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CARTAN SUBALGEBRAS AND BIMODULE
DECOMPOSITIONS OF II; FACTORS

SORIN POPA and DIMITRI SHLYAKHTENKO

Abstract

Let A C M be a MASA in a II; factor M. We describe the von Neumann subalgebra of M
generated by A and its normalizer .4 (A) as the set N* (A) consisting of those elements m € M
for which the bimodule Am A is discrete. We prove that two MASAs A and B are conjugate by
a unitary u € Ny'(A) iff A is discrete over B and B is discrete over A in the sense defined by
Feldman and Moore [5]. As a consequence, we show that A is a Cartan subalgebra of M iff for
any MASA B C M, B = uAu* for some u € M exactly when A is discrete over B and B is
discrete over A.

1. Introduction

Let M be a type II; von Neumann algebra with a trace t. If A C M is a
maximal abelian subalgebra (MASA), then A is called a Cartan subalgebra
(see [2], [6]), if its normalizer A (A) = {u € U(M) : uAu* = A} generates
M. Feldman and Moore [5] characterized pairs A C M, where A is a Cartan
subalgebra, as those coming from r-discrete transitive measure groupoids with
a finite measure space X as base (and a certain cocycle). Given such a groupoid,
the algebra A is L°°(X), and the group of bisections of the groupoid embeds
into the unitary group of M as the normalizer of A. In this paper we make use
of an alternate characterization of a Cartan subalgebra in M: namely, A is a
Cartan subalgebra if the Hilbert space L*(M), viewed as an A, A-bimodule,
is in a certain way discrete.

Recall that if A = L*(X,vyx), B = L°°(Y, vy) are diffuse commutative
von Neumann algebras, and p is a measure on X x Y, so that its push-forwards
by the coordinate projections onto X and Y are absolutely continuous with
respect to vy and vy, then L?(X x Y, ) carries a pair of commuting normal
representations of A and B given by

(a- s, 1) =a(s)f(s,1), (f -b)(s, 1) =b@) f(s,0).

for f € L*(X x Y,u) anda € A,b € B.In this way, L>(X x Y, i) is an
A, B-bimodule. It can be shown that any (abstract) A, B-bimodule containing
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a vector £ for which A£ B is dense, is isomorphic to L?(X x Y, 1) for some
measure /.

Denote by C(A, B) the set of all A, B-bimodules. Then the operation of
relative tensor product of bimodules gives a multiplication ® : C(A, B) x
C(B,C) — C(A, C).Inside C(A, B), there is a remarkable subset C;(A, B)
consisting of discrete modules, i.e., modules which are direct sums of L*(X x
Y, n) for which u can be disintegrated as u(s,?) = u (s)vy () with pu;(s)
atomic for almost all . One has C;(A, B) ®p C4(B,C) C Cy4(A, C). An
example of a module in C;(A, B) is the bimodule L>(X x Y, ) for which
W is supported on the graph of an isomorphism « : X — Y. In this case the
bimodule contains a vector & for which a - £ = £a(a) and A& B is dense.

If H is any A, B bimodule, one can construct a submodule H; C H con-
sisting of those elements £ € H for which A-& - B € C; (A, B). H; is the
maximal subbimodule of H which lies in C;(A, B).

Denote by C4(A) C C4(A, A) C C(A, A) the set of such bimodules
H € C (A, A) for which H € C;(A, A) as well (here H is H with the Oppos-
ite Hilbert space structure and the right and left actions of A switched). Equi-
valently, C;(A) is the maximal subset C in C(A, A) satisfying C;(B, A) ®4
C®4Cua(A,C) C Cy(B, C).

Returning now to the situationthat A C M isaMASA, L*>(M) is abimodule
over A, since elements of A acton L?(M) by right and left multiplication. Every
element x € M defines a subbimodule AxA C L?>(M). Denoting by N, ;” (A)
the set of all elements x for which AxA € C,;(A) we obtain a certain subset
of M. Because C;(A) is closed under tensor products, N ;" (A) is a subalgebra
(in fact, a von Neumann subalgebra) of M. Every element in the normalizer
of Aisin N ;" (in fact, its associated bimodule is the bimodule constructed
out of an automorphism o of A above). We show that N ;’ (A) is exactly the
von Neumann subalgebra of M generated by A and its normalizer. Hence A
is a Cartan subalgebra iff Nq“’(A) =M,ie.,L*(M, 1) € Cy(A).

