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INDICES, CONVEXITY AND CONCAVITY OF
CALDERÓN-LOZANOVSKII SPACES

A. KAMIŃSKA∗, L. MALIGRANDA∗∗ and L. E. PERSSON

Abstract

In this article we discuss lattice convexity and concavity of Calderón-Lozanovskii space Eϕ ,
generated by a quasi-Banach space E and an increasing Orlicz function ϕ. We give estimations
of convexity and concavity indices of Eϕ in terms of Matuszewska-Orlicz indices of ϕ as well
as convexity and concavity indices of E. In the case when Eϕ is a rearrangement invariant space
we also provide some estimations of its Boyd indices. As corollaries we obtain some necessary
and sufficient conditions for normability of Eϕ , and conditions on its nontrivial type and cotype
in the case when Eϕ is a Banach space. We apply these results to Orlicz-Lorentz spaces receiving
estimations, and in some cases the exact values of their convexity, concavity and Boyd indices.

0. Introduction

The Calderón-Lozanovskii spaces Eϕ , where E is a Banach space and ϕ is a
convexYoung function, have been recently studied in several articles mostly in
order to characterize their geometric properties like (local) uniform rotundity
or monotonicity conditions (e.g. [2], [6], [7]). Here we extend our studies to the
Calderón-Lozanovskii spaces Eϕ , generated by a quasi-Banach space E and
an increasing Orlicz function ϕ. This more general setting seems to be a natural
environment for the main purpose of this article which is an investigation of
the lattice convexity and concavity of Eϕ .

The paper is divided into five parts. The first one, called preliminaries, con-
tains all necessary definitions and recalls some auxiliary results. In the second
part we discuss some basic properties of the Calderón-Lozanovskii spaces Eϕ
such as the Fatou property, its completeness and we state some results on com-
parison between these spaces generated by different functions ϕ and ψ . The
third part consists of the main results of the paper, which are estimations of
convexity and concavity indices and some corollaries on nontrivial type and
cotype ofEϕ . The Boyd indices ofEϕ , in the case whenEϕ is a rearrangement
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invariant space, are studied in the fourth part. Finally, we apply these results
to Orlicz-Lorentz spaces, that are treated separately in the fifth section. In cer-
tain type of Orlicz-Lorentz spaces some results along this line have been also
obtained in [15] and [23].

1. Preliminaries

We start with some notions and definitions which we will need further in
the paper. In the following N, R, R+ and R+ stand for the sets of natural
numbers, reals, nonnegative reals and interval [0,∞], respectively. Given a
vector spaceX the functional x �→ ‖x‖ is called a quasi-norm if the following
three conditions are satisfied: ‖x‖ = 0 iff x = 0; ‖ax‖ = |a|‖x‖, x ∈ X,
a ∈ R; there exists C ≥ 1 such that ‖x1 + x2‖ ≤ C(‖x1‖ + ‖x2‖), x1, x2 ∈ X.
We will say that X = (X, ‖ ‖) is a quasi-Banach space if it is complete. For
0 < p ≤ 1, x �→ ‖x‖ is called a p-norm if it satisfies the first two conditions
of the quasi-norm and the condition that for any x1, x2 ∈ X, ‖x1 + x2‖p ≤
‖x1‖p + ‖x2‖p. Recall that the Aoki-Rolewicz theorem (cf. [9]) states that for
any quasi-normed space there exists an equivalentp-norm for some 0 < p ≤ 1.
We say that a quasi-Banach spaceX is p-normable, 0 < p ≤ 1, if there exists
in X a p-norm equivalent to the quasi-norm in X. In the case when p = 1 we
simply say that the space is normable. A quasi-Banach space (X, ‖ ‖) which
in addition is a vector lattice and ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y| is called
a quasi-Banach lattice. Following Kalton in [8], a quasi-Banach lattice X or
its quasi-norm ‖ ‖ is said to be p-convex (order), 0 < p < ∞, respectively
q-concave (order), 0 < q <∞, if there is a constant K > 0 such that

∥∥∥∥
( n∑
i=1

|xi |p
) 1

p
∥∥∥∥ ≤ K

( n∑
i=1

‖xi‖p
) 1

p

respectively, ( n∑
i=1

‖xi‖q
) 1

q

≤ K
∥∥∥∥
( n∑
i=1

|xi |q
) 1

q
∥∥∥∥

for every choice of vectors x1, . . . , xn ∈ X. A quasi-Banach lattice X is said
to satisfy an upper p-estimate, 0 < p < ∞, respectively a lower q-estimate,
0 < q < ∞, if the definition of p-convexity, respectively q-concavity, holds
true for any choice of disjointly supported elements x1, . . . , xn in X.

It is known that given 0 < p < ∞, if X is p-convex (resp. p-concave),
thenX is r-convex (resp. r-concave) for 0 < r < p (resp. r > p) ([3],[8]). We
also observe that for 0 < p ≤ 1, p-convexity implies p-normability and this
in turn yields an upper p-estimate. The opposite implication is not satisfied
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since the weak space Lp,∞(0, 1), 0 < p < 1, is p-normable but not p-convex
(cf. [8]). For p = 1, 1-convexity is equivalent to normability.

Given a quasi-Banach lattice X we define two types of convexity and con-
cavity indices as follows:

pc(X) = sup{p > 0 : X is p-convex},
qc(X) = inf{q > 0 : X is q-concave},
pd(X) = sup{p > 0 : X satisfies an upper p-estimate},
qd(X) = inf{q > 0 : X satisfies a lower q-estimate}.

The indices pd(X) and qd(X) were introduced by T. Shimogaki in 1965 for
order complete Banach lattices, by J. J. Grobler in 1975 for Banach function
spaces and in 1977 by P. Dodds for general Banach lattices (cf. [28] for suitable
references). Obviously pc(X) ≤ pd(X) ≤ qd(X) ≤ qc(X), and by the Aoki-
Rolewicz theorem, pd(X) > 0. It is also well known that for Banach lattices,
pc(X) = pd(X) and qc(X) = qd(X) ([17]). For quasi-Banach lattices Kalton
proved (Th. 2.2 in [8]) that pc(X) = pd(X) iffX is L-convex, i.e., there exists
0 < ε < 1 so that if y ∈ X with ‖y‖ = 1 and 0 ≤ xi ≤ y, i = 1, . . . , n,
satisfy (x1 + . . . + xn)/n ≥ (1 − ε)y, then max1≤i≤n ‖xi‖ ≥ ε. He also
gave an example of a quasi-Banach space X which is not L-convex, that is
0 = pc(X) < pd(X).

