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A UNIQUENESS CRITERION IN THE
MULTIVARIATE MOMENT PROBLEM

MIHAI PUTINAR and FLORIAN-HORIA VASILESCU∗

Abstract
A determinacy criterion for the multivariate Hamburger moment problem is derived from a recent
existence by extension result, [10].

1. Introduction

The present note is a companion to the article [10]. By exploiting an exist-
ence result of [10] we derive below a uniqueness criterion for Hamburger’s
moment problem in any number of dimensions. Typically, the known determ-
inacy criteria are stated in terms of density of polynomials in certain weighted
Lp norms, cf. [3], [7], [12]. A notable exception is the Carleman type condi-
tion of [5]. We propose below a numerical sufficient condition of determinacy,
completely expressible in terms of some associated orthogonal polynomails.
We follow the path via a variational problem first studied by M. Riesz, [11].

First let us fix some notation. Let d be a positive integer and let x =
(x1, x2, . . . , xd) be the coordinates in Rd . When embedding (naturally) Rd into
Cd we will denote by z = (z1, z2, . . . , zd) the complex coordinates. We put
z · z = z2

1 + z2
2 + · · · + z2

d , so that the euclidean norm of the vector x is
|x| = √

x · x. The algebra of polynomials in the indeterminates x will be
denoted by R[x], in the case of real coefficients, and by C[z] when allowing
complex coefficients. For a fixed positive integer n, the space of polynomials
of degree less or equal than n will be denoted by Rn[x], respectively Cn[z].
Whenever it will be necessary, the domain of the polynomial map associated
to an element p ∈ R[x] will automatically be extended to Cd . Throughout this
note we denote N = {0, 1, 2, 3, . . .}.

Let µ be a positive, rapidly decreasing at infinity measure on Rd , and let
a = (aα)α∈Nd be the corresponding moment sequence:

aα =
∫

Rd

xαdµ(x), α ∈ Nd .
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Associated solely to the moment sequence is the integration functional:

L(p) =
∫

Rd

pdµ, p ∈ R[x].

First we recall some basic facts in dimension d = 1. Let n be a positive
integer, and let us consider (after Riesz [11]) the variational problem:

(1) ρn = min{L(p2) ;p ∈ Rn[x], |p(±i)| = 1 }.
The sequence ρn is obviously decreasing and the limit ρ = limn→∞ ρn is equal
to zero if and only if the initial moment problem is determinate (that is, in our
notation, µ is the unique measure with moments a). The real numbers ρn are
the radii of a decreasing set of disks in the plane, representing the values (at
z = i) of the diagonal Padé approximants of the Cauchy transform of the
measure µ, see [1] for full details. Most of the uniqueness criteria in the theory
of moments in one variable are related to estimates, in different terms, of the
limit radius ρ.

Since the relation (1) refers to real polynomials p, we can obviously replace
the condition |p(±i)| = 1 by |p(i)| = 1. Also, we recall that the numbers ±i

are not privileged; they can be replaced by any pair α, α with α /∈ R, see [11].
In arbitrary dimension d ≥ 1 we can define an analogous quantity:

(2) ρn = min{L(p2) ;p ∈ Rn[x], |p(z)| = 1 for z · z + 1 = 0 },
and set ρ = limn→∞ ρn.

The aim of the present note is to prove that, in any dimension d, if ρ = 0,
then the initial moment problem is determinate. We will show that actually
the numbers ρn are computable, for instance in terms of certain orthogonal
polynomials depending only on the moment sequence a.
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nology of Lille. It is a pleasure for him to thank this institution for hospitality
and support.

2. Main result

Throughout this section we use the notation introduced before: a is the moment
sequence of the measureµ on Rd , d > 1, with associated integration functional
L defined on polynomials, and ρ = limn→∞ ρn, as in relation (2).

