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DEGENERATIONS OF (1, 7)-POLARIZED
ABELIAN SURFACES

F. MELLIEZ and K. RANESTAD∗

Abstract

The moduli space of (1, 7)-polarized abelian surfaces with a level structure was shown by Mano-
lache and Schreyer to be rational with compactification the variety of powersum presentations of the
Klein quartic curve. In this paper the possible degenerations of the abelian surfaces corresponding
to degenerations of powersum presentations are classified.

1. Introduction

The moduli space A(1, 7) of (1, 7)-polarized abelian surfaces with a level
structure was shown by Manolache and Schreyer to be rational with compac-
tification V (K4) a Fano 3-fold V22 [13]. Gross and Popescu obtain the same
compactification of A(1, 7) with a different approach [10], but in neither case
is the boundary V (K4) \ A(1, 7) discussed. The purpose of this paper is to
describe this boundary. We show that every point on V (K4) correspond to a
surface in P6 invariant under the action of a group G7, and we give a precise
description of these surfaces.

More precisely, the (1, 7)-polarized abelian surfaceAwith its level structure
is embedded in P6 = PV0, where V0 is the Schrödinger representation of
the Heisenberg group H7 of level 7. The embedding is invariant under the
action of G7, an extension of H7 by an involution. The fixed points of this
involution and its conjugates in G7 form an H7-orbit of planes P+2 and 3-
spaces P−3 . The 3-fold V (K4) parameterizes, what we denote by generalized
G7-embedded abelian surfaces (cf. 2.9). Every such surface intersects P+2 in a
finite subscheme of length six, which we may classify by its type, namely the
length of its components.

In this paper we prove the

Theorem 1.1. Let A be a generalized G7-embedded abelian surface in
PV0, then according to the type of ζA = A ∩ P+2 the surface A is
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type of ζA description

(1, 1, 1, 1, 1, 1) smooth and abelian
(2, 1, 1, 1, 1) translation scroll (E,±σ) with 2 · σ 	= 0
(3, 1, 1, 1) tangent scroll (E, 0)
(2, 2, 2) double translation scroll (E,±σ) with 2 · σ = 0 and σ 	= 0
(2, 2, 1, 1) union of seven quadrics
(4, 2) union of seven double projective planes
(2, 2, 2)c union of fourteen projective planes

For the translation and tangent scrolls,E is a septimic (this is the term used by
Sylvester), i.e. of degree seven, elliptic curve with an origin and the translation
defined by the specified point σ .

The two distinct (2, 2, 2) cases (abusively denoted by (2, 2, 2) and (2, 2, 2)c)
are described in Figure 1 of the appendix.

In the first section we recall some basic facts on (1, 7)-polarized abelian
surfaces with level structure, and construct a compactification of their moduli
space. In fact, we consider a rational map κ : PV0 ��� P6 defined by G7-
invariant hypersurfaces of degree 7, which maps any general surface A ∈
A(1, 7) to a six-secant plane to a certain Veronese surface S ⊂ P6 of degree 9.
The surface S is the image by κ of P+2 , so the six points of intersection S∩κ(A)
is the image of A ∩ P+2 . It turns out that distinct surfaces A are mapped to
distinct planes κ(A), so the variety of six-secant planes to S form a natural
compactification of A(1, 7). The variety of planes in P6 that intersects S in a
subscheme of length six is the Fano 3-foldV (K4). Its name originates from the
fact that the finite subschemes A ∩ P+2 form polar hexagons to a certain Klein
quartic curve K4 ⊂ P+∗2 , while V (K4) form the compact variety of apolar
subschemes of length six to K4, cf. [17]. It is in this interpretation that Gross
and Popescu identifies V (K4) as a compactification of A(1, 7), cf. [10]. The
variety V (K4) may also be identified with the variety of twisted cubic curves
apolar to a certain “Kleinian” net of quadric surfaces. This interpretation is
the key to the original approach of Manolache and Schreyer. Although our
approach is slightly different from these approaches in the interpretation of
V (K4), the main technical argument appears in their papers.

The variety V (K4) is a prime Fano threefold of genus 12. Mukai discovered
different interpretations of these threefolds that are carefully explained in [17].

In the second section we present some useful aspects in our situation of
these interpretations. In particular, we describe carefully the subvariety �K4

of V (K4) parameterizing apolar subschemes of length six to K4 which are
singular, i.e. do not consist of six distinct points, or equivalently planes in P6

that intersect S in a singular subscheme of length six.
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In the last section we prove Theorem 1.1 by considering the inverse images
by κ of planes that belong to �K4 ⊂ V (K4) as surfaces in PV0. The final
argument consists in verifying that only the planes that belong to �K4 pull
back to singular surfaces.

