CARTAN SUBALGEBRAS AND BIMODULE DECOMPOSITIONS OF II_{1} FACTORS

SORIN POPA and DIMITRI SHLYAKHTENKO

Abstract

Let $A \subset M$ be a MASA in a II_{1} factor M. We describe the von Neumann subalgebra of M generated by A and its normalizer $\mathscr{N}(A)$ as the set $N_{q}^{w}(A)$ consisting of those elements $m \in M$ for which the bimodule $\overline{A m A}$ is discrete. We prove that two MASAs A and B are conjugate by a unitary $u \in N_{q}^{w}(A)$ iff A is discrete over B and B is discrete over A in the sense defined by Feldman and Moore [5]. As a consequence, we show that A is a Cartan subalgebra of M iff for any MASA $B \subset M, B=u A u^{*}$ for some $u \in M$ exactly when A is discrete over B and B is discrete over A.

1. Introduction

Let M be a type II_{1} von Neumann algebra with a trace τ. If $A \subset M$ is a maximal abelian subalgebra (MASA), then A is called a Cartan subalgebra (see [2], [6]), if its normalizer $\mathscr{N}(A)=\left\{u \in U(M): u A u^{*}=A\right\}$ generates M. Feldman and Moore [5] characterized pairs $A \subset M$, where A is a Cartan subalgebra, as those coming from r-discrete transitive measure groupoids with a finite measure space X as base (and a certain cocycle). Given such a groupoid, the algebra A is $L^{\infty}(X)$, and the group of bisections of the groupoid embeds into the unitary group of M as the normalizer of A. In this paper we make use of an alternate characterization of a Cartan subalgebra in M : namely, A is a Cartan subalgebra if the Hilbert space $L^{2}(M)$, viewed as an A, A-bimodule, is in a certain way discrete.

Recall that if $A=L^{\infty}\left(X, v_{X}\right), B=L^{\infty}\left(Y, v_{Y}\right)$ are diffuse commutative von Neumann algebras, and μ is a measure on $X \times Y$, so that its push-forwards by the coordinate projections onto X and Y are absolutely continuous with respect to ν_{X} and ν_{Y}, then $L^{2}(X \times Y, \mu)$ carries a pair of commuting normal representations of A and B given by

$$
(a \cdot f)(s, t)=a(s) f(s, t), \quad(f \cdot b)(s, t)=b(t) f(s, t)
$$

for $f \in L^{2}(X \times Y, \mu)$ and $a \in A, b \in B$. In this way, $L^{2}(X \times Y, \mu)$ is an A, B-bimodule. It can be shown that any (abstract) A, B-bimodule containing
a vector ξ for which $A \xi B$ is dense, is isomorphic to $L^{2}(X \times Y, \mu)$ for some measure μ.

Denote by $C(A, B)$ the set of all A, B-bimodules. Then the operation of relative tensor product of bimodules gives a multiplication $\otimes_{B}: C(A, B) \times$ $C(B, C) \rightarrow C(A, C)$. Inside $C(A, B)$, there is a remarkable subset $C_{d}(A, B)$ consisting of discrete modules, i.e., modules which are direct sums of $L^{2}(X \times$ $Y, \mu)$ for which μ can be disintegrated as $\mu(s, t)=\mu_{t}(s) v_{Y}(t)$ with $\mu_{t}(s)$ atomic for almost all t. One has $C_{d}(A, B) \otimes_{B} C_{d}(B, C) \subset C_{d}(A, C)$. An example of a module in $C_{d}(A, B)$ is the bimodule $L^{2}(X \times Y, \mu)$ for which μ is supported on the graph of an isomorphism $\alpha: X \rightarrow Y$. In this case the bimodule contains a vector ξ for which $a \cdot \xi=\xi \alpha(a)$ and $A \xi B$ is dense.

If H is any A, B bimodule, one can construct a submodule $H_{d} \subset H$ consisting of those elements $\xi \in H$ for which $\overline{A \cdot \xi \cdot B} \in C_{d}(A, B) . H_{d}$ is the maximal subbimodule of H which lies in $C_{d}(A, B)$.