First we note that ρn can be interpreted as a distance in the norm ‖p‖2 =
L(p2), p ∈ R[x]. Indeed, the complex variety V = {z ∈ Cd ; z · z = −1} is a
connected smooth hypersurface in Cd , d > 1, hence by the maximum modulus
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principle (cf. for instance [8] pp. 118), if a polynomial p ∈ C[z] satisfies
|p(z)| = 1, z ∈ V , then there is a constant c, |c| = 1 such that p(z) = c,
z ∈ V . To see that the variety V is connected it is sufficient to decompose
a point z ∈ V into real and imaginary parts: z = x + iy, x, y ∈ Rd , and to
remark that the equation of V becomes |x|2 − |y|2 + 1 = 0, x · y = 0. Then,
we can deform x along its direction to zero ( specifically tx, t ∈ [0, 1]) and
deform correspondingly y to the unit vector y/|y|. Thus, V is homotopically
equivalent to the unit sphere in Rd , d > 1, hence it is connected.

Moreover, a standard division argument shows that:

p(z) = c − (1 + z · z)q(z), q ∈ C[z].

Indeed, the ideal generated by the polynomial z · z + 1 is prime in every
localization of the polynomial ring C[z], hence it is prime in C[z]. By Hilbert
Nullstellensatz ([8] pp. 404), since the polynomial p(z) − c vanishes on V it
can be factored by 1 + z · z.

By takinq real and imaginary parts in the coefficients of q we obtain poly-
nomials r(z), s(x), such that r(x) = Re q(x), s(x) = Im q(x), x ∈ Rd .

Therefore, since we have started with a real polynomial p we obtain:

p(x) = Re c − (1 + |x|2)r(x), x ∈ Rd ,

and
0 = Im c − (1 + |x|2)s(x), x ∈ Rd .

But the second condition implies c ∈ R and s(z) = 0, hence c = ±1. Without
loss of generality we can assume henceforth that c = 1.

In conclusion, for d > 1 and n ≥ 2 we have proved the following formula:

(3) ρn = min{L(|p|2) ;p(z) = 1 − (1 + z · z)q(z), q ∈ Cn−2[z] }.
By decomposing q(x) = r(x) + is(x), x ∈ Rd , as before in real and

imaginary parts, we observe that:

|p(x)|2 = [1 − (1 + |x|2)r(x)]2 + (1 + |x|2)2s(x)2, x ∈ Rd ,

so that the minimum in the above expression of ρn is indeed attained on real
polynomials.

Theorem 2.1. A moment sequence with invariant ρ = 0 is determinate.

Proof. As recalled before, the case d = 1 is classical [11], so we can
assume d > 1, in which situation formula (3) holds. If ρ = 0, then there exists
a sequence of polynomials qn ∈ R[x] such that

lim
n→∞L

(
[1 − (1 + |x|2)qn(x)]

2
) = 0.
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Assume that ν is another positive measure, rapidly decreasing at infinity in
Rd and having the same moments a as µ. Then we have:

lim
n→∞

∥∥1 − (1 + |x|2)qn(x)
∥∥

2,µ = lim
n→∞

∥∥1 − (1 + |x|2)qn(x)
∥∥

2,ν = 0.

Since the function 1
1+|x|2 is positive and bounded on Rd , we infer:

lim
n→∞

∥∥∥∥ 1

1 + |x|2 − qn(x)

∥∥∥∥
2,µ

= lim
n→∞

∥∥∥∥ 1

1 + |x|2 − qn(x)

∥∥∥∥
2,ν

= 0.

Let α ∈ Nd be an arbitrary multi-index and let m be a non-negative integer.
Our aim is to prove that:

(4)
∫

Rd

xα

(1 + |x|2)m dµ(x) =
∫

Rd

xα

(1 + |x|2)m dν(x).

Then a direct argument, or the main result of [10], can be applied and conclude
that µ = ν.

We prove relation (4) by induction on m ≥ 0. The case m = 0 follows
from the assumption that both measures have the same moments. Assume that
relation (4) is valid for m replaced by m − 1. Let σ be one of the measures
µ, ν. Since xα

(1+|x|2)m−1 ∈ L2(σ ) and qn(x) → 1
1+|x|2 in L2(σ ), we obtain

xαqn(x)

(1+|x|2)m−1 → xα

(1+|x|2)m in L1(σ ). But according to the induction hypothesis
this implies (4).

