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HARMONIC MORPHISMS FROM EVEN-DIMENSIONAL
HYPERBOLIC SPACES

MARTIN SVENSSON

Abstract

In this paper we give a method for constructing complex valued harmonic morphisms in some
pseudo-Riemannian manifolds using a parametrization of isotropic subbundles of the complexified
tangent bundle. As a result we construct the first known examples of complex valued harmonic
morphisms in real hyperbolic spaces of even dimension not equal to 4 which do not have totally
geodesic fibres.

1. Introduction

A harmonic morphism between two pseudo-Riemannian manifolds is a map
which is both harmonic and horizontally conformal, see [6] and [7]. Together
these conditions form an over-determined non-linear system of partial differ-
ential equations. Various geometrical methods have been applied to construct
examples of harmonic morphisms in different contexts.

Regarding locally defined harmonic morphisms in the real 3 and 4-dimen-
sional hyperbolic spaces with values in a surface, a full classification has
been known for some time, see [3] and [1]. This is also the case for locally
defined (submersive) harmonic morphisms with totally geodesic fibres from
any real hyperbolic space into a surface, see [9] and [2, Chapter 6]. Examples
of locally defined harmonic morphisms without totally geodesic fibres from
odd-dimensional real hyperbolic spaces into the complex plane have been
constructed in [9] and [10]. Thus remains the case of locally defined harmonic
morphisms without totally geodesic fibres from even-dimensional real hyper-
bolic spaces into surfaces. In this paper we give a method for constructing
examples of such maps.

As an example we have the following: Let RH 6 be embedded in the 7-
dimensional Minkowski space in the standard way. Then the restriction to
RH 6 of the complex valued map

x �→ (x3 + x5 + i(x6 − x4))(2x7 − x5 + i(2x4 + x6))

(x1 − x2)2
,
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is a harmonic morphism. For the sake of generality, the setting will here be
a bit more general and we will show how the method applies to any pseudo-
Riemannian space form of constant negative curvature.

When the codomain for a map from a pseudo-Riemannian manifold is the
complex plane, the horizontal conformality is equivalent to the fact that the
complex gradient is isotropic, that is, the square of the gradient vanishes.
To construct examples of complex valued harmonic morphisms one could
therefore look for functions whose complex gradients lie in some isotropic
subbundle of the complexified tangent bundle.

On a Riemannian manifold, there is a one-to-one correspondence between
maximal isotropic subbundles of the complexified tangent bundle and almost
Hermitian structures, see e.g. [4]. Given an almost Hermitian structure J on
the Riemannian manifold (M, g), we get a maximal isotropic subbundle of
T M ⊗ C from its (1, 0)-bundle. On the other hand, given such a maximal
isotropic subbundle, we can clearly reconstruct J by requiring it to act on this
bundle by multiplication of i.

This connection between maximal isotropic subbundles and almost Her-
mitian structures is used by Baird andWood in [4] and [5] to construct examples
of complex valued horizontally conformal maps in Euclidean spaces, namely
maps that are holomorphic with respect to some almost Hermitian structure.
Further conditions imply harmonicity of the maps and thus give harmonic
morphisms. Moreover, a parametrization of the almost Hermitian structures
on open subsets of R2m gives conditions on all locally defined complex val-
ued harmonic morphisms in R2m which are holomorphic with respect to some
Hermitian structure ([4, Proposition 3.18]).

In the pseudo-Riemannian case, the situation is rather different since there
may be isotropic subbundles even in the tangent bundle. The corresponding
complexifications can therefore not arise from any almost Hermitian structure.
In this paper we thus investigate similar constructions to those of Baird and
Wood in pseudo-Euclidean space, using the notion of isotropic subbundles
instead of almost Hermitian structures. Using a method of descent, we have
means to construct complex valued harmonic morphisms from open subsets
of pseudo-Riemannian space forms of constant negative curvature.

2. Harmonic morphisms in pseudo-Riemannian geometry

The main reference for harmonic morphisms between pseudo-Riemannian
manifolds is the article [7] by Fuglede. Recall that a pseudo-Riemannian mani-
fold is a smooth manifold M endowed with a non-degenerate type (0, 2) tensor
field g of constant index, see e.g. [12]. We refer to g as the metric tensor. For
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a subspace K of TxM , we define

K ⊥ = {v ∈ TxM | g(v, w) = 0 for all w ∈ K }.
If ϕ : M → N is a map, we denote by Vx the subspace ker dϕx of TxM and
Hx = V ⊥

x .