Denote by $C_{d}(A) \subset C_{d}(A, A) \subset C(A, A)$ the set of such bimodules $H \in C_{d}(A, A)$ for which $\bar{H} \in C_{d}(A, A)$ as well (here \bar{H} is H with the opposite Hilbert space structure and the right and left actions of A switched). Equivalently, $C_{d}(A)$ is the maximal subset C in $C(A, A)$ satisfying $C_{d}(B, A) \otimes_{A}$ $C \otimes_{A} C_{d}(A, C) \subset C_{d}(B, C)$.

Returning now to the situation that $A \subset M$ is a MASA, $L^{2}(M)$ is a bimodule over A, since elements of A act on $L^{2}(M)$ by right and left multiplication. Every element $x \in M$ defines a subbimodule $\overline{A x A} \subset L^{2}(M)$. Denoting by $N_{q}^{w}(A)$ the set of all elements x for which $\overline{A x A} \in C_{d}(A)$ we obtain a certain subset of M. Because $C_{d}(A)$ is closed under tensor products, $N_{q}^{w}(A)$ is a subalgebra (in fact, a von Neumann subalgebra) of M. Every element in the normalizer of A is in N_{q}^{w} (in fact, its associated bimodule is the bimodule constructed out of an automorphism α of A above). We show that $N_{q}^{w}(A)$ is exactly the von Neumann subalgebra of M generated by A and its normalizer. Hence A is a Cartan subalgebra iff $N_{q}^{w}(A)=M$, i.e., $L^{2}(M, \tau) \in C_{d}(A)$.

One can similarly consider two MASAs in M and the subset $N_{q}^{w}(A, B)$ of $x \in M$ for which $\overline{A x B} \in C_{d}(A, B)$ and $\overline{B x^{*} A} \in C_{d}(B, A)$. It turns out that the condition that $1 \in N_{q}^{w}(A, B)$ is equivalent to the condition that A is discrete over B in the sense of Feldman and Moore [5].

Feldman and Moore proved that two Cartan subagebras A and B are conjugate by a unitary $u \in M$ iff B is discrete over A and A is discrete over B. We show that this characterization of conjugacy characterizes Cartan subalgebras: A is a Cartan subalgebra of M iff $u A u^{*}$ is discrete over A for all unitaries $u \in M$ (i.e., Cartan subalgebras are precisely the subalgebras of M for which the Feldman-Moor criterion of inner conjugacy applies). More generally, we prove that A is discrete over B and B is discrete over A iff A and B are conjugate by a unitary from $N_{q}^{w}(A)$.

2. Quasi-normalizer of a MASA

Let X be a measure space. By a local Borel map from X to X we mean a triple (ϕ, D, R), where $D, R \subset X$ are Borel subsets, and $\phi: D \rightarrow R$ is a Borel map. We further say that (ϕ, D, R) is a local isomorphism, if ϕ is a measurepreserving Borel isomorphism of D with R. For a function $f \in L^{\infty}(X)$, we write $\phi(f)$ for the function $\chi_{R} \cdot \phi\left(f \cdot \chi_{D}\right)$.

Whenever A, B are commutative finite W^{*}-algebras with fixed finite traces and $\eta: A \rightarrow B$ is a completely-positive map, we can identify $A \cong L^{\infty}(X, \mu)$ and $B \cong L^{\infty}(Y, v)$ so that the fixed traces on A and B correspond to integration with respect to μ and ν, respectively. With this identification, there exists a measure $\hat{\eta}$ on $X \times Y$, so that:
(1) The push-forwards of $\hat{\eta}$ onto X and Y via projections maps are abso-lutely-continuous with respect to μ and ν, respectively;
(2) For all $f \in A$ and $g \in B$,

$$
\int g(y) \eta(f)(y) d \nu(y)=\iint f(x) g(y) d \hat{\eta}(x, y)
$$

The measure $\hat{\eta}$ can be disintegrated along the y direction: there is a measurable family of measures $\hat{\eta}_{y}$ on X, for which

$$
\iint f(x, y) \hat{\eta}(x, y)=\int\left(\int f(x, y) d \hat{\eta}_{y}(x)\right) d y
$$

Definition 2.1. (cf. [5]) A completely-positive map $\eta: A \rightarrow B$ is called discrete, if the measures η_{y} are atomic for almost all $y \in Y$.

Notice that if $\phi: C \rightarrow B$ is an isomorphism, then $\eta \circ \phi$ is discrete if and only if η is discrete.