Note that in the above proof only the convergence
∥∥qn(x)− 1

1+|x|2
∥∥

2,µ −→ 0
was used. However, this latter condition is not intrinsinc in the moments a.

Since, by formula (3),
√
ρ is the distance in L2(µ) between the constant

function 1 and the subspace (1+|x|2)C[z], we obtain the folowing constructive
way of computing this number.

Corollary 2.2. Let Pα(x), α ∈ Nd , be a sequence of orthonormal polyno-
mials with respect to the measure (1+|x|2)2dµ(x) and define the coefficients:

(5) cα =
∫

Rd

Pα(x)(1 + |x|2) dµ(x), α ∈ Nd .

Then

(6) ρ = a2
0 −

∑
α∈Nd

c2
α.

We remark that ρ is invariant under the orthogonal group action on Rd , and
moreover, the condition ρ = 0 is invariant even under all linear transforma-
tions of Rd . Also it is easy to remark from Corollary 2.2 that the density of
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polynomials in L2((1 + |x|2)2dµ(x)) implies ρ = 0 (compare with Fuglede’s
unltradeterminacy condition [7]).

Another possible way of checking the uniqueness condition ρ(a) = 0 is
through the restriction of the moment sequences to the coordinate axes, as in
[9]. To be more specific, let a be the moment sequence of a positive measure
µ on Rd , and let aj , 1 ≤ j ≤ d, be the induced boundary moment sequences:

aj (α) = a(0, . . . , 0, αj , 0, . . . , 0) =
∫

Rd

xj
αj dµ(x), α ∈ Nd .

Then, according to Theorem 3 of [9], if ρ(aj ) = 0, 1 ≤ j ≤ d, then
ρ(a) = 0. Morover, the converse is also true in the case of product measures
[9] Theorem 4. However, in general the converse is not valid, as shown by an
example also contained in [9].

As expected, the condition ρ = 0 is not necessary, in general, for the unique
determination of the representing measure. We present below such an example,
adapted after Schmüdgen [12].

Proposition 2.3. There exists a determinate moment sequence in two vari-
ables with ρ �= 0.

Proof. We closely follow the first example in [12]. Let µ be a positive
measure on the real line which admits all moments and is indeterminate, yet
N-extremal. That means the polynomials in one variable are dense in L2(µ),
but there exist other measures with the same moments, see also [11]. We define
the measure ν = (1 + x2)−1µ, so that ν is determinate (because for instance
the multiplication by (x + i) on polynomials has dense range in L2(ν)).

Let j (x) = (
√

2x, x2), x ∈ R, be a fixed embedding of the line into R2, and
let σ = j∗ν be the image measure, supported by the parabola 2y = x2. Then
it is easy to see that σ is a determinate measure, see [12].

Assume that the invariant ρ vanishes for the measure σ . This means that
there exists a sequence of polynomials pn ∈ C[x, y] satisfying:

∥∥(1 + x2 + y2)pn − 1
∥∥

2,σ −→ 0.

This in turn implies:
∥∥(1 + x2)2qn − 1

∥∥
2,ν −→ 0,

where qn(x) = p
(√

2x, x2
)
. The last condition is equivalent to:

(7)

∥∥∥∥(x + i)(1 + x2)qn(x) − 1

x − i

∥∥∥∥
2,µ

−→ 0.
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Let V denote the closure of (x + i)C[x] in L2(µ). Relation (7) shows that
1

x−i
∈ V . Since the measure µ is indeterminate, for every ε > 0 there exists a

positive constant C with the property that:

|p(z)| ≤ Ceε|z|‖p‖2,µ, z ∈ C, p ∈ C[x].

That is the evaluation at a given point z ∈ C is a bounded linear functional on
the closure of polynomials, hence on all L2(µ). Moreover, one can identify in
this way L2(µ) with a Hilbert space of entire functions of exponential type,
see [11] or [1]. But this contradicts relation (7), because 1

z−i

∣∣
z=−i

�= 0, while
all elements of the space V vanish at the point z = −i.
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