Definition 2.1. If (M, g) and (N, h) are pseudo-Riemannian manifolds
and ϕ : M → N a smooth map, then ϕ is said to be horizontally conformal if
for any x ∈ M , either Hx ⊆ Vx or the restriction of dϕx to Hx is conformal
and surjective onto Tϕ(x)N .

Recall that a map ϕ : (M, g) → (N, h) between two pseudo-Riemannian
manifolds is said to be harmonic if

trace ∇dϕ = 0,

where dϕ is considered as a section of the bundle T ∗M ⊗ ϕ−1T N with its
natural connection, and the trace is taken with respect to g. In particular, a
complex valued function on M is a harmonic map if and only if it is a harmonic
function, using the Laplace-Beltrami operator on (M, g).

Definition 2.2. A map ϕ : (M, g) → (N, h) is said to be a harmonic
morphism if for any locally defined harmonic function f on N , the composition
f ◦ ϕ is harmonic where defined on M .

Using a result of Hörmander, Fuglede generalized the following fact to
pseudo-Riemannian geometry.

Theorem 2.3 ([7]). A smooth map ϕ : (M, g) → (N, h) between pseudo-
Riemannian manifolds is a harmonic morphism if and only if it is a horizontally
conformal harmonic map.

The following result will be used throughout this paper.

Proposition 2.4. If (M, g) is a pseudo-Riemannian manifold and f :
M → C a function, then f is horizontally conformal if and only if

(1) g(∇f, ∇f ) = 0.

Here g denotes the complex bi-linear extension of the metric tensor acting on
complex vectors.

Proof. If we write f = f1 + if2 in the standard coordinates for C and fix
x ∈ M , then

Hx = spanR{∇f1, ∇f2},
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where the gradients are taken at the point x. Note that equation (1) is equivalent
to

(2) g(∇f1, ∇f1) = g(∇f2, ∇f2), g(∇f1, ∇f2) = 0.

Assume at first that these equations hold. If v ∈ Hx , v = v1∇f1 +v2∇f2, then

|dfx(v)|2 = v2
1g(∇f1, ∇f1)2 + v2

2g(∇f2, ∇f2)2

= g(v, v)g(∇f1, ∇f1).

If Hx �= {0}, assume that Hx ∩ Vx = {0}. Then df is conformal and injective
on Hx so ∇f1 and ∇f2 cannot be parallel. Hence dim Hx = 2 and df is also
surjective on Hx . If on the other hand Hx ∩ Vx �= {0}, let v ∈ Hx ∩ Vx be
non-zero, v = v1∇f1 + v2∇f2 with v1 �= 0, say. Then

0 = g(v, ∇f1) = v1g(∇f1, ∇f1),

so that Hx ⊆ Vx by equation (2). This shows that f is horizontally conformal.
Conversely, assume that f is horizontally conformal. Then there is a con-

tinuous function η on M such that

(3) df (v) · df (w) = η(x)g(v, w), v, w ∈ Hx.

To simplify the notation, introduce functions

a = g(∇f1, ∇f1), b = g(∇f2, ∇f2), c = g(∇f1, ∇f2).

Applying df on the horizontal vectors ∇f1 and ∇f2 and using equation (3)
gives

(4)

ηa = a2 + c2

ηb = b2 + c2

ηc = (a + b)c.

If Hx ⊆ Vx then trivially a = b = c = 0. If on the other hand df is surjective
and conformal on Hx , assume for the sake of a contradiction that c �= 0. Then
from equations (4) η = a + b and ab = c2. This last equation means that

g(c∇f1 − a∇f2, ∇f2) = 0.

Since trivially g(c∇f1 −a∇f2, ∇f1) = 0, it follows from the non-degeneracy
of g that c∇f1 = a∇f2. Hence dim Hx ≤ 1 which is impossible if df is to be
surjective on Hx . We thus conclude that c = 0 and since a, b �= 0 we see from
equations (4) that a = b = η. Thus equation (1) is satisfied.



250 martin svensson

3. Parametrization of isotropic subbundles in even-dimensional
pseudo-Euclidean space

In this section we show how to parameterize some isotropic subbundles and
their connection to horizontally conformal maps.

Definition 3.1. If (M, g) is a pseudo-Riemannian manifold and F is a
subbundle of the complexified tangent bundle T CM , then F is called isotropic
if

g(u, v) = 0,

for all u, v ∈ F . Here g(u, v) is the complex extension of the metric acting
on u and v.

