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A NOTE ON A THEOREM OF SPARR

Y. AMEUR

Abstract
We prove that, regardless of the choice of a positive, concave functionψ on R+ and a “weight func-
tion” λ, the weighted �2-space �2(ψ(λ)) is c-interpolation with respect to the couple (�2, �2(λ)),
where c ≤ √

2. Our main result is that c = √
2 is best possible here; a fact which is implicit in

the work of G. Sparr.

1. A lemma on Pick functions

Of general interest in the theory of interpolation spaces is the class P ′ of
functions representable in the form

(1) h(λ) =
∫

[0,∞]

(1 + t)λ

1 + tλ
dρ(t), λ ∈ R+,

where ρ is some positive Radon measure on R+. This class is known as the
set of positive Pick functions on R+ (cf. [2] or [4]). It is easy to see that P ′
constitutes a subcone of the convex cone of positive concave functions on R+.

In the following, it will be convenient besides (1) to work with a modified
representation for P ′-functions (cf. [5], p. 266)

(2) h(λ) = α + βλ+
∫ ∞

0

λt

λ+ t
dν(t),

whereα ≥ 0, β ≥ 0 and ν is a positive measure on R+ such that
∫ ∞

0 dν(t)/(1+
t−1) < ∞.

We have the following basic lemma.

Lemma 1.1. Let ψ be a positive concave function on R+. Then there exists
a function h ∈ P ′ such that h ≤ ψ ≤ 2h.

Proof (Cf. Peetre [11], bottom of p. 168.). It is well-known that an arbitrary
positive, concave function can be represented in the form (cf. [3], p. 117)

(3) ψ(λ) = α + βλ+
∫ ∞

0
min(λ, t) dν(t),
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where α ≥ 0, β ≥ 0 and ν a positive measure on R+ such that
∫ ∞

0 dν(t)/(1 +
t−1) < ∞. Next observe that for λ, t > 0

λt

λ+ t
≤ min(λ, t) ≤ 2

λt

λ+ t
.

The lemma now follows from (2) and (3) on integration with respect to ν.

2. The Foiaş -Ong-Rosenthal question

As we shall see presently, Lemma 1.1 is closely related to an interpolation
theorem of Foiaş , Ong and Rosenthal [8], which goes back to the work of
Jaak Peetre [10], [11]. Before we formulate this theorem, let us remind of
some notions from the theory of interpolation spaces. (For more details on this
theory, we refer to [3]).

Relative to a Hilbert couple H = (H0,H1), we have the K2-functional

K2(t, f ) = K2(t, f ; H ) = inf
f=f0+f1

(‖f0‖2
0 + t‖f1‖2

1)
1/2.

Let H0 ∩ H1 be dense in H0 and in H1. The basic fact for K2 is the following
(see e.g. [1]). Denote by A the unbounded, densely defined, positive, injective
operator in H0 such that

‖f ‖2
1 = (Af, f )0, f ∈ H0 ∩ H1,

then

(4) K2(t, f )
2 =

(
tA

1 + tA
f, f

)
0

.

With respect to H0 and H1 it will be advantageous to make use of several
notations for the operator norms.

(5)

‖T ‖2 = ‖T ‖2
L (H0)

= sup
(f,f )0≤1

(T ∗Tf, f )0

‖T ‖2
A = ‖T ‖2

L (H1)
= sup

(Af,f )0≤1
(T ∗ATf, f )0.

Let L (H ) be the set of linear operators on H0 + H1 such that the restriction
of T to Hi belongs to L (Hi ), i = 0, 1. A Banach space norm on L (H ) is
defined by

‖T ‖L (H ) = max(‖T ‖L (H0), ‖T ‖L (H1)) = max(‖T ‖, ‖T ‖A).
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We note that K2(t, ·) is an exact interpolation norm with respect to H , i.e.