One can similarly consider two MASAs in M and the subset Nq“’ (A, B)
of x € M for which AxB € C4(A, B) and Bx*A € Cy(B, A). It turns out
that the condition that 1 € N ;’ (A, B) is equivalent to the condition that A is
discrete over B in the sense of Feldman and Moore [5].

Feldman and Moore proved that two Cartan subagebras A and B are con-
jugate by a unitary u € M iff B is discrete over A and A is discrete over B. We
show that this characterization of conjugacy characterizes Cartan subalgebras:
A is a Cartan subalgebra of M iff uAu* is discrete over A for all unitaries
u € M (i.e., Cartan subalgebras are precisely the subalgebras of M for which
the Feldman-Moor criterion of inner conjugacy applies). More generally, we
prove that A is discrete over B and B is discrete over A iff A and B are
conjugate by a unitary from N;’(A).
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2. Quasi-normalizer of a MASA

Let X be a measure space. By a local Borel map from X to X we mean a triple
(¢, D, R), where D, R C X are Borel subsets, and ¢ : D — R is a Borel
map. We further say that (¢, D, R) is a local isomorphism, if ¢ is a measure-
preserving Borel isomorphism of D with R. For a function f € L*(X), we
write ¢ (f) for the function xz - ¢ (f - xp).

Whenever A, B are commutative finite W*-algebras with fixed finite traces
and n : A — B is a completely-positive map, we can identify A = L*(X, u)
and B = L*°(Y, v) so that the fixed traces on A and B correspond to integration
with respect to w and v, respectively. With this identification, there exists a
measure 7 on X x Y, so that:

(1) The push-forwards of 7 onto X and Y via projections maps are abso-
lutely-continuous with respect to u and v, respectively;
(2) Forall f € Aand g € B,

/ g dv(y) = / / F)8() dix, y).

The measure 7 can be disintegrated along the y direction: there is a measurable
family of measures 77, on X, for which

/ J e e, y) =/</ f(x,y)dﬁy(X)) dy.

DEFINITION 2.1. (cf. [S]) A completely-positive map n : A — B is called
discrete, if the measures 7, are atomic for almostall y € Y.

Notice that if ¢ : C — B is an isomorphism, then 7 o ¢ is discrete if and
only if n is discrete.

Let M be a type II; factor and A C M be a MASA. Let x € M be an
element. Then x defines a completely positive map 1, : A — A by:

Ne(a) = Ex(x*ax).
Identifying A with L*°[0, 1], , determines a finite positive measure u* = 7,
on [0, 172, by:
//a(t)b(s) du*(t,s) = t(an. (b)) = t(ax*bx), Va,be A= L>*[0,1].

If x is self-adjoint, the measure pu* is symmetric; more precisely, if T :
[0,1]> — [0, 1]? is given by T (¢,s) = (s,t), then T,u* = w*. The push-
forwards of u* by the coordinate projections from [0, 1]* onto the first copy
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and second copies of [0, 1] are absolutely continuous with respect to Lebesgue

measure. For each ¢ € [0, 1], u* can be disintegrated along the 7-axis: there
exists a family of measures p, so that

// fs,ndu’ s, t):/ fs, 0)du} (s)dr.

LEmMMA 2.2. The Hilbert space H(x) = {ajxay : a;,a; € A} C L*(M)
can be isometrically identified with L*([0, 1]%, u*), in such a way that x is
identified with the constant function 1 on [0, 11?, and the element aixa; is
identified with the function a,(s)ax(t) € L*([0, 117, u*). In the case that x is
self-adjoint, the restriction of the Tomita conjugation operator J to H(x) is

given by J(f(x,y)) = f(y,x).
NoTATION 2.3. We consider the following sets of elements in M:
(1) A (A) ={u € M unitary : uAu*™ = A}, the normalizer of A;
(2) Y4 (A) = {v € M partial isometry : vAv* C A, v*Av C A}, the full
group of the normalizer of A;
(3) Ni(A) = {x € M : thereis alocal isomorphism¢ : A — A, s.t
¢(a)x = xa,Va € A};
4) NyjA) ={x e M:pu, Mf* are both atomic with a finite number of
atoms for all most all ¢}, the quasi-normalizer of A;
5) N g (A) = {x € M : u*, u*° are both discrete}, the weak quasi-norma-
lizer of A.
Note that N,;(A) and N ;“ (A) are x-subalgebras of M. Indeed, if u*, u*

and p”, u¥" are discrete, the support of the measure ;" is contained in the
set {s : 3" s.t. wy ({t'}) - uty,({s}) # 0}, which is finite if x, y € N,(A) and
countable if x, y € N;J(A).