Let M be a type II_{1} factor and $A \subset M$ be a MASA. Let $x \in M$ be an element. Then x defines a completely positive map $\eta_{x}: A \rightarrow A$ by:

$$
\eta_{x}(a)=E_{A}\left(x^{*} a x\right)
$$

Identifying A with $L^{\infty}[0,1], \eta_{x}$ determines a finite positive measure $\mu^{x}=\hat{\eta}_{x}$ on $[0,1]^{2}$, by:

$$
\iint a(t) b(s) d \mu^{x}(t, s)=\tau\left(a \eta_{x}(b)\right)=\tau\left(a x^{*} b x\right), \quad \forall a, b \in A=L^{\infty}[0,1]
$$

If x is self-adjoint, the measure μ^{x} is symmetric; more precisely, if T : $[0,1]^{2} \rightarrow[0,1]^{2}$ is given by $T(t, s)=(s, t)$, then $T_{*} \mu^{x}=\mu^{x}$. The pushforwards of μ^{x} by the coordinate projections from $[0,1]^{2}$ onto the first copy
and second copies of $[0,1]$ are absolutely continuous with respect to Lebesgue measure. For each $t \in[0,1], \mu^{x}$ can be disintegrated along the t-axis: there exists a family of measures μ_{t}^{x}, so that

$$
\iint f(s, t) d \mu^{x}(s, t)=\iint f(s, t) d \mu_{t}^{x}(s) d t
$$

Lemma 2.2. The Hilbert space $H(x)=\overline{\left\{a_{1} x a_{2}: a_{1}, a_{2} \in A\right\}} \subset L^{2}(M)$ can be isometrically identified with $L^{2}\left([0,1]^{2}, \mu^{x}\right)$, in such a way that x is identified with the constant function 1 on $[0,1]^{2}$, and the element $a_{1} x a_{2}$ is identified with the function $a_{1}(s) a_{2}(t) \in L^{2}\left([0,1]^{2}, \mu^{x}\right)$. In the case that x is self-adjoint, the restriction of the Tomita conjugation operator J to $H(x)$ is given by $J(f(x, y))=\overline{f(y, x)}$.

Notation 2.3. We consider the following sets of elements in M :
(1) $\mathscr{N}(A)=\left\{u \in M\right.$ unitary : $\left.u A u^{*}=A\right\}$, the normalizer of A;
(2) $\mathscr{G} \mathscr{N}(A)=\left\{v \in M\right.$ partial isometry $\left.: v A v^{*} \subset A, v^{*} A v \subset A\right\}$, the full group of the normalizer of A;
(3) $N_{1}(A)=\{x \in M$: there is a local isomorphism $\phi: A \rightarrow A$, s.t. $\phi(a) x=x a, \forall a \in A\} ;$
(4) $N_{q}(A)=\left\{x \in M: \mu_{t}^{x}, \mu_{t}^{x^{*}}\right.$ are both atomic with a finite number of atoms for all most all t, the quasi-normalizer of A;
(5) $N_{q}^{w}(A)=\left\{x \in M: \mu^{x}, \mu^{x^{*}}\right.$ are both discrete $\}$, the weak quasi-normalizer of A.

Note that $N_{q}(A)$ and $N_{q}^{w}(A)$ are $*$-subalgebras of M. Indeed, if $\mu^{x}, \mu^{x^{*}}$ and $\mu^{y}, \mu^{y^{*}}$ are discrete, the support of the measure $\mu_{t}^{x y}$ is contained in the set $\left\{s: \exists t^{\prime}\right.$ s.t. $\left.\mu_{t}^{x}\left(\left\{t^{\prime}\right\}\right) \cdot \mu_{t^{\prime}}^{y}(\{s\}) \neq 0\right\}$, which is finite if $x, y \in N_{q}(A)$ and countable if $x, y \in N_{q}^{w}(A)$.

Lemma 2.4. Let $x=x^{*} \in M$, and let f, g be bounded μ^{x}-measurable functions on $[0,1]^{2}$, such that $\operatorname{supp}(f), \operatorname{supp}(g) \subset \Gamma$, where

$$
\Gamma=\bigcup_{j=1}^{N}\left\{\left(s, \phi_{j}(s)\right) ; x \in[0,1]\right\} \cup\left\{\left(\phi_{j}(s), s\right): s \in[0,1]\right\}
$$

and ϕ_{j} are local isomorphisms. Identify $\overline{A x A}$ with $L^{2}\left([0,1]^{2}, \mu^{x}\right)$ as in Lemma 2.2. Let $f \cdot x$ be the element in $\overline{A x A}$, corresponding via this identification to $f \in L^{2}\left([0,1]^{2}, \mu^{x}\right)$.