Given 0 < p < ∞ and a quasi-Banach lattice X let X(p) denote the p-
convexification of X. Recall that X(p) = {x : |x|p ∈ X} and ‖x‖X(p) =
‖|x|p‖1/p is a quasi-norm in X(p). Observe that X(p) is 1-convex (resp. 1-
concave) iff X is 1/p-convex (resp. 1/p-concave).

ByL0 we denote the space of all (equivalence classes of) Lebesgue-measur-
able functions f from I to R, where either I = (0, 1] or I = (0,∞) or I = N.
In the latter case L0 is the space of all real valued sequences defined on a
discrete measure space (N, 2N) with a counting measure. A quasi-normed
function space E = (E, ‖ ‖E) is a quasi-normed sublattice of L0 such that

(i) If f ∈ L0, g ∈ E and |f | ≤ |g| a.e., then f ∈ E and ‖f ‖E ≤ ‖g‖E .

(ii) There exists f ∈ E such that f (t) �= 0 for all t ∈ I .

If E = (E, ‖ ‖E) is complete then it is called a quasi-Banach function
space. We say that an element f ∈ E is order continuous, if for any sequence
(fn) in E such that |fn| → 0 a.e. and |fn| ≤ f a.e., there holds ‖fn‖E → 0.
Let Ea denote the subspace of all order continuous elements in E. Then E
is called order continuous if E = Ea . We say that (E, ‖ ‖E) has the Fatou
property, if whenever 0 ≤ fn ∈ E for n ∈ N, f ∈ L0, fn ↑ f a.e. and
supn ‖fn‖E <∞, then f ∈ E and ‖fn‖E ↑ ‖f ‖E .
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A quasi-Banach function space E is said to be rearangement invariant (or
r.i.) if for every f ∈ L0 and g ∈ E with µf = µg , we have f ∈ E and
‖f ‖E = ‖g‖E . Recall that µf denotes the distribution function of f , i.e.,
µf (λ) = |{t ∈ I : |f (t)| > λ}|, λ ≥ 0, where | | is the Lebesgue measure
on (0, 1] or (0,∞) or a counting measure in the discrete case. The decreasing
rearrangement f ∗ of f is defined by f ∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t ∈ I .

Given a r.i. space E, let  be its fundamental function, that is  (0) = 0
and if I = (0, 1] or I = (0,∞) then  (t) = ‖χ(0,t)‖E , t ∈ I . Obviously  
is increasing. One can also show, by following the proof in the Banach space
case (see e.g. Th. 4.7 and 4.5 in [16]), that (u)/ur is decreasing, where r > 0
is the constant such that E is r-normable. This implies among others that  
is continuous on (0,∞) and right-continuous at 0 iff E = Ea , whenever E
is defined on (0, 1] or (0,∞). For a r.i. quasi-Banach space E over (I, | |)
the lower and upper Boyd indices are defined analogously as for r.i. Banach
spaces that is

p(E) = sup{p > 0 : there exists C > 0, ‖Da‖ ≤ Ca− 1
p for all 0 < a < 1},

q(E) = inf{q > 0 : there exists C > 0, ‖Da‖ ≤ Ca− 1
q for all a > 1},

whereDa : E → E is a dilation operator defined on I = (0,∞) asDaf (t) =
f (at) and on I = (0, 1] as Daf (t) = f (at) for 0 ≤ t ≤ min(a−1, 1) and
Daf (t) = 0 for min(a−1, 1) < t ≤ 1 ([17]). In the case of the discrete measure
we define the Boyd indices similarly replacing the dilation of functions by
dilation of sequences defined for f = (x1, x2, . . .) and n ∈ N as

dnf= n−1

( n∑
i=1

xi,

2n∑
i=n+1

xi, . . .

)
or d1/nf= (

n︷ ︸︸ ︷
x1, . . . , x1,

n︷ ︸︸ ︷
x2, . . . , x2, x3, . . .).

For a r.i. quasi-Banach function space E, pc(E) ≤ p(E) ≤ q(E) ≤ qc(E)

(cf. [17], p. 132).
Given an arbitrary function F : J → R+, where J is an interval in R+, we

define the lower and upper Matuszewska-Orlicz indices as follows:

α(F ) = sup{p ∈ R : F(au) ≤ CapF(u)
for some C > 0 and all u ∈ J , 0 < a ≤ 1, au ∈ J },

β(F ) = inf{q ∈ R : F(au) ≤ CaqF (u)
for some C > 0 and all u ∈ J , a ≥ 1, au ∈ J }.

If J = R+ and F : R+ → R+ then α(F ) and β(F ) will be often denoted by
αa(F ) and βa(F ). For F : R+ → R+ we shall also consider the indices for
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“large arguments”

α∞(F ) = sup{p ∈ R : F(au) ≤ CapF(u)
for some C > 0, u0 ≥ 0 and all u ≥ u0, 0 < a ≤ 1},

β∞(F ) = inf{q ∈ R : F(au) ≤ CaqF (u)
for some C > 0, u0 ≥ 0 and all u ≥ u0, a ≥ 1},

and for “small arguments”

α0(F ) = sup{p ∈ R : F(au) ≤ CapF(u)
for some C > 0, u0 > 0 and all 0 ≤ u ≤ u0, 0 < a ≤ 1},

β0(F ) = inf{q ∈ R : F(au) ≤ CaqF (u)
for some C > 0, u0 > 0 and all 0 ≤ u ≤ u0, a ≥ 1}.

Let F̃ (u) = 1/F (1/u) assuming that 1/∞ = 0 and 1/0 = ∞. Some auxiliary
relations between indices and operations on functions are listed in the following
proposition.

Proposition 1.1 ([20], [21]). Let F,G : R+ → R+ be strictly increasing
unbounded functions. Then the following equalities are satisfied:

(i) αa(F ) = αa(F̃ ), βa(F ) = βa(F̃ ), α∞(F ) = α0(F̃ ), β∞(F ) = β0(F̃ ).

(ii) αj (F−1) = 1/βj (F ) for j = ∞, 0, a.

(iii) αj (F ◦G) ≥ αj (F )αj (G), βj (F ◦G) ≤ βj (F )βj (G) for j = ∞, 0, a.

The equalities hold if either F or G is a power function.