Note that A. Marini also investigates such degenerations in [14]. His ap-
proach uses the interpretation ofV (K4) as the set of twisted cubic curves apolar
to the “Kleinian” net of quadrics.

Notations

The base field is the one of complex numbers C. If R is a vector space, the
Veronese map from R to SnR (as well as its projectivisation) will be denoted
by νn:

R
νn−−−→ SnR.

If s ∈ Hilb(n,PR) the type of s ( i.e. the associated length partition of n) will
be labeled λs :

s λ−−−→ λs.

If H is a hypersurface of PR then eH = 0 is an equation of H .
The irreducible representations of SL(2, F7)will be denoted by C,W3,W∨

3 ,
U4, U∨4 , W6, U6, U∨6 , W7, W8 and U8. The algebra of representations of the
group SL(2, F7) is a quotient of

Z[C,W3,W
∨
3 , U4, U

∨
4 ,W6, U6, U

∨
6 ,W7,W8, U8]

where C denotes the trivial representation, Wn denotes an irreducible
P SL(2, F7)-module of dimension n and Un denotes an irreducible SL(2, F7)-
module of dimension n on which SL(2, F7) acts faithfully.

The corresponding table of multiplication can be found in [13] and [5] with
the following possible identifications

[5] V1 V3 = V− V ∗3 V4 = V+ V ∗4 V6 V ′6 V ′∗6 V7 V ′8 V8

[13] I W W ′ U U ′ T T1 T2 L M1 M2

× C W3 W∨
3 U4 U∨

4 W6 U6 U∨
6 W7 U8 W8

· P+2 P̌+2 P−3 P̌−3 P+5 P−5 P̌−5 P+6 P−7 P+7

Note that what are denoted by P+2 and P−3 are respectively denoted by P2− and
P3+ in [10].
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2. Moduli space: a compactification

In this section we describe our main object, the abelian surfaces with a (1, 7)-
polarization and a level structure, and their moduli space A(1, 7). The general
member of A(1, 7) is embedded in P6 invariant under a group G7. The hy-
persurfaces of degree 7 invariant under this group define a rational map on P6

which is the key to our approach to a compactification of A(1, 7). The first
analysis of this map is the main aim of this section.

Let A be an abelian surface, i.e. a projective complex torus C2/� where
� is a (maximal) lattice of C2 � R4. Then the variety Pic0(A) is an abelian
surface as well (isomorphic to (C2)∨/�∨); this latter one is called the dual
abelian surface ofA and will be denoted byA∨. As additive group, the surface
A acts on itself by translation, if x ∈ Awe will denote by τx the corresponding
translation.

A line bundle of type (1, 7) onA is the data of an ample line bundle L such
that the kernel of the isogeny

ϕL : A −−−→ A∨, x −−−→ τ ∗x L ⊗L −1

is isomorphic to Z7 × Z7.
A (1, 7)-polarization on A is an element of

{(A, ϕL ) | L is of type (1, 7)}.
Thanks to Mumford, a coarse moduli space of (1, 7)-polarized abelian sur-

faces exists, we will denote it by M(1, 7).
Now choose a generic (1, 7)-polarized abelian surface, say A, then V0 =

H0(A,L ) is of dimension 7. The group ker(ϕL ) � Z7 × Z7 becomes a sub-
group of P SL(V0). It is certainly safer to work with linear representations
rather than projective ones so we need to lift the action of Z7×Z7 on PV0 to an
action of one of its central extensions on V0. The Schur multiplier of Z7 × Z7

is known to be µ7 so any projective representation of Z7 × Z7 is induced by a
linear representation of what is called the “Heisenberg group of level 7” and
denoted by H7: that is to say for all n ∈ N∗ and all projective representations
ρ we get a Cartesian diagram:

1 −−−→ µn −−−→ SL(n,C) −−−→ P SL(n,C) −−−→ 1
↑ ↑ ↑

ρ

1 −−−→ µ7 −−−→ H7 −−−→ Z7 × Z7 −−−→ 1

In this way V0 becomes a H7-module (of rank 7), this representation is
called the “Schrödinger” representation ofH7. We now have a way to identify
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all the vector spaces H0(A′,L ) for any abelian surface A′ ∈ M(1, 7) as they
are all isomorphic toV0 asH7-modules. This looks too good to be true. So what
is wrong? We implicitly made an identification between ker(ϕL ) and Z7 × Z7

and this is certainly defined up to SL(2, F7) only! So the construction is only
invariant under N7 = H7 � SL(2, F7) which turns out to be the normalizer of
H7 in SL(7,C) � SL(V0).

So to any basis s of ker(ϕL ) corresponds an embedding

#s : A −→ PV0.

The group SL(2, F7) acts on the set of bases of ker(ϕL ) and we immediately
get another complication (which will turn out to be quite nice after all):

#s(A) = #−s(A).