Then:
(1) $f \cdot x \in M$.
(2) $\mu^{f \cdot x}=|f|^{2} \mu^{x}$.
(3) $g \cdot(f \cdot x)=(g f) \cdot x$ (Chain rule).
(4) If f is symmetric (i.e., $f(s, t)=\overline{f(t, s)})$, then $f \cdot x$ is self-adjoint.

Proof. Let $a_{i}, b_{i} \in A, i=1, \ldots, n$ be functions in A. Then if $y=$ $\sum a_{i} x b_{i}$, we have that $\mu^{y}=\left|\left(\sum a_{i}(s) b_{i}(t)\right)\right|^{2} \mu^{x}$. Note that

$$
\begin{aligned}
\left\|\sum a_{i} x b_{i}\right\| & =\left\|\left(\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right)\left(\begin{array}{ccc}
x & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & x
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right\| \\
& \leq\|x\| \cdot\left\|\sum a_{i}^{*} a_{i}\right\|^{1 / 2} \cdot\left\|\sum b_{i}^{*} b_{i}\right\|^{1 / 2} .
\end{aligned}
$$

Choose now $a_{i}^{(k)}, b_{i}^{(k)}$ in such a way that $\left\|\sum a_{i}^{*} a_{i}\right\|,\left\|\sum b_{i}^{*} b_{i}\right\| \leq 4 N^{2}\|f\|^{2}$, and $\left|\sum a_{i}(s) b_{i}(t)\right| \rightarrow f$ in $L^{2}\left([0,1]^{2}, \mu^{x}\right)$. This is possible because of the assumptions on f : for sufficiently fine partitions $A_{1}^{(k)}, \ldots, A_{p}^{(k)}, k=1, \ldots, N$ and $i=p j+r, 0 \leq r<N$, one can take $a_{p}^{(k)}$ to be the characteristic function of $A_{j}^{(r-1)}$ and $b_{p}^{(k)}$ be a constant times the characteristic function of $\phi_{r}\left(A_{j}^{(r)}\right)$.

Then $y_{k}=\sum_{i} a_{i}^{(k)} x b_{i}^{(k)}$ converges in $L^{2}(M)$ to some vector $y \in L^{2}(M)$. Since $\left\|y_{k}\right\|$ is bounded, we get that $y \in M$. Define $f \cdot x$ to be equal to y. The claimed properties of • follow easily. To show that $f \cdot x$ is self-adjoint if f is symmetric, notice that in this case $a_{i}^{(k)}$ and $b_{i}^{(k)}$ can be chosen so that $\sum_{i} a_{i}^{(k)}(s) b_{i}^{(k)}(t)$ is symmetric. But then it follows that $J y_{k}=y_{k}$, so that $J y=y$, so that $f \cdot x=y$ is self-adjoint.

Lemma 2.5. Assume that $x=x^{*} \in N_{q}^{w}(M)$ and $\epsilon>0$. Then there exists $y \in N_{q}(M)$, so that $\|x-y\|_{2} \leq \epsilon$.

Proof. By [5, Theorem 1] (see also [1, Lemma 3 (a)]), there exists local isomorphisms $\sigma_{i}: A_{i} \rightarrow B_{i}, A_{i}, B_{i} \subset X$, so that the support of the measure μ^{x} is contained in the union of graphs $\Gamma_{\sigma_{j}}=\left\{\left(x, \sigma_{j}(x)\right): x \in A_{j}\right\}$, and the graphs are disjoint. By Lemma 2.4, denoting by f_{j} the characteristic function of $\Gamma_{\sigma_{j}}$, we find elements $x_{j}=f_{j} \cdot x \in M$, so that $\mu^{x_{j}}=f_{j} \cdot \mu^{x}$. It follows that $x_{j} \in L^{2}(M)$ are perpendicular, and $x=\sum_{j} x_{j}$. Moreover, each $x_{j} \in$ $N_{q}(M)$. Now, given $\epsilon>0$, there exists N so that if we set $y=\sum_{j=1}^{N} x_{j}$, then $\|x-y\|_{2} \leq \epsilon$. Since N_{q} is an algebra, $y \in N_{q}$.