A mapping ϕ : R+ → R+ is said to be an Orlicz function if ϕ(0) = 0,
ϕ is continuous, strictly increasing and limu→∞ ϕ(u) = ∞. For any Orlicz
function ϕ and any quasi-Banach function lattice (E, ‖ ‖E), we define the
Calderón-Lozanovskii space Eϕ by

Eϕ = {f ∈ L0 : ϕ ◦ (λ|f |) ∈ E for some λ > 0},
where ϕ ◦ |f |(t) = ϕ(|f (t)|) for any t ∈ I . For every f ∈ Eϕ the following
functional is finite

‖f ‖ := ‖f ‖ϕ = inf{λ > 0 : ρϕ(f/λ) ≤ 1},
where

ρ(f ) := ρϕ(f ) =
{ ‖ϕ ◦ |f |‖E, if ϕ ◦ |f | ∈ E

∞, otherwise.
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If E is a Banach function space with the Fatou property and ϕ is a convex
Orlicz function, then (Eϕ, ‖ ‖ϕ) is a Banach function space ([2], [6]) and then
Eϕ is a special case of a general Calderón-Lozanovskii construction+(E,F ),
where E is a Banach function space and F = L∞ (cf. [19]). If E = L1 then
Eϕ is an Orlicz space. If ϕ(u) = up with p ≥ 1, thenEϕ is a p-convexification
E(p) of E and by analogy Eϕ is called a ϕ-convexification of E whenever ϕ is
convex. We also observe that ifE is an r.i. space thenEϕ is also rearrangement
invariant.

In the process of studying the properties of Eϕ , we extract three classes of
quasi-Banach spaces E:

(1) L∞ ⊂ E,

(2) E ⊂ L∞,

(3) neither L∞ ⊂ E nor E ⊂ L∞.

These classes determine conditions imposed on ϕ. In general, the first class
is associated with the behaviour of ϕ for large arguments, the second class
with small arguments, and the third one with all arguments. Therefore the
Matuszewska-Orlicz indices marked with “∞” will usually appear in case (1)
of E, those with “0” will occur in case (2) and the indices with “a” will be
of use for class (3) of E. Notice that if E is a r.i. space over ((0, 1], | |) then
L∞ ⊂ E and if E is over (N, 2N) then E ⊂ L∞.

Since in the sequel we frequently use the terms “all arguments”, “large
arguments” and “small arguments” we will abbreviate them as “a.a.”, “l.a.”
and “s.a.”, respectively.

Recall that ϕ satisfies condition ,2 for l.a., s.a. or a.a. whenever there
exist K > 0 and u0 ≥ 0 such that ϕ(2u) ≤ Kϕ(u) for all u ≥ u0, for all
0 ≤ u ≤ u0 with u0 > 0, or for all u ≥ 0, respectively. It is well known that
ϕ satisfies condition ,2 for l.a., s.a. or a.a. iff βj (ϕ) < ∞ for j = ∞, j = 0
or j = a, respectively ([20], [21]). The Orlicz functions ϕ and ψ are said to
be equivalent for a.a. (resp. l.a., s.a.) if there exist positive constants Ci,Ki ,
i = 1, 2, such that C1ϕ(K1u) ≤ ψ(u) ≤ C2ϕ(K2u) for every u ≥ 0 (resp.
u ≥ u0, 0 ≤ u ≤ u0 with u0 > 0).

For equivalent functions the suitable Matuszewska-Orlicz indices are equal
([22], [20], [21]), where “a”, “∞” or “0” indices are associated with equival-
ence for all, large or small arguments, respectively.

An arbitrary function F : R+ → R+ is said to be pseudo-increasing for a.a.
(resp. l.a., s.a.) whenever there exist C > 0, u0 ≥ 0 such that F(u) ≤ CF(v)
for all 0 ≤ u < v (resp. u0 ≤ u < v, 0 ≤ u < v ≤ u0). F is said to be
pseudo-decreasing if the suitable reverse inequality is satisfied. The following
result is well known.
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Theorem 1.2 ([22]). Let ϕ be an Orlicz function.

(i) If ϕ(u)/u is pseudo-increasing (for a.a., l.a. or s.a.), then there exists a
convex Orlicz function equivalent to ϕ (for a.a., l.a. or s.a. respectively).

(ii) If ϕ(u)/u is pseudo-decreasing (for a.a., l.a. or s.a.), then there exists a
concave Orlicz function equivalent toϕ (for a.a., l.a. or s.a. respectively).

2. Properties of Calderón-Lozanovskii spaces

We start this section with two lemmas that have their analogies in Banach
spaces.

Lemma 2.1. A quasi-normed function space (E, ‖ ‖E) with the Fatou
property is complete.

Proof. Let (fn) ⊂ E be a Cauchy sequence. By the Aoki-Rolewicz the-
orem we assume that (E, ‖ ‖E) is a p-norm for some 0 < p ≤ 1. Follow-
ing the proof of Theorem 1 on p. 96 in [14] we can show that there exists
a subsequence (fnk ) and f ∈ L0 such that fnk → f a.e.. Assuming that
fn → f a.e. and applying the Fatou property we have that f ∈ E and for all
n ∈ N, ‖f − fn‖ ≤ lim infm→∞ ‖fm − fn‖E , which completes the proof.

Lemma 2.2. Let (E, ‖ ‖E) be a quasi-Banach space with the Fatou property.
Then the following properties are satisfied:

(i) For all f ∈ Eϕ , ρ(f ) ≤ 1 if and only if ‖f ‖ ≤ 1.

(ii) The space (Eϕ, ‖ ‖) has the Fatou property.

Proof. Since (E, ‖ ‖E) satisfies the Fatou property, the function h(λ) =
ρ(λf ), f ∈ L0, is left-continuous on (0,∞). This fact immediately implies (i).

In order to show (ii), let 0 ≤ fn ∈ Eϕ , f ∈ L0, fn ↑ f a.e. and M =
supn∈N ‖fn‖E < ∞. Assuming fn �= 0 a.e., ρ(fn/‖fn‖) ≤ 1 for all n ∈ N by
left-continuity of h(λ). By the Fatou property of E, ϕ(|f |/M) ∈ E and

ρ(f/M) = ‖ϕ(|f |/M)‖E ≤ lim inf
n→∞ ‖ϕ(|fn|/‖fn‖)‖E ≤ 1.

Hence f ∈ Eϕ and ‖f ‖ = supn ‖fn‖, which completes the proof.

We will need further the following result comparing different Eϕ spaces.

Theorem 2.3. Let E be a quasi-Banach function space and ϕ and ψ be
Orlicz functions with αj (ϕ) > 0 and αj (ψ) > 0 for j = ∞, j = 0 and j = a
whenever E is in class (1), (2) or (3), respectively. Then

Eψ ⊂ Eϕ and ‖f ‖ϕ ≤ K‖f ‖ψ
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for all f ∈ Eϕ and some K > 0, if there exist Ki , i = 1, 2, and u0 ≥ 0 such
that

(2.1) ϕ(K1u) ≤ K2ψ(u),

for all u ≥ u0 in case (1) of E, for 0 ≤ u ≤ u0 with u0 > 0 when E is in class
(2), and for all u ≥ 0 if E is in class (3).