Let Rn
d = (Rn, gd) denote the n-dimensional pseudo-Euclidean space [12]

with its standard metric of index d:

gd(u, v) = −
d∑

l=1

ulvl +
n∑

l=d+1

ulvl.

Let
Un = {x ∈ Rn

d | gd(x, x) < 0}.
If we restrict the multiplicative action of R∗ on Rn

d to Un, we get as the quotient
the pseudo-Riemannian hyperbolic space RH n

d , see e.g. [12, page 67] where
a different notation is used for these spaces.

From now on, we will use the following ranges for the indices:

1 ≤ b, l, r ≤ d, d + 1 ≤ i, j, k ≤ n, 1 ≤ s, t ≤ n, 1 ≤ µ, ν ≤ m.

The last set of indices will enter in the next section. To get suitable coordinates
in R2n

d , we write

ul = x2l−1 − x2l , vl = x2l−1 + x2l , qs = x2s−1 + ix2s .

Suppose we have an open set U ⊆ R2n
d and a map

A : U → ��(n)C.

For any x ∈ U , let Fx denote the subspace of the complexified tangent bundle
T CR2n

d defined by the equations (taken at the point x)

ξl
def= dul +

d∑
r=1

alrdvr +
n∑

k=d+1

alkdq̄k = 0,

ξj
def= dqj +

d∑
r=1

ajrdvr +
n∑

k=d+1

ajkdq̄k = 0.
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An easy calculation shows that these forms are linearly independent at each
point over the complex numbers, so F is a (complex) subbundle of T CR2n

d of
dimension n.

The metric gd provides a complex linear isomorphism η �→ η' from T ∗CR2n
d

onto T CR2n
d :

gd(η', Z) = η(Z), Z ∈ T CR2n
d .

It is easy to see that we have the following:

du
'

l = −2∂vl
, dv

'

l = −2∂ul
, dq

'

j = 2∂q̄j
, dq̄

'

j = 2∂qj
.

If we define vector fields Xs = ξ
'
s /2, then

gd(Xl, Xr) = −1

2
(alr + arl),

gd(Xl, Xj ) = 1

2
(−ajl + alj ),

gd(Xi, Xj ) = 1

2
(aij + aji).

Thus, if we assume that A takes its values in the subspace ��(d, n − d)C, then
X1, . . . , Xn constitutes a basis for Fx and the subbundle F is isotropic. A
vector Y belongs to Fx if and only if gd(Y, Xs) = 0 for all s.

If f is a complex valued function on an open subset of R2n
d then the differ-

ential of f vanishes on F if and only if Xs(f ) = 0 for all s, that is

−∂vl
f −

d∑
r=1

alr∂ur
f +

n∑
k=d+1

alk∂qk
f = 0

∂q̄j
f −

d∑
r=1

ajr∂ur
f +

n∑
k=d+1

ajk∂qk
f = 0,

Proposition 3.2. Any locally defined complex valued function whose dif-
ferential vanishes on F is horizontally conformal.

Proof. If f is a locally defined complex valued function with df = 0
on F , then df is a linear combination of ξ1, . . . , ξn. Hence ∇f is a vector
in F so gd(∇f, ∇f ) = 0 since F is isotropic. The result now follows from
Proposition 2.4.

Finally, given the map A with values in ��(d, n − d)C, we introduce the



252 martin svensson

following functions:

(5)

wl
def= ul +

d∑
r=1

alrvr +
n∑

k=d+1

alkq̄k,

wj
def= qj +

d∑
r=1

ajrvr +
n∑

k=d+1

ajkq̄k.

4. Construction of harmonic morphisms

From the results of the previous section, we now have means to construct
isotropic subbundles of T R2n

d . The following shows how to construct implicitly
defined horizontally conformal maps using Proposition 3.2.

Theorem 4.1. Let - ⊆ Cn × Cm and U ⊆ Cm be open sets and let

f : - → Cm, A : U → ��(d, n − d)C

be holomorphic maps. Assume that

F : W ⊆ R2n
d × Cm → Cm, F (x, z)

def= f (w(x, z), z),

may be defined on a nonempty open set W and choose (x0, z0) ∈ W such that

F (x0, z0) = 0, det
(
∂zµF ν(x0, z0)

) �= 0.

Then the components of the local solution z = z(x) to the equation

(6) F (x, z) = 0, z(x0) = z0,

have their gradients in the subbundle determined by A ◦ z. In particular, they
are horizontally conformal.