Proposition 2.6. $N_{q}^{w}(A)$ is a von Neumann subalgebra of M.
Proof. Let $x_{n} \in N_{q}^{w}(A)$ be a sequence of elements, converging $*$-strongly to an element $x \in M$ and such that $\left\|x_{j}\right\| \leq\|x\|$. By Lemma 2.5 we may assume
that $x_{n} \in N_{q}$. We must show that $x \in N_{q}^{w}(M)$. If not, then let $X \subset[0,1]^{2}$ be the set of atoms of $\mu_{t}^{x}, t \in[0,1]$, and we have that $\mu^{x}(X)=\|x\|_{2}-\delta$ for some $\delta>0$. Hence we have that for any f satisfying the hypothesis of Lemma 2.4 and valued in $\{0,1\},\|x-f \cdot x\|_{2}^{2} \geq \delta$. On the other hand, we clearly have for all such f that $\left\|f \cdot x_{n}-f \cdot x\right\|_{2}^{2}=\left\|f \cdot\left(x_{n}-x\right)\right\|_{2}^{2} \leq\left\|x_{n}-x\right\|_{2}^{2}$, since f is valued in $\{0,1\}$. Now choose x_{n} so that $\left\|x_{n}-x\right\|_{2}^{2}<\delta^{2} / 4$; then there is an f for which $f \cdot x_{n}=x_{n}$. Hence $\left\|f \cdot x_{n}-f \cdot x\right\|_{2}^{2} \leq \delta^{2} / 4$, and it follows that

$$
\|x-f \cdot x\|_{2} \leq\left\|x-x_{n}\right\|_{2}+\left\|f \cdot x_{n}-f \cdot x\right\|_{2}<\delta,
$$

which is a contradiction.
Theorem 2.7. Let $A \subset M$ be a MASA. Then the sets $\mathscr{N}(A), \mathscr{G} \mathscr{N}(A)$, $N_{1}(A), N_{q}(A)$ and $N_{q}^{w}(A)$ generate the same von Neumann subalgebras in M.

Proof. Note that A is contained in all of the sets listed in the statement. Clearly $\mathscr{N}(A) \subset \mathscr{G} \mathscr{N}(A)$; also, $N_{q}(A) \subset N_{q}^{w}(A)$. If $x \in N_{1}(A)$, then for a certain local isomorphism $\phi:[0,1] \rightarrow[0,1], \mu_{t}^{x}$ and $\mu_{t}^{x^{*}}$ are supported on $\left\{\phi(t), \phi^{-1}(t)\right\}$ if t is in the domain of ϕ, and zero otherwise. Hence $W^{*}\left(N_{1}(A)\right) \subset W^{*}\left(N_{q}(A)\right)$.

By Lemma 2.5 and Proposition 2.6, we have that $W^{*}\left(N_{q}(A)\right)=N_{q}^{w}(A)$.
By a result of H. Dye (cf. [3], [4]), we have that $\mathscr{G} \mathscr{N}(A)=\mathscr{N}(A) A$, so that $W^{*}(\mathscr{G} \mathscr{N}(A))=W^{*}(\mathscr{N}(A))$.

Summarizing, we have:

$$
W^{*}(\mathscr{N}(A))=W^{*}(\mathscr{G} \mathscr{N}(A)) \subset W^{*}\left(N_{1}(A)\right) \subset W^{*}\left(N_{q}(A)\right)=N_{q}^{w}(A)
$$