Let us denote by G7 = H7 � {−1, 1} ⊂ N7. This group (after killing µ7) is
in general the full group of automorphisms of the surface #s(A): if b is any
element of Z7 × Z7 and τb : PV0 −→ PV0 is the involution induced by the
corresponding “−1” of G7, then τb leaves #s(A) (globally) invariant and is
induced by the “opposite” map x �→ −x on A for a good choice of the image
of the origin on #s(A). In other words, τb ·#s = #−s .

As the cardinality of SL(2, F7)/{−1, 1} = P SL(2, F7) is 168, each element
of M(1, 7) will be mapped into PV0 in 168 ways (distinct in general). We get
a brand new moduli space by considering a (1, 7)-polarized abelian surface
together with one of its embeddings, this moduli space will be denoted by
A(1, 7):

A(1, 7) = {
((A, ϕL ), s) | (A, ϕL ) ∈ M(1, 7), s is a basis of ker(ϕL )

}
/�

in which the equivalence relation � is the expected one, (X1, s1) � (X2, s2) if
#s1(X1) = #s2(X2) (fortunately, this implies X1 = X2). The choice of basis
(or embedding) is the level structure referred to in the introduction.

Here are some useful remarks:

(1) The surface #s(A) is of degree 14;

(2) by construction if x ∈ A, then the set of 49 points #s(ϕ
−1
L
(ϕL (x))) is

an orbit under the action of H7 (or H7/µ7 if we want to be precise);

(3) the above construction works as well for elliptic curves, so in particular
PV0 contains naturallyG7-invariant embedded elliptic curves (of degree
7);

(4) if b ∈ Z7 × Z7 the involution τb induces a SL(2, F7)-module structure
on V0, as such a module V0 splits in V0 = W3 ⊕ U4 where both W3 and
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U4 are irreducible SL(2, F7)-modules of dimension 3 and 4 respectively
(such that S3W∨

3 � S2U4). The projective plane PW3 and the projective
space PU4 in PV0 are point wise invariant by the involution τb. For a
given b ∈ Z7 × Z7 these two spaces will often be denoted by P+2 and P−3
(the signs come from the following: W3 is also a P SL(2, F7)-module,
i.e. −1 ∈ SL(2, F7) acts trivially on it, but SL(2, F7) acts faithfully on
U4);

(5) if E is a G7-invariant elliptic curve in PV0 then the curve E intersects
any P+2 in one point (corresponding to the image of 0) and any P−3 in
three points (corresponding to its non trivial 2-torsion points);

(6) the latter holds also for abelian surfaces, with decomposition 6 + 10
corresponding to the odd and even 2-torsion points ([12]);

(7) by adding a finite set of G7-invariant heptagons to the union of the G7-
invariant embedded elliptic curves of degree 7, one gets a birational
model of the Shioda modular surface of level 7. It intersects each P+2 in
a plane quartic curve K ′

4 , the so called Klein quartic curve ([15] or [8]
which contains original references to Klein).

Following what happens in the (1, 5) case we consider the rational map

κ : PV0 ��� P(H0(OPV0(7))
G7)∨

i.e. the rational transformation of PV0 by the linear system of G7-invariant
septimics. In what follows, by a ‘G7-invariant septimic’ we always mean a
septimic in this linear system. Obviously the vector space H0(OPV0(7))

G7 is
a P SL(2, F7)-module. On the other hand h0(OPV0(7))

G7 = 8 (cf. [13]), so κ
takes, a priori, its values in a P7. There is a uniqueN7-invariant septimic hyper-
surface [15], so the decomposition of the P SL(2, F7)-module H0(OPV0(7))

G7

must have a 7-dimensional summand. But the only dimensions of non-trivial
irreducible P SL(2, F7)-modules are 3, 6, 7 and 8, and W7 is the only one of
dimension 7, so this must be the other summand. Therefore H0(OPV0(7))

G7 �
W7 ⊕ C as a P SL(2, F7)-module.

We will show show that the image of κ is in fact contained in PW7. First we
analyze the base locus of these septimic hypersurfaces.

Lemma 2.1. A G7-invariant septimic hypersurface of PV0 contains any of
the fortynine projective spaces P−3 .

Proof. Consider the restriction to any projective space P−3 = PU4 of G7-
invariant septimic hypersurfaces. Then we get a map

H0(OPV0(7))
G7 −→ H0(OPU4(7)) = S7U∨4
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which needs to be SL(2, F7)-equivariant (the entire collection of P−3 ’s being
invariant under the action of G7). But U4 is a faithful module for SL(2, F7)

and 7 is odd, so the map is the zero map.