Proof. Taking various derivatives of the equation F (x, z) = f (w(x, z), z)

gives

∂ul
F ν = ∂wl

f ν, ∂vl
F ν =

n∑
s=1

asl∂ws
f ν,

∂qi
F ν = ∂wi

f ν, ∂q̄i
F ν =

n∑
s=1

asi∂ws
f ν.
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Hence

−∂vl
F ν −

d∑
r=1

alr∂ur
F ν +

n∑
k=d+1

alk∂qk
F ν = −

n∑
s=1

asl∂ws
f ν −

d∑
r=1

alr∂wr
f ν

+
n∑

k=d+1

alk∂wk
f ν = 0,

∂q̄i
F ν −

d∑
r=1

air∂ur
F ν +

n∑
k=d+1

aik∂qk
F ν =

n∑
s=1

asi∂ws
f ν −

d∑
r=1

air∂wr
f ν

+
n∑

k=d+1

aik∂wk
f ν = 0.

Differentiating F (x, z(x)) = 0 with respect to ρ = u1, v1, . . . , q1, . . . , q̄n

gives

∂ρF ν +
m∑

µ=1

∂zµF ν∂ρzµ = 0.

Solving this for ∂ρzµ shows together with the above calculations that zµ belongs
to the subbundle for µ = 1, . . . , m.

We thus have means to construct horizontally conformal maps. The next
thing to do is to investigate the tension field of local solutions. An easy calcu-
lation shows that in the coordinates (u1, v1, . . . , q1, . . . , q̄n) the tension field
of a function f is given by

1

4
τ(f ) = −

d∑
r=1

∂2
ur vr

f +
n∑

k=d+1

∂2
qk q̄k

f.

Assume that z = (z1, . . . , zm) is a local solution as before. Since the gradient
of z1 belongs to the subbundle we know that

∂vl
z1 = −

d∑
r=1

alr∂ur
z1 +

n∑
k=d+1

alk∂qk
z1,

∂q̄j
z1 =

d∑
r=1

ajr∂ur
z1 −

n∑
k=d+1

ajk∂qk
z1.
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Then we get

1

4
τ(z1) = −

d−1∑
r=1

∂ur

(
−

d∑
l=1

arl∂ul
z1 +

n∑
k=d+1

ark∂qk
z1

)

+
n∑

k=d+1

∂qk

( d∑
r=1

akr∂ur
z1 −

n∑
i=d+1

aki∂qi
z1

)

=
d∑

r,l=1

∂ur
arl∂ul

z1 +
d∑

r,l=1

arb∂2
ur ul

z1

−
d∑

r=1

n∑
k=d+1

∂ur
ark∂qk

z1 −
d∑

r=1

n∑
k=d

ark∂2
ur qk

z1

+
n∑

k=d+1

d∑
r=1

∂qk
akr∂ur

z1 +
n∑

k=d+1

d∑
r=1

akr∂
2
qkur

z1

−
n∑

i,k=d+1

∂qk
aki∂qi

z1 −
n∑

i,k=d+1

aki∂
2
qkqi

z1.

Here, the second, fourth, sixth and eight term vanish since A takes its values in
��(d, n − d)C. Assuming that A = A(z) is holomorphic, this may be written
as

1

4
τ(z1) =

m∑
ν=1

d∑
r,l=1

∂zν arl∂ur
zν∂ul

z1 −
m∑

ν=1

d∑
r=1

n∑
k=d+1

∂zν ark∂ur
zν∂qk

z1

+
m∑

ν=1

n∑
k=d

d∑
r=1

∂zν akr∂qk
zν∂ur

z1 −
m∑

ν=1

n∑
i,k=d+1

∂zν aki∂qk
zν∂qi

z1.

Thus if we assume that A only depends on z1, then the first and last terms
vanish due to skew-symmetry of the indices and the two middle terms cancel
out each other. We have proven the following theorem.

Theorem 4.2. Let - ⊆ Cn × Cm and U ⊆ Cm be open sets and let

f : - → Cm, A : U → ��(d, n − d)C

be holomorphic maps. Assume that

F : W ⊆ R2n
d × Cm → Cm, F (x, z)

def= f (w(x, z), z),



harmonic morphisms from even-dimensional hyperbolic spaces 255

may be defined on a nonempty open set W . Suppose that (x0, z0) ∈ W and
F (x0, z0) = 0. If A only depends on z1 and

det
(
∂zµF ν(x0, z0)

) �= 0,

then the first component of the local solution z = z(x) to the equation

(7) F (x, z) = 0, z(x0) = z0,

is a harmonic morphism from a neighbourhood of x0 in R2n
d into C. This holds

in particular if m = 1.