Next, we prove that $N_{q}(A) \subset W^{*}\left(N_{1}(A)\right)$. Assume that $x=x^{*} \in N_{q}(A)$. As in Lemma 2.4, by finding suitable functions f_{i}, we can write $x=\sum f_{i} \cdot x$, $x_{i}=f_{i} \cdot x \in N_{q}(A)$, so that $\mu^{x_{i}}$ is supported on the set $\{(s, \phi(s)\} \cup\{(\phi(s), s)\}$ for some local isomorphism ϕ (depending on i). It is therefore sufficient to consider those x, for which μ^{x} is supported on such a set. Letting g be the characteristic function of $\{(s, \phi(s): s \in[0,1]\}$ and h be the characteristic function of $\{(\phi(s), s): s \in[0,1]\}$, we get that $x=g \cdot x+h \cdot x-h g \cdot x$. Now, $y_{1}=g \cdot x$ satisfies $y_{1} a=\phi(a) y_{1}$ for all $a \in A$, hence $y_{1} \in N_{1}(A)$. Similarly, $y_{2}=h \cdot x$ is in $N_{1}(A)$. Lastly, $y_{3}=h g \cdot x$ satisfies $y_{3} a=\chi_{X} a y_{3}$ for all $a \in A$, where X is the projection of the support of $h g$ onto the t axis; it follows that $y_{3} \in N_{1}(A)$. Thus $W^{*}\left(N_{q}(A)\right) \subset W^{*}\left(N_{1}(A)\right)$.

Lastly, we prove that $N_{1}(A) \subset W^{*}(\mathscr{G} \mathscr{N}(A))$. Assume that $x \in N_{1}(A)$. There exists a local isomorphism $\phi: A \rightarrow A$, so that $x a=\phi(a) x$, for all $a \in A$. Let $x=v\left(x^{*} x\right)^{1 / 2}$ be the polar decomposition of x; let D and R be the domain and range of ϕ. Then $\left(x^{*} x\right)^{1 / 2} \chi_{D}=\left(x^{*} x\right)^{1 / 2}$. Moreover, for
$a \in A$, we have $x^{*} x a=x^{*} \phi^{-1}(a) x=a x^{*} x$, so that $\left[a,\left(x^{*} x\right)^{1 / 2}\right]=0$. Since A is a MASA, this implies that $\left(x^{*} x\right)^{1 / 2} \in A$. Since $A \subset W^{*}(\mathscr{G} \mathscr{N}(A))$ and $v \in \mathscr{G} \mathscr{N}(A), x \in W^{*}(\mathscr{G} \mathscr{N}(A))$.

The same proof works to show the following:
Theorem 2.8. For an arbitrary diffuse unital abelian subalgebra $A \subset M$, we have $W^{*}\left(N_{1}(A)\right)=W^{*}\left(N_{q}(A)\right)=N_{q}^{w}(A)$.

3. Conjugacy of MASAs

Let $A, B \subset M$ be diffuse commutative subalgebras. Let $\eta: B \rightarrow A$ be the restriction to B of the conditional expectation from M onto A. As a completely positive map, E defines a measure $\hat{\eta}$ on $[0,1]^{2}$ by

$$
\iint f(s) g(t) d \hat{\eta}(s, t)=\tau(f E(g))=\tau(f g), \quad f \in A, g \in B
$$

Recall [5, Part II, Definition 5.3] that B is called discrete over A if $E: A \rightarrow B$ is discrete as a completely positive map. That is to say, in the disintegration $\hat{\eta}(s, t)=\hat{\eta}_{t}(s) d t$ the measures $\hat{\eta}_{t}$ are atomic for almost all t.

Let $x \in M$. Define the completely-positive maps $\lambda_{x}: A \rightarrow B$ and $\rho_{x}:$ $B \rightarrow A$ by

$$
\lambda_{x}(a)=E_{B}\left(x a x^{*}\right), \quad \rho_{x}(b)=E_{A}\left(x^{*} b x\right), \quad a \in A, b \in B
$$

Definition 3.1. The relative quasi-normalizer $N_{q}^{w}(A, B)$ is defined to be the set of all $x \in M$, for which both λ_{x} and ρ_{x} are discrete.

Note that $N_{q}^{w}(A, B)=N_{q}^{w}(B, A)^{*}$.
Theorem 3.2. (compare [5]) Let $A, B \subset M$ be two MASAs in M. The following are equivalent:
(1) A is discrete over B and B is discrete over A;
(2) $A=u B u^{*}$ for some $u \in N_{q}^{w}(A)$;
(3) $N_{q}^{w}(A, B)=N_{q}^{w}(A)$;
(4) $A \subset N_{q}^{w}(A, B)$;
(5) $1 \in N_{q}^{w}(A, B)$.