(6) K2(t, Tf ) ≤ ‖T ‖L (H )K2(t, f ), T ∈ L (H ), f ∈ H0 + H1, t > 0

which property is immediate from the definition of K2. Given a positive, con-
cave function ψ on R+, let an intermediate Hilbert space H∗ be defined as the
completion of H0 ∩ H1 under the norm

‖f ‖2
∗ = (ψ(A)f, f )0.

In accordance with (5) we shall use different notations for the operator norms

(7) ‖T ‖2
ψ(A) = ‖T ‖2

L (H∗) = sup
(ψ(A)f,f )0≤1

(T ∗ψ(A)Tf, f )0.

By a theorem of Peetre [11], it is known that every positive, concave function
ψ on R+ is an interpolation function of power 2 meaning that (for any A, T )

(8) max(‖T ‖, ‖T ‖A) < ∞ implies ‖T ‖ψ(A) < ∞.

From the proof of Peetre’s theorem, it can also bee deduced that there exists
a constant c ≥ 1 such that H∗ is a c-interpolation space with respect to H in
the sense that

(9) ‖T ‖ψ(A) ≤ cmax(‖T ‖, ‖T ‖A), T ∈ L (H ).

In 1972, Foiaş [6] noted that c ≤ 2 for the best c. In a later paper, Foiaş , Ong
and Rosenthal proved that c ≤ √

2, and also posed the question whether the
constant

√
2 is best possible (cf. [8], question (i), p. 811). It is shown below

that this is the case.

Theorem 2.1. The best c in (9) is c = √
2.

Remark 2.2. This theorem is implicit in the work of Gunnar Sparr, cf. [12],
Lemma 5.1. We shall here give a partially new proof, based on Lemma 1.1 and
the following lemma.

Lemma 2.3. Every function h in the class P ′ is exact interpolation in the
sense that

(10) ‖T ‖h(A) ≤ max(‖T ‖, ‖T ‖A), T ∈ L (H ).

Remark 2.4. The above lemma is the easy half of a theorem of Foiaş and
Lions [7] (see also [9]) which states that, for a positive function defined on
R+, the condition h ∈ P ′ is equivalent to that h fulfill (10) for every Hilbert
couple H .
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Proof of Lemma 2.3.. Denote by E the spectral measure of A and let ρ
be the measure associated with h as in (2). Then by (4)

(11)

‖f ‖2
∗ = (h(A)f, f )0 =

∫ ∞

0

(∫
[0,∞]

(1 + t)λ

1 + tλ
dρ(t)

)
d(Eλf, f )0

=
∫

[0,∞]
(1 + t−1)

(∫ ∞

0

tλ

1 + tλ
d(Eλf, f )0

)
dρ(t)

=
∫

[0,∞]
(1 + t−1)K2(t, f ; H )2 dρ(t), f ∈ H0 ∩ H1.

It is easy to see that the latter expression extends to an exact interpolation norm
with respect to H , viz. (10) holds (use (6) and integrate with respect to dρ(t)).

Proof of Theorem 2.1. Referring to the smallest constant in (9), we first
show that c ≤ √

2. Given an arbitrary concave, positive function ψ on R+, let
h ∈ P ′ be such that h ≤ ψ ≤ 2h; then by Lemma 2.3,
(12)

‖T ‖2
ψ(A) = sup

(ψ(A)f,f )0≤1
(T ∗ψ(A)Tf, f )0 ≤ sup

(h(A)f,f )0≤1
2(T ∗h(A)Tf, f )0

= 2‖T ‖2
h(A) ≤ 2 max(‖T ‖2, ‖T ‖2

A), T ∈ L (H ),

and the estimate c ≤ √
2 follows incidentally. Proving c ≥ √

2 is more subtle;
we shall require a clever three-dimensional argument due to G. Sparr, cf. [12],
Example 5.3. Let H0 = �3

2 be the three-dimensional �2-space. For n ∈ N let
us put

An =



1
4n2 0 0

0 1 0

0 0 4n2


 , g =


 0

1

0


 , f n =


 n

0
1
2


 , Tn =


 0 0 0

1
2n 0 1

0 0 0




then Tnf n = g and a direct calculation yields that

‖Tn‖ = ‖Tn‖An =
√

1 + 1/4n2, n ∈ N.