Remark 4.3. The above result is in a sense dual to Proposition 3.18 of [4].
If we interpret the complex subbundles constructed in this paper as a semi-
Riemannian version of almost Hermitian structures, then the fact that the map
A only depends on z1 means that the structure is parallel along the fibres of z1.
This should be compared with the concept of superminimality [4, Section 4].

Example 4.4. Let A : C → ��(2, 2)C be defined by

A(z) =




0 z 0 0

−z 0 0 1

0 0 0 −1

0 1 1 0


 ,

and take

f : C4 × C → C, f (w1, w2, w3, w4, z) = zw3
1 + w2

2w3 + w2
3w4.

From equation (5), using the matrix A, we consider (w1, w2, w3, w4) as func-
tions of (x1, . . . , x8) and z. Thus, the local solution z = z(x) to the equation

zw3
1 + w2

2w3 + w2
3w4 = 0, z(−1, 0, . . . , 0) = 0,

is a harmonic morphism from an open neighbourhood of (−1, 0, . . . , 0) in R8
2

to C.

5. Invariance of solutions

Here we describe a method for constructing locally defined harmonic morph-
isms in R2n−1

d . For this, assume that a holomorphic map

A : U ⊆ C → ��(d, n − d)C
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is given. Define w1, . . . , wn as before and make the following change of vari-
ables:

w̃1 = w1+a1nwn, w̃2 = w2+a2nwn, . . . , w̃n−1 = wn−1+an−1nwn, w̃n = wn.

Note that w̃1, . . . , w̃n−1 do not depend on x2n. Thus we have the following
obvious result.

Theorem 5.1. Let - ⊆ Cn−1 × Cm and U ⊆ C be open sets and let

f : - → Cm, A : U → ��(d, n − d)C

be holomorphic maps. Assume that

F : W ⊆ R2n−1
d × Cm → Cm, F (x, z)

def= f (w̃1, . . . , w̃n−1, z),

may be defined on a non-empty open set W and choose (x0, z0) ∈ W such that

F (x0, z0) = 0, det
(
∂zµF ν(x0, z0)

) �= 0.

Then the first component z1 of the local solution z = z(x) to the equation

(8) F (x, z) = 0, z(x0) = z0,

is a harmonic morphism in an open subset of R2n−1
d

To investigate whether or not a map φ is invariant along a vector field∑
s ζs∂xs

in R2n
d one should study the equation

(9)

0 = dφ

(∑
s

ζs∂xs

)
=

d∑
r=1

(ζ2r−1 − ζ2r )∂ur
φ + (ζ2r−1 + ζ2r )∂vr

φ

+
n∑

k=d+1

(
(ζ2k−1 + iζ2k)∂qk

φ + (ζ2k−1 − iζ2k)∂q̄k
φ
)
.

Now suppose that φ = z1 is the first coordinate of a local solution to equation
(6). Let K = (∂zµF ν)ν,µ. Then

(10) ∂ρz1 = −
m∑

ν=1

(K−1)1ν∂ρF ν,
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for any ρ = u1, v1, . . . , q1, . . . , q̄n. Equation (9) may then be written as

(11)

0 = −
m∑

ν=1

(K−1)1ν

( d∑
r=1

(ζ2r−1 − ζ2r )∂ur
F ν + (ζ2r−1 + ζ2r )∂vr

F ν

+
n∑

k=d+1

(
(ζ2k−1 + iζ2k)∂qk

F ν + (ζ2k−1 − iζ2k)∂q̄k
F ν

))
.

In particular, we wish to find conditions for invariance of solutions under the
action of R∗ on R2n

d . The vector field in question is then
∑

s xs∂xs
, so equation

(11) reduces to
(12)

0 = −
m∑

ν=1

(K−1)1ν

( d∑
r=1

(
ur∂ur

F ν + vr∂vr
F ν

) +
n∑

k=d+1

(
qk∂qk

F ν + q̄k∂q̄k
F ν

))
.

Suppose that f (w, z) is homogeneous in its first argument. Then equation (12)
may be written as

0 =
m∑

ν=1

(K−1)1νF ν(x, z(x)),

which is trivially satisfied since F (x, z(x)) = 0.