Using Bezout’s theorem we get

Corollary 2.2. AG7-invariant septimic hypersurface of PV0 contains any
G7-invariant elliptic curve of PV0 as well as its translation scroll by a non
trivial 2-torsion point.

Notice that our forty nine P+2 constitute an orbit underG7, so it makes sense
to consider the surface κ(P+2 ).

Corollary 2.3. ‘The’ plane P+2 is mapped by κ to a Veronese surface S of
degree nine in PW7.

Proof. The restriction of n G7-invariant septimic hypersurface to P+2 con-
tains, by the previous corollary and the last item (7) above, the Klein quartic
curve K ′

4 . The residual factor is a cubic, so the image of the restriction map
H0(OPV0(7))

G7 −→ H0(OPW∨
3
(7)) = S7W∨

3 factors through W7 ⊂ S3W∨
3 =

W7⊕W3. Therefore the restriction of κ to P+2 is defined byW7 ⊂ S3W∨
3 which

forms a basepoint free linear system of cubics, and the corollary follows.

Remark 2.4. This phenomenon holds also in the (1, 5) case where P+2
is mapped by the linear system of G5-invariant quintic hypersurfaces to a
(projected) Veronese surface of degree 25 in a Grassmannian Gr(1,P3) ⊂ P5

known as the bisecants variety of a certain rational sextic curve in P3. The
image of the blow-up of ‘the’ line P−1 is the sextic complex in Gr(1,P3) of
lines contained in a dual sextic of planes in P3. In this case, anyG5-embedded
(1, 5)-polarized abelian surface is mapped to a ten-secant plane to the image
of P+2 (which intersects the sextic complex along six lines).

Although the same kind of results are expected in our situation, here is a
difference between the two cases. In the (1, 5) case the vector space of G5-
invariant quintics is spanned by determinants of socalled Moore matrices.

Remark 2.5. The vector space H0(OPV0(7))
G7 is not spanned by determ-

inants of (symmetric) Moore matrices ([10]). For this, let us recall first what
a Moore matrix is; there is a nice isomorphism of irreducible N7-modules
(defined up to homothety) S2V4 = U4 ⊗ V0 which induces a map U4 −→
S2V4⊗V ∨0 . For a good choice of basis in V ∨0 we get a 7×7 matrix with coeffi-
cients in V ∨0 which is called a (symmetric) “Moore matrix”. Now considering
determinants, i.e. the map S2V4

“S2�7”−−−→ C) we get a first map

S7U4 −→ S7V ∨0 = H0(OPV0(7)),
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which composed with the projection to the invariant part yields a map

S7U4 −→ H0(OPV0(7))
G7 .

This latter one is certainly zero: the action of−1 ∈ SL(2, F7) cannot be trivial
on any SL(2, F7)-invariant subspace of the vector space S7U4.

Nevertheless anti-symmetric Moore matrices play a fundamental role in the
(1, 7) case. They are defined by the isomorphism of irreducible N7-modules
�2V4 = W∨

3 ⊗ V0. The locus (in PV0) where such a matrix drops its rank is a
Calabi Yau threefold (see [10]) and will appear in subsection 4.3.

Proposition 2.6. The image by the map κ of a G7-embedded (1, 7)-
polarized abelian surface is (generically) a projective plane and we have a
factorization

A& 49:1−−−−−→ A∨& 2:1−−−−→ K
&

A∨
2:1−−−−→ κ(A)

where the surfaceA& is the blowup of the surfaceA along its intersection with
the base locus of the G7-invariant septimics, and K&

A∨ is the quotient of A∨&
by the involution, i.e. in general its Kummer surface.

Proof. Assume the (1, 7)-polarization of A ∈ M(1, 7) is given by a very
ample line bundle, then from theG7-equivariant resolution of the surface A in
PV0 which can be found in [13, appendix], one can check that
dim(H0(OA(7))G7) = 3.

If the map κ|A is finite, then we have a factorization

A& 49:1−−−−−→ A∨& 2:1−−−−→ K
&

A∨
2:1−−−−→ κ(A).

The first two maps (as well as their degree) come from the construction itself,
the degree of the last one follows by Bezout’s theorem.