Proof. Assume that E is in class (1) and that the inequality (2.1) holds for
large arguments and let α∞(ϕ) > 0. Let C > 1 be the constant in a triangle
inequality of ‖ ‖E . We choose the constants Ki , i = 1, 2, in (1.1) such that

C‖ϕ(K1u0)‖E ≤ 1/2,

and K2 > 1. Letting f ∈ Eψ with ‖f ‖ψ ≤ 1, ‖ψ(|f |)‖E ≤ 1 and

ϕ(K1|f (t)|) ≤ ϕ(K1u0)+K2ψ(|f (t)|)
for all t ∈ I . Hence

‖ϕ(K1|f |)‖E ≤ C‖ϕ(K1u0)‖E + CK2 = M,
whereM > 1. By the assumption α∞(ϕ) > 0, for some p > 0 and all t ∈ I ,

ϕ(K1/(2MC)
1/p|f (t)|) ≤ ϕ(K1u0)+ (2M)−1ϕ(K1|f (t)|).

Thus for K−1 = K1/(2MC)1/p,

ρϕ(K
−1f ) ≤ C‖ϕ(K1u0)‖E + (2MC)−1‖ϕ(K1|f |)‖E ≤ 1,

which implies clearly that ‖f ‖ϕ ≤ K . Thus ‖f ‖ϕ ≤ K‖f ‖ψ and Eψ ⊂ Eϕ .
The proofs of the other two cases are similar so we omit the details.

We are able to provide partial converse of the above comparison result.
Below we present a sample of such result in the case when L∞ ⊂ E and the
measure is nonatomic.

Theorem 2.4. LetE be a quasi-Banach function space on (0, 1] or (0,∞)
with the Fatou property. Assume that L∞ ⊂ E and that Ea �= {0}. Given
Orlicz functions ϕ and ψ , a necessary condition for the inclusion Eϕ ⊂ Eψ is
the inequality (2.1).

Proof. Without loss of generality we assume that Ea = E. Let 0 < r ≤ 1
be the number such that E is r-normable. At first observe that ν(A) = ‖χA‖E
defined on a σ -algebra of Lebesgue measurable sets in I is a submeasure in
the sense of Definition 1 in [5]. Indeed, limn ν(An) = 0 for every sequence
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(An) with An ↘ ∅, in view of order continuity of E. Moreover, for every set
A and ε > 0 if δ = ((ν(A)+ ε)r −νr(A))1/r , then for every B with ν(B) ≤ δ,

ν(A ∪ B) ≤ (‖χA‖r + ‖χB‖r )1/r ≤ (νr(A)+ δr)1/r = ν(A)+ ε.
Similarly, in view of νr(A \ B) ≥ νr(A) − νr(A ∩ B), it yields that if δ =
(νr(A)− (ν(A)− ε)r)1/r and ν(B) ≤ δ then

ν(A)− ν(A \ B) ≤ ν(A)− (νr(A)− δr)1/r = ε.
As a consequence, by Theorem 10 in [5], we conclude that the submeasure
ν(A) = ‖χA‖E has the Darboux property.

After this preparation, assume that inequality (2.1) is not satisfied for large
arguments. Thus, for every n,m ∈ N there exists unm > 0 such that unm → ∞
as n,m→ ∞ and

ϕ
(
2−(n+m)unm

) ≥ 22(n+m)ψ(unm)

for all n,m ∈ N. By the Darboux property of ν, there exist measurable disjoint
sets Anm such that

‖χAnm‖E = ‖χI‖E
/(

2n+mψ(unm)
)
,

for sufficiently large n,m ∈ N. Define for t ∈ I ,

f (t) =
{
unm, if t ∈ Anm
0, otherwise.

Then

ρrψ(f ) =
∥∥∥∥

∞∑
n=1

∞∑
m=1

ψ(unm)χAnm

∥∥∥∥
r

E

≤
∞∑
n=1

∞∑
m=1

ψr(unm)‖χAnm‖rE = ‖χI‖rE
∞∑
n=1

∞∑
m=1

1

2(n+m)r
<∞,

and so f ∈ Eψ . However, on the other hand for any λ > 0 there existsM ∈ N
such that 2−M < λ and assuming that ϕ(λf ) ∈ E we have for every n,m > M ,

∞ > ρϕ(λf ) = ‖ϕ(λf )‖E ≥
∥∥∥∥∑
n>M

∑
m>M

ϕ
(
2−(n+m)unm

)
χAnm

∥∥∥∥
E

≥ ϕ(2−(n+m)unm
)‖χAnm‖E = ϕ

(
2−(n+m)unm

)
2n+mψ(unm)

‖χI‖E ≥ 2n+m‖χI‖E,
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which is a contradiction. Thus ρϕ(λf ) = ∞ for every λ > 0, and so f /∈ Eϕ .

Remark. If Ea = {0} then the above result does not need to hold. Indeed,
let E = L∞. Then Ea = {0} and for any Orlicz functions ϕ and ψ , Eϕ =
Eψ = L∞ and ϕ−1(1)‖f ‖ϕ = ‖f ‖∞ = ψ−1(1)‖f ‖ψ for every f ∈ L∞.

Theorem 2.5. LetE be a quasi-Banach space with the Fatou property and
ϕ be an Orlicz function such that αj (ϕ) > 0 for j = ∞, j = 0 or j = a

whenever E is in class (1), (2) or (3), respectively. Then ‖ ‖ϕ is a quasi-norm
in Eϕ and the space (Eϕ, ‖ ‖ϕ) is complete.

Proof. We shall show that ‖ ‖ϕ is a quasi-norm under the assumption that
αa(ϕ) > 0. For other indices the proof will be analogous. At first observe that
if E is r-normable for some 0 < r ≤ 1 and when ϕ is convex then

∥∥∥∥
n∑
i=1

fi

∥∥∥∥
ϕ

≤
( n∑
i=1

‖fi‖rϕ
)1/r

for anyf1, . . . , fn inEϕ . Indeed, for any ε > 0, settingar = ∑n
i=1(‖fi‖ϕ+ε)r ,

we obtain

∥∥∥∥ϕ
(∣∣∣∣

n∑
i=1

fi

∣∣∣∣
/
a

)∥∥∥∥
E

≤
∥∥∥∥
n∑
i=1

‖fi‖ϕ + ε
a

ϕ

(
fi

‖fi‖ϕ + ε
)∥∥∥∥

E

≤
( n∑
i=1

∥∥∥∥‖fi‖ϕ + ε
a

ϕ

(
fi

‖fi‖ϕ + ε
)∥∥∥∥

r

E

)1/r

≤ 1.