LEMMA 2.4. Let x = x* € M, and let f, g be bounded |*-measurable
functions on [0, 112, such that supp(f), supp(g) C I', where

N
I =G, 850 x €10, 111U {(¢(s), ) : 5 €[0, 11}

j=1

and ¢; are local isomorphisms. Identify AxA with L*([0, 11?, u*) as in Lem-
ma 2.2. Let f - x be the element in Ax A, corresponding via this identification
to f e L*([0, 117, u™).

Then:

(1) f-xeM.
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Q@) w =P
3) g-(f -x)=(gf) - x (Chain rule).
@) If f is symmetric (i.e., f(s,t) = m}, then f - x is self-adjoint.

Proor. Let a;,b; € A, i = 1,...,n be functions in A. Then if y =
Y a;xb;, we have that 1 = | (X a;(s)b; (1)) |* 4*. Note that

X 0 b1
Hzaixbi( =\(ar ... a)|: "-. : l
0O ... x b,

172

IA

172
bl [ ara] - [ Y bro
) )

Choose now g, in such a way that ”Zai*ai }, { > bib; || < 4N?|| f1?,
and |Za,- ($)b; (t)} — f in L?([0, 1]?, u*). This is possible because of the
assumptions on f: for sufficiently fine partitions AY‘) e A(p"), k=1,...,N

andi = pj+r,0 <r < N, one can take al(,k) to be the characteristic function
of A;r_l) and bg‘) be a constant times the characteristic function of ¢, (A;r) ).

Then y, = ), ai(k)xbfk) converges in L?(M) to some vector y € L2(M).
Since ||yx|| is bounded, we get that y € M. Define f - x to be equal to y.
The claimed properties of - follow easily. To show that f - x is self-adjoint
if f is symmetric, notice that in this case ai(k) and bi(k) can be chosen so that
Y al.(k) (s)bfk) (t) is symmetric. But then it follows that Jy; = y, so that
Jy = y,sothat f - x = y is self-adjoint.

LEMMA 2.5. Assume that x = x* € N, ;" (M) and € > 0. Then there exists
y € Ny(M), so that ||x — y|l» < e.

PrOOF. By [5, Theorem 1] (see also [1, Lemma 3 (a)]), there exists local
isomorphisms o; : A; = B;, A;, B; C X, so that the support of the measure
w* is contained in the union of graphs I'y, = {(x, 0j(x)) : x € A;}, and the
graphs are disjoint. By Lemma 2.4, denoting by f; the characteristic function
of I';,, we find elements x; = f; - x € M, so that u% = f; - u*. It follows
that x; € L*(M) are perpendicular, and x = Zj x;. Moreover, each x; €

Ny (M). Now, given € > 0, there exists N so that if we set y = ZN

im1%js then
lx — yll2 < €. Since N, is an algebra, y € N,.
PROPOSITION 2.6. N;”(A) is a von Neumann subalgebra of M.

PrOOF. Letx, € N;’(A) be a sequence of elements, converging x*-strongly
toanelement x € M and suchthat ||x;|| < ||x]. By Lemma 2.5 we may assume
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that x,, € N,. We must show that x € N’ (M). If not, then let X C [0, 1]* be
the set of atoms of u}, ¢t € [0, 1], and we have that u*(X) = ||x||o — 6 for some
5 > 0. Hence we have that for any f satisfying the hypothesis of Lemma 2.4
and valued in {0, 1}, |x — f - x ||§ > §. On the other hand, we clearly have for
all such f that || f-x, — f -xll% =|f-(x, —x)ll% < |lx, —xll%, since f is
valued in {0, 1}. Now choose x,, so that ||x, — X||% < 8%/4; then there is an f
for which f - x, = x,. Hence || f - x, — f - x||3 < 8%/4, and it follows that

lx = f-xllz < llx =Xl +11f - 20 = f - xll2 <6,

which is a contradiction.

THEOREM 2.7. Let A C M be a MASA. Then the sets N (A), 4N (A),
Ni(A), N,(A) and N‘;" (A) generate the same von Neumann subalgebras in
M.

ProoF. Note that A is contained in all of the sets listed in the statement.
Clearly A (A) C 9.4 (A); also, N,(A) C N;”(A). If x € Ni(A), then
for a certain local isomorphism ¢ : [0, 1] — [0, 1], uy and ,uj‘*are suppor-
ted on {¢(t), p~'(¢)} if ¢ is in the domain of ¢, and zero otherwise. Hence
W*(N1(A)) C W*(N,(A)).