If κ|A is not finite, then it is composed with a pencil. We may assume
that Pic(A) has rank 1, i.e. all curves are hypersurface sections or translates
thereof. But no such curve isG7-invariant unless the curve is a possible translate
of a septimic hypersurface section, so κ|A has at most isolated base points.
Therefore the linear system defining κ|A is a subsystem of |7 · h|. The linear
system is a net, so if it is composed with a pencil each member is reducible.
In fact the general member must be the reducible union of seven hyperplane
sections through the base locus. The intersection of one of these hyperplane
sections with the base locus is a finite set whose stabilizer in G7 has order at
least 14. Therefore the hyperplane itself must have stabilizer of order at least
14. But there are only finitely many such hyperplanes, so this is impossible.
Thus the map κ is finite on A and the proposition follows.



degenerations of (1, 7)-polarized abelian surfaces 169

Let us denote by A(1, 7)v the (open) subset of A(1, 7) corresponding to
(1, 7)-polarized abelian surfaces for which the polarization is given by a very
ample line bundle and κ(A) is a plane. The association

A �→ κ(A)

maps A(1, 7)v into the variety of six-secant planes to κ(P+2 ). Notice that the
six points κ(A) ∩ κ(P+2 ) = κ(A ∩ P+2 ). Gross and Popescu in [10] prove that
A ∩ P+2 is a polar hexagon to the Klein quartic curve. On the other hand six
points in P+2 form a polar hexagon to the Klein curve precisely if all four cubics
in their ideal is contained inW7 ⊂ S3W∨

3 i.e. when their span on the Veronese
surface κ(P+2 ) is a plane. The variety of planes that intersect κ(P+2 ) in a finite
scheme of length six therefore define a natural compactification A(1, 7)v . In
this compactification, an abelian surface A ∈ A(1, 7)v is the proper transform
of a six-secant plane of the Veronese surface by κ−1.

Moreover, any (1, 7)-polarized abelian surface is mapped into the hyper-
plane PW7 of PH0(OPV0(7))

G7 so their union is contained in a septimic hyper-
surface of PV0. Therefore we have

Corollary 2.7. The compactificationA(1, 7)v is isomorphic to the unique
prime Fano threefold of genus 12 which admits P SL(2, F7) as its automorph-
isms group. The universal (1, 7)-polarized abelian surface with level 7 struc-
ture is birational to the unique N7-invariant septimic hypersurface of PV0.

Proof. Let us denote byX7 the uniqueN7-invariant septimic hypersurface
of PV0 and by Bκ the base locus of the G7-invariant septimic hypersurfaces.
Put Y4 = κ(X7\Bκ) ⊂ PW7 and consider the diagram

I

�↙p1 ❅↘p2

X7\Bκ κ−−−→ Y4 G(3,W7)

where I ⊂ PW7×G(3, W7) denotes the graph of the incidence correspondence
between PW7 and the (projective) fibers of the tautological sheaf over G(3,W7)

and where p1 and p2 are the natural projections. In order to prove birationality
we just need to prove that a general point of X7 is contained in one (and only
one) abelian surface. One first needs to remark, using representation theory
for instance, that both the hypersurfaces X7 and Y4 are irreducible.

Let A ∈ A(1, 7)v a G7-embedded abelian surface. We have:

• the septimic hypersurface X7 contains the surface A;

• the surface A intersects P+2 along a reduced scheme;

• the surface A is not contained in the base locus Bκ .
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The only non obvious fact is the third item. But Bκ intersects P+2 along
a Klein quartic curve K ′

4 so if we had A ⊂ Bκ this would imply the non
emptiness of A∩K ′

4 and in such cases A∩ P+2 admits a double point (see e.g.
section 3 below) contradicting the second item. Next the map A �−→ A ∩ P+2
is injective (see [10]) so the plane κ(A\Bκ) entirely characterizes the surface
A. Summing up we get that two distinct surfacesA andA′ intersect each other
either on

• the threefold Bκ (which is of codimension 2 in X7),

• or on the preimage by κ of the points in Y4 ⊂ PW7 which are contained
in more than one six-secant plane to the Veronese surface κ(P+2 \K ′

4).

SinceA is not contained in Bκ , it remains to show thatA is not contained in
the second locus. But one proves easily that the second locus is 2-dimensional,
being the preimage of the union of the Veronese surface κ(P+2 \K ′

4) itself and
its ruled surface of trisecant lines (for which the base is isomorphic to the Klein
quartic curve K4 of the dual plane P̌+2 ).

Remark 2.8. Notice that one can also prove (using Schubert calculus) that
the hypersurface Y4 has degree four in PW7 (this is true for any collection of
six-secant planes to such a projected Veronese surface).

With this compactification of A(1, 7)v , we define

Definition 2.9. A generalizedG7-embedded abelian surface is the proper
transform by κ−1 of a plane that intersects theVeronese surface κ(P+2 ) in a finite
scheme of length six.

Notice that to each generalized G7-embedded abelian surface A one may
associate a subscheme ζA = κ(A) ∩ κ(P+2 ) of length six.

3. Fano threefolds V22

The natural boundary of the compactificationA(1, 7)v constructed above con-
sists of planes that intersect κ(P+2 ) in nonreduced subschemes of length six.
The aim of this section is to describe this boundary in terms of the degrees of
the components of these subschemes, but first we need some general facts on
this compactification as a prime Fano threefold of genus 12 in its anticanonical
embedding.