Since αa(ϕ) > 0, there exists 0 < p ≤ 1 such that ϕ(u1/p)/u is pseudo-
increasing for a.a., and by Theorem 1.2 one can find an Orlicz function ψ
equivalent to ϕ such thatψ(u1/p) is convex. Thus, in view of Theorem 2.3, we
can assume that ϕ(u1/p) is convex. Observe also that ‖f ‖ϕ = ‖|f |p‖1/p

ϕ(u1/p)
.

By combining the above, for any f1, . . . , fn ∈ Eϕ ,

∥∥∥∥
n∑
i=1

fi

∥∥∥∥
ϕ

≤
∥∥∥∥
( n∑
i=1

|fi |p
)1/p∥∥∥∥

ϕ

=
∥∥∥∥
n∑
i=1

|fi |p
∥∥∥∥

1/p

ϕ(u1/p)

≤
( n∑
i=1

‖|fi |p‖rϕ(u1/p)

)1/rp

=
( n∑
i=1

‖fi‖prϕ
)1/rp

,

which means that ‖ ‖ϕ is a quasinorm. Finally we note that the space is com-
plete in view of Lemmas 2.1 and 2.2, which ends the proof.
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3. Indices of convexity and concavity of Calderón-Lozanovskii spaces

Before we prove our main result we will need the following lemma.

Lemma 3.1. Let ϕ be an Orlicz function and 0 < s <∞. Asume also that
ϕ(us) is convex (resp. concave). Then for any f ∈ Eϕ , the following holds
true:

(i) If ρ(f ) ≤ 1 then ‖f ‖ ≥ ρs(f ) (resp. ‖f ‖ ≤ ρs(f )).
(ii) If ρ(f ) ≥ 1 then ‖f ‖ ≤ ρs(f ) (resp. ‖f ‖ ≥ ρs(f )).

Proof. We shall prove only (i) assuming that ϕ(us) is concave. Indeed, if
ρ(f ) ≤ 1 then

ϕ((u/ρ(f ))s) ≤ ϕ(us)/ρ(f ),
for all u ≥ 0, whence

ρ(f/ρs(f )) = ‖ϕ((|f |1/s/ρ(f ))s)‖E ≤ ‖ϕ(|f |)/ρ(f )‖E = 1.

Hence ‖f ‖ ≤ ρs(f ).
Theorem 3.2. Let E and ϕ be as in Theorem 2.5. Then the following

inequalities hold:

(i) pd(E)αj (ϕ) ≤ pd(Eϕ) ≤ pd(E)βj (ϕ),
(ii) qd(E)αj (ϕ) ≤ qd(Eϕ) ≤ qd(E)βj (ϕ),

for j = ∞, j = 0 or j = a wheneverE is in class (1), (2) or (3), respectively.

Proof. We shall prove only the right hand side inequalities in both (i)
and (ii) for j = ∞. The remaining inequalities can be obtained analogously.
Starting with (i) we assume that both β∞(ϕ) and pd(E) are finite. For any
r > pd(E), E does not satisfy an upper r-estimate, that is for every n ∈ N
there exist disjoint nonnegative functions f1, . . . , fm in E such that

∥∥∥∥
m∑
i=1

fi

∥∥∥∥
E

≥ 2n
( m∑
i=1

‖fi‖rE
)1/r

and
∑m
i=1 ‖fi‖rE = 1. Setting gi = ϕ−1(fi) it holds

ρ(gi) = ‖fi‖E ≤ 1 and ρ

( m∑
i=1

gi

)
=

∥∥∥∥
m∑
i=1

fi

∥∥∥∥
E

≥ 1.

Let q > β∞(ϕ)r . Then q/r > β∞(ϕ) and so ϕ(ur/q)/u is pseudo-decreas-
ing for l.a.. Thus in view of Theorems 1.2 and 2.3, we assume without loss of
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generality that ϕ(ur/q) is concave. Now by Lemma 3.1,

‖gi‖q ≤ ρr(gi) and

∥∥∥∥
m∑
i=1

gi

∥∥∥∥
q

≥ ρr
( m∑
i=1

gi

)
.

Consequently

(2n)r/q
( m∑
i=1

‖gi‖q
)1/q

≤ (2n)r/q
( m∑
i=1

ρr(gi)

)1/q

=
(

2n
( m∑
i=1

‖fi‖rE
)1/r)r/q

≤
∥∥∥∥
m∑
i=1

fi

∥∥∥∥
r/q

E

= ρr/q
( m∑
i=1

gi

)
≤

∥∥∥∥
m∑
i=1

gi

∥∥∥∥,
which proves that Eϕ does not satisfy an upper q-estimate. We conclude that
pd(Eϕ) ≤ pd(E)β∞(ϕ).

In order to show (ii) we shall prove at first that Eϕ satisfies a lower q-
estimate whenever E satisfies a lower q/s-estimate and ϕ(u1/s) is concave.
Since α∞(ϕ) > 0, ϕ(ur)/u is pseudo-increasing for l.a. and some r > 0. Thus
in view of Theorem 1.2, we can assume that ϕ(ur) is convex.

Now let {fi}ni=1 ⊂ Eϕ be a sequence of functions with disjoint supports.
Setting aq = ∑n

i=1 ‖fi‖q , we shall show that ρ
(∑

fi/a
)

is bounded below.
Assuming that ρ

(∑
fi/a

)
<∞ it follows

ρ

( n∑
i=1

fi/a

)
=

∥∥∥∥ϕ
( n∑
i=1

fi/a

)∥∥∥∥
E

=
∥∥∥∥
n∑
i=1

ϕ(fi/a)

∥∥∥∥
E

≥ K
( n∑
i=1

‖ϕ(fi/a)‖q/sE
)s/q

= K
( n∑
i=1

(ρ1/s(fi/a))
q

)s/q
≥ K

( n∑
i=1

‖fi/a‖q
)s/q

= K,

where K is a constant in the lower q/s-estimate. Since we can always take
0 < K < 1, by convexity of ϕ(ur) we obtain

ρ

( n∑
i=1

fi/K
ra

)
=

∥∥∥∥ϕ
(

1

K

( n∑
i=1

fi/a

)1/r)r∥∥∥∥
E

≥ (1/K)
∥∥∥∥ϕ

( n∑
i=1

fi/a

)∥∥∥∥
E

= ρ
( n∑
i=1

fi/a

)
/K ≥ 1,

which simply means that Eϕ satisfies a lower q-estimate.
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If q > qd(E)β
∞(ϕ) then there exist r, s such that r > qd(E) and s >

β∞(ϕ) and rs = q. Thus qd(E) < q/s. Since β∞(ϕ) < s, the function
ϕ(u1/s)/u is pseudo-decreasing for l.a., and by Theorem 1.2 there exists an
Orlicz function ψ equivalent to ϕ for l.a. and such that ψ(u1/s) is concave. By
the first part of the proof, Eψ and hence Eϕ satisfies a lower q-estimate. Thus
we have showed the right hand side of inequality (ii) and so the proof of the
theorem is complete.