By Lemma 2.5 and Proposition 2.6, we have that W*(N,(A)) = qu (A).

By a result of H. Dye (cf. [3], [4]), we have that ¥ 4" (A) = A (A)A, so
that W*(4 .4 (A)) = W*(AN (A)).

Summarizing, we have:

WA (A)) = WHG A (A)) C WHN1(A) C WH(Ny(A) = N (A).

Next, we prove that N,(A) C W*(N(A)). Assume that x = x* € N, (A).
As in Lemma 2.4, by finding suitable functions f;, we can write x = ) _ f; - x,
x; = fi-x € Ny(A), so that u*' is supported on the set {(s, ¢ (s)} U {(¢(s), 5)}
for some local isomorphism ¢ (depending on 7). It is therefore sufficient to
consider those x, for which p* is supported on such a set. Letting g be the
characteristic function of {(s, ¢(s) : s € [0, 1]} and & be the characteristic
function of {(¢(s),s) : s € [0, 1]}, we getthatx = g-x+h-x —hg - x. Now,
y1 = g - x satisfies yja = ¢(a)y; forall a € A, hence y; € N;(A). Similarly,
y» = h-x1isin N|(A). Lastly, y3 = hg - x satisfies y3a = xxays foralla € A,
where X is the projection of the support of ~g onto the ¢ axis; it follows that
y3 € Ni(A). Thus W*(N,(A)) C W*(N(A)).

Lastly, we prove that Ny (A) C W*(4.4(A)). Assume that x € N;(A).
There exists a local isomorphism ¢ : A — A, so that xa = ¢(a)x, for all
a € A. Let x = v(x*x)!/? be the polar decomposition of x; let D and R
be the domain and range of ¢. Then (x*x)!/2xp = (x*x)!/2. Moreover, for
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a € A, we have x*xa = x*¢"'(a)x = ax*x, so that [a, (x*x)'/?] = 0. Since
A is a MASA, this implies that (x*x)!/> € A. Since A C W*(&.4 (A)) and
veEYGN(A), x € WHEN(A)).

The same proof works to show the following:

THEOREM 2.8. For an arbitrary diffuse unital abelian subalgebra A C M,
we have W*(N1(A)) = W*(Ny(A)) = N (A).

3. Conjugacy of MASAs

Let A, B C M be diffuse commutative subalgebras. Let n : B — A be the
restriction to B of the conditional expectation from M onto A. As a completely
positive map, E defines a measure 7 on [0, 1]* by

/f(S)g(t)dﬁ(S,t)ZT(fE(g))Zf(fg), feAgeB.

Recall [5, Part I, Definition 5.3] that B is called discrete over Aif £ : A — B
is discrete as a completely positive map. That is to say, in the disintegration
(s, t) = 1,(s) dt the measures 7, are atomic for almost all 7.

Let x € M. Define the completely-positive maps A, : A — B and p, :
B — Aby

Ax(a) = Egp(xax™), pe(b) = E4(x*bx), ae€ A beB.

DEeFINITION 3.1. The relative quasi-normalizer N ;’ (A, B) is defined to be
the set of all x € M, for which both A, and p, are discrete.
Note that N;’(A, B) = N,/ (B, A)*.
THEOREM 3.2. (compare [5]) Let A, B C M be two MASAs in M. The
Jollowing are equivalent:
(1) A is discrete over B and B is discrete over A;
(2) A =uBu* for some u € N;’(A);
(3) NY(A, B) = N (A);
(4) ACNJ(A, B);
(5) 1 € N/ (A, B).
PrOOF. We prove (1) < (2), 3) = (4) = (5) = (1) and 2) = (3).

We first prove that (1) implies (2); the proof is based on [5].
Consider N = M5,»(M). Let

A 0
p=(4 0)cn
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be a commutative subalgebra, and let

«_ (01
u—u—<1 0>€N.

Let
a O
d—<0 b)eD.