Proof. We prove (1) $\Leftrightarrow(2),(3) \Rightarrow(4) \Rightarrow(5) \Rightarrow(1)$ and $(2) \Rightarrow$ (3).
We first prove that (1) implies (2); the proof is based on [5].
Consider $N=M_{2 \times 2}(M)$. Let

$$
D=\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right) \subset N
$$

be a commutative subalgebra, and let

$$
u^{*}=u=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \in N
$$

Let

$$
d=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \in D
$$

Then

$$
\eta_{u}(d)=E_{D}\left(u d u^{*}\right)=E_{D}\left(\begin{array}{cc}
b & 0 \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
E_{A}(b) & 0 \\
0 & E_{B}(a)
\end{array}\right) .
$$

Since E_{A} and E_{B} are both discrete, it follows that $\eta_{u}=\eta_{u^{*}}$ is discrete. Hence $u \in N_{q}^{w}(D)$. Identify $A \cong L^{\infty}(X, \mu)$ and $B \cong L^{\infty}(Y, \nu), D \cong L^{\infty}(X \sqcup$ $Y, \mu \sqcup \nu)$. Then μ^{u} is supported inside the set $\left\{(s, t) \in(X \sqcup Y)^{2}: s \in\right.$ $X, y \in Y$ or $x \in Y, y \in X\}$. Since u is a unitary, for a. e. $x \in X$, there is a $y \in Y$, so that $\mu_{x}^{u}(\{y\}) \neq 0$. Since μ_{x}^{u} is symmetric, it follows that there exists an measure-preserving isomorphism $\phi: X \rightarrow Y$, so that for each $x \in X$, $\mu_{x}(\{\phi(x)\})=\mu_{\phi(x)}(\{x\}) \neq 0$. Let $f \in L^{2}\left((X \sqcup Y)^{2}, \mu^{u}\right)$ be the function given by

$$
f(s, t)= \begin{cases}0 & \text { if } s \neq \phi(t) \text { and } t \neq \phi(s) \\ 1 & \text { if } s=\phi(t) \text { or } t=\phi(s)\end{cases}
$$

Let $y=f \cdot u$, and v be the polar part in the polar decomposition of y. Then v has the form

$$
\left(\begin{array}{cc}
0 & w \\
w^{*} & 0
\end{array}\right)
$$

for some $w \in M$, and $\left[w A w^{*}, B\right]=\{0\}$. Since A and B are MASAs, this implies that $w A w^{*}=B$. Since $\eta_{w}(a)=E_{A}\left(w a w^{*}\right)=\left(\left.E_{A}\right|_{B}\right)\left(w a w^{*}\right)$, it follows that η_{w} is discrete; since $\eta_{w^{*}}(a)=E_{A}\left(w^{*} a w\right)=w\left(\left.E_{B}\right|_{A}\right)(a) w^{*}$, also $\eta_{w^{*}}$ is discrete. Hence $w \in N_{q}^{w}(A)$.

Next, we prove that (2) implies (1). Indeed, if $w \in N_{q}^{w}(A), \eta_{w}$ and $\eta_{w^{*}}$ are discrete. If $B=w A w^{*}$, it follows that $\left.E_{A}\right|_{B}(b)=\eta_{w}\left(w^{*} b w\right)$ and $\left.E_{B}\right|_{A}(a)=$ $w \eta_{w}(a) w^{*}$ are both discrete.

Clearly, (3) implies (4), since $A \subset N_{q}^{w}(A)$.
Clearly, (4) implies (5), since $1 \in A$.
We now prove that (5) implies (1). If (5) holds, then $1 \in A \subset N_{q}(A, B)$, and hence $B \ni b \mapsto E_{A}(b)$ and $A \ni a \mapsto E_{B}(a)$ are both discrete, hence (1).

We next prove that (2) implies (3). If (2) holds, then for $x \in N_{q}^{w}(A)$ we have for $a \in A$,

$$
\lambda_{x}(a)=E_{B}\left(x a x^{*}\right)=u E_{A}\left(u^{*} x a x^{*} u\right) u^{*}=u \eta_{u^{*} x}(a) u^{*}
$$

which is discrete, since $u^{*} \in N_{q}^{w}(A), x \in N_{q}^{w}(A)$ and hence $u^{*} x \in N_{q}^{w}(A)$. Similarly, for $b \in B$,

$$
\rho_{x}(b)=E_{A}\left(x^{*} b x\right)=E_{A}\left(x^{*} u u^{*} b u u^{*} x\right)=\eta_{x u^{*}}\left(u^{*} b u\right),
$$

which is discrete since $u^{*} x \in N_{q}^{w}(A)$.
Corollary 3.3. If A is discrete over B and B is discrete over A, then $N_{q}^{w}(B)=N_{q}^{w}(A)$; in particular, $A \subset N_{q}^{w}(B)$ and $B \subset N_{q}^{w}(A)$.