Recall Mukai’s characterization of prime Fano threefolds of genus 12 (cf.
[16]).

Definition-Proposition 3.1. Any Fano threefold of index 1 and genus 12
is isomorphic to the variety of sums of powers

VSP(F, 6) = {
(/1, . . . , /6) ∈ Hilb6 PW∨ | eF ≡∑6

i=1e
4
/i

}
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of a plane quartic curve F . Conversely, if F is not a Clebsch quartic (i.e. its
catalecticant invariant vanishes), then VSP(F, 6) is a Fano threefold of index
1 and genus 12. Its anti-canonical model is denoted by V22.

3.1. Construction

Let W be an irreducible SL(3,C)-module of dimension 3, we have a decom-
position of SL(3,C)-modules ([9])

S2(S2W)∨ = S4W∨ ⊕ S2W

generating an exact sequence

0 −→ S4W∨ −→ Hom(S2W,S2W∨).

So a plane quartic F in PW whose equation is given by ‘an’ element eF of
S4W∨ gives rise to ‘a’ morphism αF : S2W −→ S2W∨ and a quadric QF in
P(S2W) of equation αF (x) · x = 0 or even x · αF (x) = 0 by the canonical
identification S2W = (S2W∨)∨. From the equality h0(Iν2(F )(2)) = 7, we get
a characterization of this quadric by the two properties:

(i) the two forms onW defined byαF (ν2(−))·ν2(−) and eF are proportional
i.e. the quadric QF and the Veronese surface ν2(PW) intersect along the
image of the plane quartic F under ν2;

(ii) the quadric QF is apolar to the Veronese surface ν2(PW∨) of PS2W∨ i.e.
apolar to each element of the vector space H0(Iν2(PW∨)(2)) � S2W∨ ⊂
S2(S2W).

Lemma 3.2 (Sylvester). The minimal integer n for which VSP(F, n) is non
empty is the rank of αF (called the catalecticant invariant of the quartic curve).

Proof. This well known result of Sylvester (see e.g. Dolgachev and Kanev
[6], Elliot [7, page 294]) can be deduced from the following observation: let
n ∈ N∗, then

ν2(VSP(F, n)) = {(p1, . . . , pn) ∈ VSP(QF , n) | p× ∈ ν2(PW∨)}.
Indeed if s = (/1, . . . , /n) ∈ VSP(F, n) then eF ≡ ∑n

i=1 e
4
/i

for a good
normalization of el× and the quadric Q ⊂ PS2W of equation

eQ ≡
n∑
i=1

e2
ν2(/i )



172 f. melliez and k. ranestad

is endowed with the two properties which characterize the quadric QF : the
second one is a direct consequence of H0(Iν2(PW∨)(2)) ⊂ H0(Iν2(s)(2)) and
the first one arises by construction. Applying ν−1

2 we get the required equality.

Define the vector space Y/ ⊂ S2W such that the line / of the plane PW
induces the exact sequence

0 −−−→ C · e2
/ −−−→ S2W∨ −−−→ Y∨/ −−−→ 0,

that is to say Y/ is the orthogonal space (in S2W ) of e2
/ .

Definition 3.3. The subscheme C/ of the plane PW∨ defined by C/ =
{x ∈ PW∨ | e2

x ∈ αF (Y/)} = ν−1
2 (αF (Y/)) is called the anti-polar conic of the

line / (with respect to the quartic F ).

Alternatively, if αF has maximal rank we have obviously

C/ = {x ∈ PW∨ | e2
x · α−1

F (e2
/) = 0}.

Set n = rank(αF ); the construction of a point of VSP(F, n) is now very easy
by the following corollary, which is a consequence of the classical construction
of a point of VSP(Q, n) when Q is a quadric of rank n.

Corollary 3.4. A point (/1, . . . , /n) lies in VSP(F, n) if and only if /i ∈
C/j when i 	= j ,

We turn to the anti-canonical embedding of V22, in particular to

3.2. Conics on the anti-canonical model

Let V be the seven dimensional vector space defined by the exact sequence

0 −−−→ W −−−→ S3W∨ pF−−−−→ V −−−→ 0

where the second map is induced by F ∈ S4W∨ ⊂ Hom(W, S3W∨) and de-
note by V ′2,9 the image of PW∨ in PV by the Veronese embedding ν3 composed
with the third map pF .

By definition s = (/1, . . . , /6) ∈ VSP(F, 6) if and only if the image by pF
of the 6-dimensional vector space (in S3W∨) spanned by e3

/i
is of rank 3. Thus

we get a map of VSP(F, 6) into the GrassmannianG(3, V ), by (/1, . . . , /6) �→
pF (〈/1, . . . , /6〉).

