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THE DISCREPANCY OF SOME REAL SEQUENCES

H. KAMARUL HAILI and R. NAIR

Abstract

Let (λn)n≥0 be a sequence of real numbers such that there exists δ > 0 such that |λn+1 −λn| ≥ δ,
n = 0, 1, . . .. For a real number y let {y} denote its fractional part. Also, for the real number x let
D(N, x) denote the discrepancy of the numbers {λ0x}, . . . , {λN−1x}. We show that given ε > 0,

D(N, x) = o
(
N− 1

2 (logN)
3
2 +ε

)

almost everywhere with respect to Lebesgue measure.

1. Introduction

Recall that a sequence of real numbers (xn)∞n=0 is uniformly distributed modulo
one if for each interval I contained in [0, 1), that is closed on the left and open
on the right,

lim
N→∞

1

N

N−1∑
n=0

χI ({xn}) = |I |.

Here χI denotes the characteristic function of the interval I and |I | its length.
Also {y} is the fractional part of a real number y. For a finite set of real numbers
x0, . . . , xN−1, their discrepancy is

D(x0, . . . , xN−1) = sup
I⊆[0,1)

∣∣∣∣ 1

N

N−1∑
n=0

χI ({xn}) − |I |
∣∣∣∣ (N = 1, 2, . . .)

where the supremum is taken over all intervals I , closed on the left and open
on the right. The discrepancy of the numbers x0, . . . , xN−1 tends to zero as N
tends to infinity if and only if the sequence (xn)

∞
n=0 is uniformly distributed

modulo one. This means that for a uniformly distributed sequence of real
numbers (xn)∞n=0, as N tends to infinity, the rate for decay of D(x0, . . . , xN−1)

provides a measure of the degree of uniformity of distribution. As usual if a
property holds except for a set of Lebesgue measure zero, it is said to hold
almost everywhere, abbreviated ‘a.e.’. Throughout the paper C will denote a
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positive constant which will not necessarily be the same at each occurence.
Let (λn)∞n=0 denote a sequence of real numbers such that there exists δ > 0
such that |λn+1 − λn| ≥ δ > 0 (n = 0, 1, . . .).

In this paper we prove two theorems.

Theorem 1.1. Let

D(N, x) = D({λ0x}, . . . , {λN−1x}) (N = 0, 1, . . .).

Then given ε > 0,

D(N, x) = o
(
N− 1

2 (logN)
3
2 +ε

)
a.e.

One might wish to consider sets other than intervals. However a famous
example of J. M. Marstrand [5] states that there exist subsets B and A(B) of
[0, 1), both of positive Lebesgue measure, such that if x is in A(B), then the
averages

1

N

N−1∑
j=0

χB({jx}) (N = 1, 2, . . .),

do not converge to the Lebesgue measure of B. With suitable restrictions on
B however positive results are however possible.

Theorem 1.2. Let (Rk)
∞
k=1 be a collection of disjoint subintervals of [0, 1)

such that

(1.1) |Rk| = O(a−k),

for some a > 1, and let

B =
∞⋃
k=1

Rk.

Then given ε > 0, there exists N0 = N0(x, ε) such that if N > N0

∣∣∣∣ 1

N

N−1∑
n=0

χB({λnx}) − |B|
∣∣∣∣ < N− 1

2 (logN)
5
2 +ε a.e.

Theorem 1.1, but with 5
2 instead 3

2 in the power of logN appears in [2] and
in [1] but with the restriction that (λn)∞n=0 are integers. The extension of these
results to Theorem 1.1 is made possible by Lemma 2.2 below, which is a con-
sequence of the maximal inequality for the Carleson-Hunt inequality and the
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properties of Vaaler polynomials [6]. The methods used to prove Theorem 1.1
are the basis of the proof of Theorem 1.2.

Added in proof. Theorem 1.1 also appears in G. Harmans book “Metric
Number Theory”, London Math. Soc. Monographs (N.S.) 18, 1988.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 ([3]). Given real numbers x0, . . . , xN−1, there exists C > 0
such that for all natural numbers L

ND(x0, . . . , xN−1) ≤ C

(
N

L
+

L∑
h=1

1

h

∣∣∣∣ 1

N

N−1∑
n=0

e2πihxn

∣∣∣∣
)
.

Lemma 2.2 ([6]). Suppose we are given δ > 0, real numbers (λn)
N−1
n=0 such

that λn+1 − λn ≥ δ > 0, real numbers T and T0 with T > 0 and complex
numbers (an)Nn=1. Then there exists C > 0 such that

∫ T0+T

T0

{
max

0≤v≤N−1

∣∣∣∣
v∑

n=0

ane
iλnt

∣∣∣∣
2}

dt ≤ C(T + 2πδ−1)

N−1∑
n=0

|an|2.

Note that Lemma 2.2 in the special case where the (λn)
∞
n=1 are all integers

reduces to the maximal inequality of Carleson-Hunt [4]. Plainly in proving
Theorem 1.1, we may without loss of generality assume x belongs a finite
interval [T0, T0 + T ]. Let f : [T0, T0 + T ] → R be square integrable and let

‖f ‖ =
(

1

T

∫ T0+T

T0

|f |2 dx
) 1

2

.