Proof. By Theorem 3.2, $B=u A u^{*}$ for some $u \in N_{q}^{w}(A)$. Hence $N_{q}^{w}(B)=u N_{q}^{w}(A) u^{*}=N_{q}^{w}(A)$, since $N_{q}^{w}(A)$ is an algebra.

Corollary 3.4. If $1 \in N_{q}^{w}(A, B)$, then $A \subset N_{q}^{w}(A, B)$ and also $N_{q}^{w}(A, B)=N_{q}^{w}(B, A)=N_{q}^{w}(A)=N_{q}^{w}(B)$.

Proof. If $1 \in N_{q}^{w}(A, B)$, then $A \subset N_{q}^{w}(A, B)$ by Theorem 3.2. If $A \subset$ $N_{q}^{w}(A, B)$, then A is discrete over B and B is discrete over A, by Theorem 3.2. Hence $N_{q}^{w}(B, A)=N_{q}^{w}(B)$ by the same theorem. Lastly, by Corollary 3.3, $N_{q}^{w}(A)=N_{q}^{w}(B)$.

4. Cartan subalgebras

Theorem 4.1. Let $A \subset M$ be a MASA. Then the following conditions are equivalent:
(1) A is a Cartan subalgebra of M.
(2) The weak quasi-normalizer $N_{q}^{w}(A)$ is equal to all of M.
(3) The quasi-normalizer $N_{q}(A)$ is dense in M.
(4) For a self-adjoint set of unitaries u_{k} in M, which are strongly dense in the unitary group $U(M)$ of M, the algebras $u_{k} A u_{k}^{*}$ are discrete over A.
(5) For any unitary $u \in M, u A u^{*}$ is discrete over A.

Proof. Statement (1) is equivalent to saying that $W^{*}(\mathscr{N}(A), A)=M$. Hence (1), (2) and (3) are equivalent, by Theorem 2.7. The condition that $u A u^{*}$ is discrete over A and A is discrete over $u A u^{*}$ is equivalent to the condition that $u \in N_{q}^{w}(A)$, by Theorem 3.2. Note also that $u A u^{*}$ is discrete over A iff A is discrete over $u^{*} A u$. Hence (2) and (5) are equivalent. Lastly, (5) implies (4), while (4) implies that $\left\{u_{k}\right\} \subset N_{q}^{w}(A)$, which because u_{k} are strongly dense, implies (2).

Corollary 4.2. Let A and B be two MASAs in M. Then the following conditions are equivalent:
(1) A and B are both Cartan subalgebras of M and are conjugate by a unitary in M;
(2) $M=N_{q}^{w}(A, B)$.

Proof. If (1) holds, then by Theorem 4.1, $N_{q}^{w}(A)=M=N_{q}^{w}(B)$. If A and B are conjugate, then by Theorem 3.2, $N_{q}^{w}(A, B)=N_{q}^{w}(A)$, so that (1) implies (2).

If (2) holds, then $A \subset N_{q}^{w}(A, B)=M$, so that A and B are conjugate by Theorem 3.2. Furthermore, since by Corollary 3.4, $M=N_{q}^{w}(A, B)=$ $N_{q}^{w}(A)=N_{q}^{w}(B), A$ and B are both Cartan by Theorem 4.1. Thus (2) implies (1).

REFERENCES

1. Connes, A., Feldman, J., and Weiss, B., An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431-450.
2. Dixmier, J., Sous anneux abéliens maximaux dans les facteurs de type fini, Ann. of Math. 59 (1954), 279-286.
3. Dye, H. A., On groups of measure preserving transformation. I, Amer. J. Math. 81 (1959), 119-159.
4. Dye, H. A., On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551-576.
5. Feldman, J., and Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras I, II, Trans. Amer. Math. Soc. 234 (1977), 289-359.
6. Singer, I. M., Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117-133.

DEPARTMENT OF MATHEMATICS

UCLA
LOS ANGELES, CA 90095
USA
E-mail: popa@math.ucla.edu,shlyakht@math.ucla.edu