Proposition 3.3. LetE be an L-convex quasi-Banach function space with
the Fatou property and let ϕ be an Orlicz function such that 0 < αj(ϕ) ≤
βj (ϕ) < ∞ for j = ∞, 0, a if E is in class (1), (2), (3), respectively. Then
Eϕ is L-convex.

Proof. Suppose at first that ϕ is convex and let 1/r > βj (ϕ). Then in view
of Theorems 1.2 and 2.3, we assume without loss of generality that ϕ(ur) is
concave. Let now 0 ≤ fi ≤ h, ‖h‖ = 1 and

(f1 + . . .+ fn)/n ≥ (1 − δ)h,
where δ > 0 is such that (1 − δ)1/r = 1 − ε, and 0 < ε < 1 is the constant
from L-convexity of E. Then ϕ(h) ≥ ϕ(fi), ‖ϕ(h)‖E = 1 and

(ϕ(f1)+ . . .+ ϕ(fn))/n ≥ ϕ((f1 + . . .+ fn)/n)
≥ ϕ((1 − δ)h) ≥ (1 − δ)1/rϕ(h) = (1 − ε)ϕ(h).

The L-convexity of E then implies that max ‖ϕ(fi)‖E ≥ ε. Thus
max ‖ϕ(fi/ε)‖E ≥ max ‖(1/ε)ϕ(fi)‖E ≥ 1 and so max ‖fi‖ ≥ ε. It follows
that Eϕ is L-convex whenever ϕ is convex.

By the assumption that the lower index of ϕ is positive and in view of
Theorems 1.2 and 2.3, we assume that ϕ(u1/p) is convex for some 0 < p <∞.
Now applying the first part, Eϕ(u1/p) is L-convex and so s-convex for some
0 < s ≤ 1 by Th. 2.2 in [8]. Therefore, for any functions f1, . . . , fn in Eϕ ,

∥∥∥∥
( n∑
i=1

|fi |ps
)1/ps∥∥∥∥

ϕ

=
∥∥∥∥
( n∑
i=1

|fi |ps
)1/s∥∥∥∥

1/p

ϕ(u1/p)

≤
(( n∑

i=1

‖|fi |p‖sϕ(u1/p)

)1/s)1/p

=
( n∑
i=1

‖fi‖psϕ
)1/ps

.

Thus Eϕ is ps-convex and so it is L-convex.

The next Corollary is an immediate consequence of Theorem 3.2, Propos-
ition 3.3 and Th. 2.2 in [8].
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Corollary 3.4. Let E and ϕ be as in Proposition 3.3. Then pd(E) =
pc(E), pd(Eϕ) = pc(Eϕ) and in consequence

pc(E)α
j (ϕ) ≤ pc(Eϕ) ≤ pc(E)βj (ϕ)

for j = ∞, j = 0 or j = a wheneverE is in class (1), (2) or (3), respectively.

Corollary 3.5. Let E and ϕ be as in Proposition 3.3, and assume that
0 < p ≤ 1. Then Eϕ is p-normable whenever pc(E)αj (ϕ) > p, and it is not
p-normable when pc(E)βj (ϕ) < p. In particular if pc(E)αj (ϕ) > 1 thenEϕ
is normable, and if pc(E)βj (ϕ) < 1 then Eϕ is not normable.

Proof. If pc(E)αj (ϕ) > p then pc(Eϕ) > p by Corollary 3.4, and so
Eϕ is p-convex which yields p-normability. If p > pc(E)β

j (ϕ) then p >
pc(Eϕ) = pd(Eϕ), and then Eϕ does not have an upper p-estimate and hence
it is not p-normable.

In the case when E is a Banach function space and ϕ is a convex Orlicz
function, so Eϕ is a Banach lattice, we can restate Theorem 2.5 in terms of
indices pc(Eϕ) and qc(Eϕ). We can also infer some corollaries about type and
cotype of Eϕ . We refer to [17] for definition of type and cotype of Banach
spaces and their relations with convexity and concavity in Banach lattices.

Corollary 3.6. LetE be a Banach function space with the Fatou property
and ϕ be a convex Orlicz function. Then the following inequalities hold:

(i) pc(E)αj (ϕ) ≤ pc(Eϕ) ≤ pc(E)βj (ϕ),
(ii) qc(E)αj (ϕ) ≤ qc(Eϕ) ≤ qc(E)βj (ϕ),

for j = ∞, j = 0 or j = a wheneverE is in class (1), (2) or (3), respectively.

In the next two corollaries we will say thatϕ satisfies condition,2 whenever
ϕ satisfies ,2 for l.a., s.a. or a.a. for E in class (1), (2) or (3), respectively.

Corollary 3.7. LetE be a Banach function space with the Fatou property
and ϕ be a convex Orlicz function. Then Eϕ has a finite cotype if and only if
E has a finite cotype and ϕ satisfies condition ,2.

Proof. IfE has a finite cotype then qc(E) <∞, and if ϕ satisfies condition
,2 then βj (ϕ) <∞ for suitable j . Now, by (ii) of Corollary 3.6, qc(Eϕ) <∞
which yields that cotype of Eϕ is finite ([17], p. 100). Conversely, if Eϕ has
finite cotype then again by (ii) of Corollary 3.6, E must also have a finite
cotype. If ϕ does not satisfy condition,2 then by Corollary 5 in [6], Eϕ is not
order coninuous and thus, it contains an order isomorphic copy of l∞ ([14],
[17]), and so Eϕ has no finite cotype.
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Corollary 3.8. LetE and ϕ be as in Corollary 3.7. If ϕ satisfies condition
,2 and E has a finite cotype and either E has a nontrivial type or αj (ϕ) > 1
then Eϕ has a nontrivial type. If Eϕ has a nontrivial type, then ϕ satisfies
condition ,2 and E has a finite cotype.

Proof. It follows from the estimation of pc(Eϕ) in (i) of Corollary 3.6, the
relations between type and convexity ([17], p. 100) and the well known fact
that a Banach space with a nontrivial type must possess a nontrivial cotype.