Then by applying Minkowski’s inequality to Lemma 2.1,

∥∥∥ max
1≤v≤N

vD(v, x)

∥∥∥ ≤ C

(
N

L
+

L∑
h=1

1

h

∥∥∥∥ max
1≤v≤N

∣∣∣∣
v∑

n=1

e2πiλnx

∣∣∣∣
∥∥∥∥
)
,

whence by Lemma 2.2

∥∥∥ max
1≤v≤N

vD(v, x)

∥∥∥ ≤ C

(
N

L
+

L∑
h=1

1

h
N

1
2

)
.
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Choosing L optimally this gives

(2.1)
∥∥∥ max

1≤v≤N
vD(v, x)

∥∥∥ ≤ CN
1
2 (logN).

To deduce Theorem 1.1, we argue as in [2] and let

E(ε) =
{
x ∈ [T0, T0 + T ] : lim sup

l→∞
lD(l, x)

f (l, ε)
> 0

}
,

where
f (l, ε) = l

1
2 (logN)

3
2 +ε.

We need to show that the Lebesgue measure |E(ε)| of E(ε) is zero for all
ε > 0. Set

As(ε) =
{
x ∈ [T0, T0 + T ] : max

1≤l≤4s
lD(l, x) >

1

4
f

(
4s ,

ε

2

)}
.

If x ∈ E(ε) then there exist c(ε, x) > 0 and arbitrarily large positive integers
s such that for some integer l in [4s−1, 4s)

lD(l, x) ≥ c(ε, x)f (4s−1, ε) ≥ f

(
4s−1,

ε

2

)
≥ 1

4
f

(
4s ,

ε

2

)
,

The last inequality here being evident from the identity

f

(
4s−1,

ε

2

)
= 1

2

(
log s − 1

log s

) 3
2 + ε

2

f

(
4s ,

ε

2

)

and the fact that for large enough s we have 1
2

( log s−1
log s

) 3
2 + ε

2 > 1
4 . In particular,

we know that for infinitely many s,

max
1≤l≤4s

|lD(l, x)| > 1

4
f

(
4s−1,

ε

2

)
.

This tells us that x is in infinitely many of the sets As(ε). Hence we can
conclude that

E(ε) ⊆
∞⋂
r=1

∞⋃
s=r

As(ε).

From (2.1) there exists C > 0 such that

|As(ε)|
(
f

(
4s ,

ε

2

))2

≤ C4s(log 4s)2.
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Hence
|As(ε)| ≤ C

s1+ε

and ∞∑
s=1

|As(ε)| < ∞,

so by the Borel-Cantelli Lemma, Theorem 1.1 is proved.

3. Proof of Theorem 1.2

For
z(N) = loga N (N = 1, 2, . . .)

let
t (N) =

⋃
1≤k≤z(N)

Rk (N = 1, 2, . . .)

and
s(N) =

⋃
k>z(N)

Rk (N = 1, 2, . . .).

Note that if, for any S ⊆ [0, 1) we set

K(S, l, x) = 1

l

l−1∑
n=0

χS({λnx}) − |S| (l = 1, 2, . . .),

then
K(B, l, x) = K(t(N), l, x) + K(s(N), l, x).

Hence∥∥∥ max
0≤l≤N−1

K(B, l, x)

∥∥∥
≤

∥∥∥ max
0≤l≤N−1

|K(t(N), l, x)|
∥∥∥ +

∥∥∥ max
0≤l≤N−1

|K(s(N), l, x)|
∥∥∥.

Note that

K(t(N), l, x) =
∑

1≤k≤z(N)

( l−1∑
j=0

χRk
({λjx}) − l|Rk|

)

so, ∥∥∥ max
0≤l≤N−1

K(t(N), l, x)

∥∥∥ ≤ z(N)

∥∥∥ max
0≤l≤N−1

lD(l, x)

∥∥∥.
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This by (2.1) gives
∥∥∥ max

0≤l≤N−1
K(t(N), l, x)

∥∥∥ ≤ Cz(N)N
1
2 (logN).

By definition

∥∥∥ max
0≤l≤N−1

|K(s(N), l, x)|
∥∥∥ =

∥∥∥∥ max
0≤l≤N−1

∣∣∣∣
l−1∑
j=0

χs(N)({λjx}) − l|s(N)|
∣∣∣∣
∥∥∥∥.

Also evidently
(3.1)∥∥∥∥ max

0≤l≤N−1

∣∣∣∣
l−1∑
j=0

χs(N)({λjx}) − l|s(N)|
∣∣∣∣
∥∥∥∥ ≤

N−1∑
j=0

‖χs(N)({λjx})‖ + N |s(N)|.

As χ2
Rk

= χRk
, if

Ek,j = {
x ∈ [T0, T0 + T ] : {λjx} ∈ Rk

}
,

we see that

N−1∑
j=0

∥∥χs(N)({λjx})∥∥ ≤ C

N−1∑
j=0

( ∑
k>z(N)

|Ek,j |
) 1

2

.

It is very easy to check that there exists C = C(T0, T ) > 0 such that

|Ek,j | ≤ C |Rk| .
This means that∥∥∥ max

0≤l≤N−1
|K(s(N), l, x)|

∥∥∥ ≤ CN(|s(N)| 1
2 + |s(N)|).

Also |s(N)| =
∑

k>z(N)

|Rk| ≤ C
∑

k>z(N)

a−k ≤ Ca−z(N).

So we have shown that∥∥∥ max
0≤l≤N−1

|K(B, l, x)|
∥∥∥ ≤ CN

1
2 (logN)2.

The argument of the previous section now gives Theorem 1.2.
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