by Theorem 3.2. Note also that uAu∗ is discrete over A iff A
is discrete over u∗Au. Hence (2) and (5) are equivalent. Lastly, (5) implies (4),
while (4) implies that {uk} ⊂ Nw

q (A), which because uk are strongly dense,
implies (2).

Corollary 4.2. Let A and B be two MASAs in M . Then the following
conditions are equivalent:

(1) A and B are both Cartan subalgebras of M and are conjugate by a
unitary in M;
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(2) M = Nw
q (A,B).

Proof. If (1) holds, then by Theorem 4.1, Nw
q (A) = M = Nw

q (B). If A
and B are conjugate, then by Theorem 3.2, Nw

q (A,B) = Nw
q (A), so that (1)

implies (2).
If (2) holds, then A ⊂ Nw

q (A,B) = M , so that A and B are conjugate
by Theorem 3.2. Furthermore, since by Corollary 3.4, M = Nw

q (A,B) =
Nw
q (A) = Nw

q (B), A and B are both Cartan by Theorem 4.1. Thus (2) implies
(1).

REFERENCES

1. Connes, A., Feldman, J., and Weiss, B., An amenable equivalence relation is generated by a
single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431–450.

2. Dixmier, J., Sous anneux abéliens maximaux dans les facteurs de type fini, Ann. of Math. 59
(1954), 279–286.

3. Dye, H. A., On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959),
119–159.

4. Dye, H. A., On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963),
551–576.

5. Feldman, J., and Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann
algebras I, II, Trans. Amer. Math. Soc. 234 (1977), 289–359.

6. Singer, I. M., Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133.

DEPARTMENT OF MATHEMATICS
UCLA
LOS ANGELES, CA 90095
USA
E-mail: popa@math.ucla.edu, shlyakht@math.ucla.edu