On the other hand, letting ψ(λ) = min(1, λ), we have

‖Tnf n‖2
ψ(An)

= ‖g‖2
ψ(An)

= (ψ(An)g, g)0 = 1, n ∈ N,

whereas

‖f n‖2
ψ(An)

= (ψ(An)f
n, f n)0

= n2 min(1, 1/(4n2))+ (1/4)min(1, 4n2) = 1/2, n ∈ N,
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and it follows that

c ≥ ‖T ‖ψ(An)√
1 + 1/(4n2)

≥
√

2

1 + 1/(4n2)
↗ √

2, n → ∞.

Remark 2.5 (On Sparr’s result). Let us introduce the modifiedK2-functi-
onal

L2(t, f )
2 = (min(t, A)f, f )0.

By Sparr’s work ([12], Lemma 5.1) it is known that

(13) K2(t, g) ≤ K2(t, f ) implies L2(t, g) ≤ L2(t,
√

2f ),

where the constant
√

2 cannot be improved. Observe that, for an operator T ,
the conditionK2(t, Tf ) ≤ K2(t, f ), t > 0 is equivalent to that ‖T ‖L (H ) ≤ 1.
Moreover, by the representation (3) for a positive, concave function ψ , it is
clear that

‖f ‖2
∗ = (ψ(A)f, f )0 = α‖f ‖2

0 + β‖f ‖2
1 +

∫ ∞

0
L2(t, f )

2 dν(t)

with suitable α, β and ν. Hence the condition L2(t, Tf )
2 ≤ 2L2(t, f )

2, t > 0
implies that ‖T ‖ψ(A) ≤ √

2. Thus (13) yields that (for all A, T )

‖T ‖L (H ) ≤ 1 implies ‖T ‖ψ(A) ≤ √
2,

where the constant
√

2 is best possible. Note that this yields an alternative
proof of Theorem 2.1.

We note the following, sharp version of Lemma 1.1.

Theorem 2.6. The constant c = 2 is smallest possible with respect to the
property thet for any positive concave function ψ on R+, there exists h ∈ P ′
such that h ≤ ψ ≤ ch.

Proof. Referring to the least constant, we have c ≤ 2 by Lemma 1.1, and
as in (12), one shows that for any positive concave ψ , any A, T

‖T ‖2
ψ(A) ≤ cmax(‖T ‖2, ‖T ‖2

A).

By Theorem 2.1, the smallest possible c in the latter inequality is c = 2.

3. A note on K2-functors

We consider an application of Lemma 1.1 to the more functorial aspects of the
theory.
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Given a positive Radon measure ρ on [0,∞], let an interpolation functor
K2(ρ) be defined on the category of Banach couples by

‖f ‖K2(ρ)(A ) =
(∫

[0,∞]
(1 + t−1)K2(t, f ; A )2 dρ(t)

)1/2

.

(Here the function k : t �→ (1 + t−1)K2(t, f )
2 is defined by continuity at the

points 0 and ∞, k(0) = ‖f ‖2
1 and k(∞) = ‖f ‖2

0 where we have used the
convention: ‖f ‖i = ∞ if f �∈ Hi , i = 0, 1.)

Corollary 3.1. Let H be a regular Hilbert couple with associated operator
A. Then, given any positive, concave funtion ψ , there exists a positive Radon
measure ρ on [0,∞] such that

(1/
√

2 )‖f ‖K2(ρ)(H ) ≤ ‖f ‖ψ(A) ≤ √
2 ‖f ‖K2(ρ)(H ), f ∈ K2(ρ)(H ),

where the constant
√

2 cannot be improved.

Proof. This follows easily from Theorem 2.6 and (11).
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