Remark 3.5. The image of VSP(F, 6) in the Plücker embedding of the
Grassmannian is the anti-canonical model V22 of this Fano threefold, it is
isomorphic to the variety of six-secant planes to the projected Veronese surface
V ′

2,9.
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Now it is reasonable to talk about conics on V22. Denote by F & the dual
quartic of PW of equation α−1

F (e2
/) · e2

/ = 0, in other words we have

F & = {/ ∈ PW∨ | / ∈ C/}
(the quartic F & reduces to a double conic when n = 5), and denote by HF the
sextic of PW∨ given by

HF = {/ ∈ PW∨ | rank(α−1
F (e2

/)) � 1}.
Let / ∈ PW∨\HF , then the anti-polar conic C/ is smooth and we can write
the abstract rational curve C/ as P1 = PS1 with dim S1 = 2, i.e. we put
S1 = H0(OC/

(1)). Put Sn := SnS1, then PSn is identified with the divisors of
degree n on PS1 and we have

Lemma 3.6. The set of divisors of degree 5 on the anti-polar conic C/ given
by {/′ + C/ ∩ C/′ , /

′ ∈ C/} is a projective line in PS5. This g1
5 admits a base

point if / ∈ F &.

Proof. Let D be such a divisor. By Corollary 3.4 the divisor D is com-
pletely determined by any one of its (sub)-divisor of degree 1, so the variety
of such divisors is a curve of first degree in PS5.

Corollary 3.7. The points of VSP(F, 6) which contain a given line /
describe a conic C/ on the anti-canonical model V22. The two conics C/ and
C/ have the same rank.

Proof. Let / be a point outside HF . Then the image of C/ by ν3 is a
rational normal sextic projected by the map pF to a smooth sextic inside P4

/ :=
P(pF (H0(OC/ (6)))) – we have an injection H0(OC/ (6)) ⊂ S3W∨ and it is a
simple matter to check H0(OC/ (6)) ∩ ker(pF ) is of dimension 2, moreover
identifying ker(pF ) and W we have P(H0(OC/ (6))∩W) = / ⊂ PW . Now P4

/

also contains the image of ν3(/) and projecting from this latter point the sextic
becomes:

(i) a rational sextic on a quadric of a P3 generically;

(ii) a rational quintic on a quadric of a P3 if / ∈ F &.

These curves are obviously on a quadric, since a six-secant plane to V ′
2,9 passing

through the point pF (ν3(/))will be mapped to a five-secant (resp. four-secant)
line to this rational curve.

Now if / ∈ HF , C/ breaks in two lines, say /1 and /2. We get two sys-
tems of six-secant planes to V ′

2,9 containing pF (ν3(/)), one of these intersects
pF (ν3(/1)) in two fixed points and intersects the twisted cubic pF (ν3(/2))
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along a pencil of divisors of degree 3. In particular, such collection is mapped
to a line by κ .

Corollary 3.8. If p is not on HF the threefold p1p
−1
2 (Cp) is a quadric

cone 6p of rank 4 in P4
p. If p ∈ HF the cone 6p splits in two P3’s.

Remark 3.9. We already get a first interpretation in terms of abelian sur-
faces. PuttingW = W∨

3 and choosing the unique P SL(2, F7)-invariant quartic
K4 of PW = P̌+2 for F we get V = W7, V ′

2,9 = κ(P+2 ), F & = K ′
4 . Now

if p ∈ P+2 , the proper transform of the quadric cone 6p by κ−1 is by [10]
birational to a Calabi Yau threefold, and by the preceding corollary contains –
when Cp is smooth – two distinct pencils of special surfaces: the one induced
by the six-secant planes, parameterized by Cp and corresponding generically to
abelian surfaces, and another one induced by the second ruling (parameterized
by Cp) of planes of the cone. We think that these last ones are the same as the
ones evoked in [10, remark 5.7].

3.3. Boundary for the Klein quartic

The boundary ofV22 = VSP(F, 6), as the set of nonreduced length six schemes
apolar to F , is easily deducible from what follows. But for the general plane
quartic F one needs to introduce a covariant of F , and this would be beyond
the subject of this paper. So in this section, we focus on the surface�F = {s ∈
VSP(F, 6) | λs 	= (16)} when the quartic F admits P SL(2, F7) as its group of
automorphisms.

We start by choosing a faithful embedding 1 −→ SL(2, F7) −→ SL(3,C),
so the vector space W of our preceding section becomes a SL(2, F7)-module
(necessarily irreducible), say W � W∨

3 and the decomposition S4W3 = C ⊕
W6 ⊕W8 allows us to consider the unique P SL(2, F7)-invariant quartic K4 of
P̌+2 = PW3. Such a quartic is called a Klein quartic and becomes the quartic F
of our preceding section. All the quartic covariants of F are equal to F (when
non zero) and the Klein quartic K ′

4 ⊂ P+2 is (by unicity) the quartic F & of the
last section.