Example 5.2. The harmonic morphism constructed in Example 4.4 factors
by homogenity to a harmonic morphism from an open subset of RH 7

2 to C.

Thus, assuming homogenity in addition to the assumptions of Theorem 5.1
we get the following result.

Corollary 5.3. Let - ⊆ Cn−1 × Cm and U ⊆ C be open sets and let

f : - → Cm, A : U → ��(d, n − d)C

be holomorphic maps, where f is homogeneous in its first argument. Assume
that

F : W ⊆ R2n−1
d × Cm → Cm, F (x, z)

def= f (w̃1, . . . , w̃n−1, z),

may be defined on a non-empty open set W and choose (x0, z0) ∈ W such that

F (x0, z0) = 0, det
(
∂zµF ν(x0, z0)

) �= 0.

Then the first component z1 of the local solution z = z(x) to the equation

(13) F (x, z) = 0, z(x0) = z0,
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is a harmonic morphism in an open subset of R2n−1
d which is invariant under

the action of R∗ on R2n−1
d . In particular, if gd(x0, x0) < 0, then z induces a

harmonic morphism in an open subset of RH 2n−2
d .

Example 5.4. For z ∈ C, let

A(z) =




0 1 0 0 0 0

1 0 1 0 0 0

0 −1 0 z 0 1

0 0 −z 0 0 0

0 0 0 0 0 −1

0 0 −1 0 1 0




∈ ��(1, 5)C.

Thus, according to (5) we define

w1 = u1 + q̄2, w2 = q2 + v1 + q̄3, w3 = q3 − q̄2 + zq̄4 + q̄6,

w4 = q4 − zq̄3, w5 = q5 − q̄6, w6 = q6 − q̄3 + q̄5.

Take

f = f (w̃1, w̃2, w̃3, w̃4, w̃5, z) = ez2w̃2/w̃1w̃2
5 + ez(w̃3/w̃1)2

w̃2
4 + (z − 1)w̃2

1,

and change variables from w1, . . . , w6 to w̃1, . . . , w̃6 as describes above. If
we define F (x, z) = f (w̃(x, z), z), then the local solution to the equation

F (x, z) = 0, z(−1, 0, . . . , 0) = 1

will define a local harmonic morphism in RH 10.

Example 5.5. Let

A =




0 0 0 0

0 0 −1 1

0 1 0 i

0 −1 −i 0


 ∈ ��(1, 3)C,

Study a solution z to the equation

z2w̃3
1 − 2zw̃2

3w̃2 + w̃3w̃2
2 = 0,

i.e.

z = w2 + w4

w3
1

(
(w3 + iw4)2 ±

√
(w3 + iw4)4 − (w3 + iw4)w3

1

)
.
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Here, as before,

w1 = x1 − x2

w2 = x3 + ix4 − x5 + ix6 + x7 − ix8

w3 = x5 + ix6 + x3 − ix4 + ix7 + x8

w4 = x7 + ix8 − x3 + ix4 − ix5 − x6.

Given suitable initial conditions, this will define a harmonic morphism in an
open subset of RH 6.

Example 5.6. We show how to construct a globally defined harmonic
morphism in RH 6 by finding an R∗-invariant harmonic morphism in R8

1 which
does not depend on x8. For this, take A to be the matrix

A =




0 0 0 0

0 0 −1 1

0 1 0 0

0 −1 0 0


 ∈ ��(1, 3)C.

By (5), this means that
w1 =u1

w2 =q2 − q̄3 + q̄4

w3 =q3 + q̄2

w4 =q4 − q̄2.

If f is given by

f (w, z) = zw2
1 − w3(w2 + w4) = zw̃2

1 − w̃3w̃2,

and we define as before F (x, z) = f (w(x), z), then the local solution to
F (x, z) = 0 is given by

z = w3(w2 + w4)

w2
1

= w̃3w̃2

w̃2
1

= (q̄2 + q3)(q2 − q̄2 − q̄3 + q4 + q̄4)

u2
1

.

By Corollary 5.3, z defines a globally defined harmonic morphism in RH 6

Remark 5.7. In the above example we have chosen the matrix A to be
constant. If the corresponding complex subbundle is interpreted as a semi-
Riemannian almost Hermitian structure as in Remark 4.3, then A constant
would mean that the structure in some sense is Kähler. It is not known if
it is possible to construct a globally defined harmonic morphism as above
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without using a constant matrix. It would be interesting to know if there is
some “Bernstein-type” result of this kind.
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