Remark. The full converse of the first part of the above corollary does not
hold. The following example of E and ϕ (cf. [2]) shows that pc(E) = 1 =
αa(ϕ), E has finite cotype, ϕ satisfies condition ,2 for a.a., and yet type of
Eϕ is 2. Let

ϕ(u) =
{
u, if 0 ≤ u ≤ 1

u2, if u > 1,
ψ(u) =

{
u2, if 0 ≤ u ≤ 1

2u− 1, if u > 1,

and letE be an Orlicz spaceLψ on (0,∞). It is easy to check thatαa(ϕ) = 1 =
αa(ψ) and that both ϕ and ψ satisfy condition,2 for a.a.. Thus βa(ψ) <∞.
Moreover, it is well known that pc(Lψ) = αa(ψ) and qc(Lψ) = βa(ψ) (cf.
[17], p. 139). Hence pc(Lψ) = 1 and qc(Lψ) < ∞. The latter means that the
cotype of Lψ is finite. However Eϕ = Lψ◦ϕ = L2, and so the type of Eϕ is 2.

4. Boyd indices of Calderón-Lozanovskii spaces

Below there are given some estimations of the Boyd indices of the Calderón-
Lozanovskii space Eϕ in the case when E is a r.i. space.

Theorem 4.1. Given a r.i. quasi-Banach function space E with the Fatou
property and an Orlicz function ϕ the following inequalities are satisfied:

(i) p(E)αj (ϕ) ≤ p(Eϕ) ≤ q(Eϕ) ≤ q(E)βj (ϕ) for j = ∞, j = 0 or
j = a when E is in class (1), (2) or (3), respectively.

(ii) If I = (0, 1] or I = (0,∞) then p(Eϕ) ≤ 1/β(ϕ̃−1 ◦  ), q(Eϕ) ≥
1/α(ϕ̃−1 ◦ ), where  is a fundamental function of E.

Proof. (i) We will carry out the proof only for lower index, in the case
when L∞ ⊂ E. Assume that ‖1‖E = 1, p(E) > 0 and α∞(ϕ) > 0. Let
0 < p < α∞(ϕ) and 0 < r < p(E). For any f ∈ Eϕ with ‖f ‖ ≤ 1 it
holds ‖ϕ(|f |)‖E ≤ 1. Thus ϕ(|f |) ∈ E and clearly ϕ(|Daf |) ∈ E for any
0 < a < 1. By the definition of p(E) we have the estimation

‖ϕ(|Daf |)‖E ≤ Ka−1/r‖ϕ(|f |)‖E ≤ Ka−1/r ,
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for every 0 < a < 1 and some K > 1. Since p < α∞(ϕ), in view of
Theorems 1.2 and 2.3 we assume without loss of generality that ϕ(u1/p) is
convex. Thus for any 0 < a < 1 and all u ∈ I

K−1a1/rϕ(|Daf (u)|) ≥ ϕ(K−1/pa1/rp|Daf (u)|)

and so

‖ϕ(K−1/pa1/rp|Daf |)‖E ≤ K−1a1/r‖ϕ(|Daf |)‖E ≤ 1.

Hence ‖Daf ‖ ≤ K1/pa−1/rp for every f with ‖f ‖ ≤ 1 and thus p(Eϕ) ≥
p(E)α∞(ϕ).

(ii) Let’s show only the first inequality. By the assumption of symmetry
of E, for every measurable A ⊂ I with |A| < ∞, χA ∈ Eϕ . Moreover,
‖χA‖ = ϕ̃−1 ◦ (|A|). Now, for any 0 < p < p(Eϕ) there exists C > 0 such
that

‖χ(0,a−1|A|)‖ ≤ Ca−1/p‖χ(0,|A|)‖

for every 0 < a < 1, every measurable A with |A| < ∞ and such that
a−1|A| ≤ 1 in case of I = (0, 1]. By the definition of the fundamental function
we obtain for r = 1/p,

ϕ̃−1 ◦ (at) ≤ Carϕ̃−1 ◦ (t)

for every a > 1 and every t ≥ 0 if I = (0,∞), and for every a > 1 and t ≥ 0
with at ≤ 1 in the case when I = (0, 1]. It follows thatp(Eϕ) ≤ 1/β(ϕ̃−1◦ ).

5. Orlicz-Lorentz spaces

Now we apply the results from the previous part to Orlicz-Lorentz spaces.
Although we will consider only spaces defined on I = (0, 1] or I = (0,∞),
the discrete case may be handled analogously. Let w : (0,∞)→ (0,∞) be a
measurable function such that

S(t) :=
∫ t

0
w <∞ for all t ∈ I ,

and S satisfies condition ,2, that is S(2t) ≤ KS(t) for all t ∈ 1
2I and some

K > 0, and

∫ ∞

0
w = ∞ in the case when I = (0,∞).
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Such a functionw will be called a weight function. If α(S) > 0 then the weight
w is often called regular. The Lorentz space;1,w is the set of f ∈ L0 defined
on (0, 1] or (0,∞) and such that

‖f ‖w =
∫
I

f ∗w =
∫
I

f ∗(s)w(s) ds <∞,

where ‖ ‖w is a quasi-norm and (;1,w, ‖ ‖w) is a r.i. quasi-Banach function
space with the Fatou property and its fundamental function equal to S ([11]). It
is clear that L∞ ⊂ ;1,w whenever I = (0, 1] and that neither L∞ ⊂ ;1,w nor
L∞ ⊃ ;1,w whenever I = (0,∞). Thus ;1,w is in class (1) when I = (0, 1]
and in class (3) when I = (0,∞).

Given an Orlicz function ϕ, let ;ϕ,w := (;1,w)ϕ . The space ;ϕ,w is then
called the Orlicz-Lorentz space (cf. [10], [20]). In the case when ϕ(u) = up,
0 < p < ∞, ;ϕ,w is denoted by ;p,w. If αj (ϕ) > 0 for j = a or j = ∞
depending on whether I = (0, 1] or I = (0,∞), then by Theorem 2.5, ;ϕ,w
is a r.i. quasi-Banach function space with the quasi-norm ‖f ‖ := ‖f ‖;ϕ,w =
inf{ε > 0 :

∫
I
ϕ(f ∗/ε)w ≤ 1}.

The Boyd indices of;p,w under these general assumptions that 0 < p <∞
andw is an arbitrary weight, can be calculated analogously as in the case when
;p,w is a Banach space, that is when w is decreasing and p ≥ 1 ([16]). Its
convexity and concavity indices are also known (see [11] and [25] in case of
arbitrary weightw and 0 < p <∞ and also [26] in case whenw is decreasing
and p ≥ 1). Below we summarize all these results.