Then

Es (b 0
= ety =50 (5 0)= (P10 ©
B

Since E 4 and Ep are both discrete, it follows that n, = 5, is discrete. Hence
u € NJ(D). Identify A = L*(X,n) and B = L=(Y,v), D = L*=(X U
Y, U v). Then u* is supported inside the set {(s,7) € (X LU Y)? : s €
X,yeYorx €Y,y € X}. Since u is a unitary, for a. e. x € X, there is a
y € Y, sothat u%({y}) # 0. Since u% is symmetric, it follows that there exists
an measure-preserving isomorphism ¢ : X — Y, so that for each x € X,
x({P(x)}) = e ({x}) # 0. Let f € L*((X uY)?, u*) be the function

given by )

0 ifs # ¢(t)and t # ¢ (s),

fls, 1) = _

1 ifs=¢@)ort =¢(s).
Let y = f - u, and v be the polar part in the polar decomposition of y. Then v
has the form

0 w
(%)

for some w € M, and [wAw*, B] = {0}. Since A and B are MASAs, this
implies that wAw* = B. Since n,(a) = Es(waw*) = (Ealp)(waw™), it
follows that n,, is discrete; since 7,+(a) = Ejs(w*aw) = w(Ep|x)(a)w*,
also n,,~ is discrete. Hence w € qu (A).

Next, we prove that (2) implies (1). Indeed, if w € N ;" (A), ny and 7+ are
discrete. If B = wAw?, it follows that E 4| g(b) = n,(w*bw) and Eg|s(a) =
wn,, (a)w* are both discrete.

Clearly, (3) implies (4), since A C N, ;’ (A).

Clearly, (4) implies (5), since 1 € A.

We now prove that (5) implies (1). If (5) holds, then 1 € A C N, (A, B),
and hence B 5 b +— E4(b) and A > a — Epg(a) are both discrete, hence (1).

We next prove that (2) implies (3). If (2) holds, then for x € N [}”(A) we
have fora € A,

A(a) = Egp(xax™) = uE,(u*xax™u)u™ = un,(a)u”,
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which is discrete, since u™ € N(A), x € N (A) and hence u*x € N (A).
Similarly, for b € B,

px(b) = EA(x*"bx) = Ea(x"uu"buu’x) = 0y, (u"bu),

which is discrete since u*x € qu (A).

CoOROLLARY 3.3. If A is discrete over B and B is discrete over A, then
qu(B) = N;’(A); in particular, A C N;”(B) and B C N;”(A).

Proof. By Theorem 3.2, B = uAu* for some u € N;’(A). Hence
N;’(B) = uN;”(A)u* = N;’(A), since N;’(A) is an algebra.

CoroLLARY 34. If1 € N;“(A, B), then A C N;“(A, B) and also
N (A, B) = N/ (B, A) = N/ (A) = N/ (B).

Proor. If 1 € N;’(A, B), then A C N;’(A, B) by Theorem 3.2. If A C
N ;’ (A, B), then A is discrete over B and B is discrete over A, by Theorem 3.2.

Hence N/ (B, A) = N, (B) by the same theorem. Lastly, by Corollary 3.3,
N;(A) = N;(B).

4. Cartan subalgebras

THEOREM 4.1. Let A C M be a MASA. Then the following conditions are
equivalent:

(1) A is a Cartan subalgebra of M.

(2) The weak quasi-normalizer N;’(A) is equal to all of M.

(3) The quasi-normalizer N, (A) is dense in M.

(4) For a self-adjoint set of unitaries uy in M, which are strongly dense in
the unitary group U(M) of M, the algebras uy Auj are discrete over A.

(5) For any unitary u € M, uAu* is discrete over A.

ProOF. Statement (1) is equivalent to saying that W*(.4"(A), A) = M.
Hence (1), (2) and (3) are equivalent, by Theorem 2.7. The condition that u Au*
is discrete over A and A is discrete over u Au* is equivalent to the condition
thatu € N ;’ (A), by Theorem 3.2. Note also that u Au* is discrete over A iff A
is discrete over u* Au. Hence (2) and (5) are equivalent. Lastly, (5) implies (4),
while (4) implies that {u;} C N;” (A), which because u; are strongly dense,
implies (2).

COROLLARY 4.2. Let A and B be two MASAs in M. Then the following
conditions are equivalent:

(1) A and B are both Cartan subalgebras of M and are conjugate by a
unitary in M;
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(2) M = N'(A, B).

Proor. If (1) holds, then by Theorem 4.1, NJ(A) = M = N (B). If A
and B are conjugate, then by Theorem 3.2, N;’ (A,B) = N;’ (A), so that (1)
implies (2).

If (2) holds, then A C qu (A, B) = M, so that A and B are conjugate
by Theorem 3.2. Furthermore, since by Corollary 3.4, M = N/(A, B) =
N ;” (A)=N ;” (B), A and B are both Cartan by Theorem 4.1. Thus (2) implies
(1).
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