Theorem 5.1. Given 0 < p < ∞ and a weight function w, the following
holds true:

(i) p(;p,w) = pα(S−1), q(;p,w) = p β(S−1).

(ii) pd(;p,w) = pc(;p,w) = pmin(α(S−1), 1),
qd(;p,w) = qc(;p,w) = p max(β(S−1), 1).

Note that ;p,w is L-convex. Indeed, by condition ,2 of S, α(S−1) =
1/β(S) > 0, which means that ;p,w has some positive convexity and so it is
L-convex.

In view of Theorems 3.2 and 5.1, Corollary 3.4 and the above characteriz-
ation for p = 1, we can state immediately the following theorem.

Theorem 5.2. Let ϕ be an Orlicz function and j = a or j = ∞ for I =
(0,∞) or I = (0, 1], respectively. Assume that 0 < αj(ϕ) ≤ βj (ϕ) < ∞.
Then the following inequalities are satisfied:

(i) min(α(S−1), 1)αj (ϕ)≤pc(;ϕ,w)=pd(;ϕ,w)≤ min(α(S−1), 1)βj (ϕ),
α(S−1)αj (ϕ) ≤ p(;ϕ,w) ≤ 1/β(ϕ̃−1 ◦ S);
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(ii) max(β(S−1), 1)αj (ϕ) ≤ qd(;ϕ,w) ≤ max(β(S−1), 1)βj (ϕ),
β(S−1)βj (ϕ) ≥ q(;ϕ,w) ≥ 1/α(ϕ̃−1 ◦ S).

Remark. In view of the above estimations, the Boyd indices of ;ϕ,w may
be exactly calculated in the case when either ϕ or S is a power function (for w
decreasing and ϕ convex see Th. 6.3 in [20]). Indeed, if e.g. I = (0,∞) and
S(t) = tp, p > 0, then in view of Proposition 1.1,

β(ϕ̃−1 ◦ S) = β(ϕ̃−1)β(S) = β(S)/α(ϕ̃) = β(S)/α(ϕ) = 1/α(ϕ)α(S−1).

Thus p(;ϕ,w) = α(S−1)α(ϕ). With the same S and I = (0, 1], S : (0, 1] →
(0, 1]. Applying the same techniques as in the proof of Proposition 1.1, we
can show that β(ϕ̃−1 ◦ S) = β0(ϕ̃−1)β(S) and that β(S) = 1/α(S−1). Hence
p(;ϕ,w) = α(S−1)α∞(ϕ). In other cases we obtain similar results. Notice
also that the estimations of Boyd indices of ;ϕ,w given in the above theorem
can be obtained from the estimations given in Theorem 3.1 in [23] as well.

By applying Theorem 5.2(ii) we can easily state an appropriate result on
p-normability of ;ϕ,w. Since the question on normability is always of some
importance let’s state this result explicitely.

Corollary 5.3. Let ϕ and j be the same as in Theorem 5.2.
If min(α(S−1), 1)αj (ϕ) > 1, then ;ϕ,w is normable.
If min(α(S−1), 1)βj (ϕ) < 1, then ;ϕ,w is not normable.

It is known that the Lorentz space;p,w, 0 < p <∞, is normable whenever
the Hardy operator

Hf (t) = 1

t

∫ t

0
f ∗(s) ds

is bounded on ;p,w ([25], [27]). We obtain the similar result in the case of
Orlicz-Lorentz space.

Corollary 5.4. Let ϕ and j be the same as in Theorem 5.2.
If α(S−1)αj (ϕ) > 1, then the Hardy operator H is bounded on ;ϕ,w.

Consequently, if min(α(S−1), 1)αj (ϕ) > 1 then

‖|f ‖| := ‖Hf ‖;ϕ,w
is a norm in ;ϕ,w equivalent to ‖f ‖;ϕ,w .

Proof. The boundedness ofH follows from Theorem 5.2(i) and the Mon-
gomery-Smith result ([24]), stating that the Hardy operatorH is bounded on a
r.i. quasi-Banach function space iff its lower Boyd index is strictly bigger than
one.
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Recall thatLϕ(w) denotes the space of all f ∈ L0 such that ‖f ‖Lϕ(w) <∞,
where ‖f ‖Lϕ(w) = inf{ε > 0 :

∫
I
ϕ(|f |/ε)w ≤ 1}. Ifϕ is convex then ‖ ‖Lϕ(w)

is a norm. Now, if min(α(S−1), 1)αj (ϕ) > 1 then αj (ϕ) > 1, and in view of
Theorems 1.2 and 2.3 we assume that ϕ is convex. For every f ∈ ;ϕ,w, the
functional ‖Hf ‖;ϕ,w is finite and equivalent to ‖f ‖;ϕ,w by boundedness ofH .
Moreover, ‖Hf ‖;ϕ,w = ‖Hf ‖Lϕ(w) since (Hf )∗ = Hf . By subadditivity of
H , ‖Hf ‖Lϕ(w) satisfies the triangle inequality and so ‖|f ‖| = ‖Hf ‖;ϕ,w is a
norm in ;ϕ,w equivalent to ‖f ‖;ϕ,w .

We conclude the paper with a corollary on type and cotype of;ϕ,w. Recall
that ϕ∗(u) = supv≥0{uv − ϕ(v)}, u ≥ 0, is a complementary function to ϕ.

Theorem 5.5 ([15]). Let ϕ be a convex Orlicz function andw be a decreas-
ing weight function.

(i) ;ϕ,w has a finite cotype if and only if α(S) > 0 and ϕ satisfies condition
,2 for a.a. (resp. l.a.) when I = (0,∞) (resp. I = (0, 1]).

(ii) ;ϕ,w has a nontrivial type if and only if α(S) > 0 and both ϕ and its
complementary function ϕ∗ satisfy condition,2 for a.a. (resp. l.a.) when
I = (0,∞) (resp. I = (0, 1]).

Proof. (i) By Theorem 5.2(ii), ;1,w has finite cotype iff α(S) > 0. Now
it is enough to apply Corollary 3.7.

(ii) Note that ϕ∗ satisfies condition ,2 for a.a. or l.a. iff αj (ϕ) > 1 for
j = a or j = ∞, respectively. Thus the sufficiency holds in view of (i) and
Corollary 3.8. Conversely, if the type of Eϕ is nontrivial then the cotype is
finite and so α(S) > 0 and ϕ satisfies a suitable condition ,2. It has been
proved in [13] that if ϕ∗ does not satisfy condition ,2, then ;ϕ,w contains an
isomorphic copy of l1, and so it has a trivial type ([4], [17]).
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