We will need the classical

Lemma 3.10. There is a unique SL(2, F7)-invariant even theta characteristic
ϑ on the genus 3 curve K4 (resp. K ′

4 ).

Proof. The existence follows directly by the existence of a SL(2, F7)-
invariant injectionW3 −→ S2U4 so that one can illustrate K4 as the Jacobian of
a net of quadrics (in PU∨4 ). It is well known that such Jacobian is endowed with
an even theta characteristic (cf. [1]). Reciprocally, such a theta characteristic on
a curve of genus 3 comes with a net of quadrics and HomSL(2,F7)(W3, S

2U) 	= 0
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if and only if the four dimensional vector space U equals U∨4 as SL(2, F7)-
module.

We have

Proposition 3.11. Let p ∈ K ′
4 and (x1, x2, x3) ∈ K ′

4 ×K ′
4 ×K ′

4 such that
h0(ϑ + p − xi) = 1, then the anti-polar conic Cxi of xi with respect to K4

contains xj .

Proof. Let us leave the plane P+2 and take a look at the configuration in
P+5 = PS2W3 = PW6 = P̌+5 . The image ofxi by theVeronese embedding ν2 lies
on the quadricQK ′

4
. On the other hand, noticing that HomSL2 F7(C, S

2S2W3) =
C this quadric can be interpreted

• as the inverse of the quadric QK4 ;

• as the Plücker embedding of the Grassmannian of lines of P−3 using the
SL(2, F7)-invariant identification S2W3 � �2U4.

Let us denote by K ′
6 the Jacobian of the net of quadrics given byW3 −→ S2U4

and remember that this curve is (by unicity) canonically isomorphic to K ′
4 it-

self. So ν2(xi) is a line in P−3 (still denoted by ν2(xi)) and this one turns
out to be a trisecant line to the sextic K6 containing the image of p by the
identification K ′

4 = K ′
6 . This interpretation of the (3, 3) correspondence on

K ′
4 = K ′

6 induced by the even theta characteristic as the incidence corres-
pondence between K ′

6 and its trisecant lines is due to Clebsch. Now the three
lines ν2(xi) are concurrent in p and then the three points ν2(xi) of P+5 span
a projective plane contained in the inverse of the quadric QK4 . In particular,
α−1

K4
(ν2(xi))·ν2(xj ) = 0 which is precisely what we need to claim that xj ∈ Cxi .

Notice that using the same geometric interpretation we get immediately

Corollary 3.12. If p ∈ K ′
4 then the anti-polar conic Ca intersects the

hessian triangle Tp (i.e. the hessian of the polar cubic of p with respect to K ′
4 )

in points of the quartic K ′
4 (and Cp∩K ′

4−2p = Tp∩K ′
4−2x1−2x2−2x3)).

Proposition 3.13. Let s ∈ � := �K4 , then there exists at least one point p
in the support of ζs such that p ∈ K ′

4 and the type of ζs is one of the following

p /∈ H6 p ∈ H6

2, 1, 1, 1, 1 2, 2, 1, 1
type of ζs 3, 1, 1, 1 4, 2

2, 2, 2 (2, 2, 2)c

where H6 is the Hessian ofK ′
4 .
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The types of ζs and the corresponding stratification of � is illustrated in
Figure 1 and Figure 2 in the appendix.

Proof. From the preceding section, a point s of VSP(K4, 6) is in � if and
only if the support of ζs intersects the quartic curve K ′

4 . So let p ∈ K ′
4 , by

Corollary 3.4 the only thing to understand is the type of ζs when the point p
moves along the conic Cp. We have the alternative: the conic Cp is smooth
(case i) or p ∈ H6 := HK ′

4
(case ii).

(i) Denote (once again) by Sn the (n + 1)-dimensional vector space
H0(OCa (n)), we have Sn = SnS1. As p ∈ K ′

4 , the (1, 5) correspond-
ence between the two (isomorphic) rational curves Cp and Cp has a base
point, namely the point p itself on Cp and then reduces to a (1, 4) corres-
pondence. The induced pencil of divisors of degree 4 in PS4 intersects
the variety of non reduced divisors in six points (as any generic pencil
in PS4) and the expected types of ζs are hence (2, 1, 1, 1, 1) generically,
(3, 1, 1, 1) once and (2, 2, 1, 1) six times (each corresponding to a point
of Cp ∩ K ′

4 − {p}). But by the preceding proposition, if p′ ∈ Cp ∩ K ′
4

and p 	= p′, then the two conics Cp and Cp′ intersect in p + p′ + 2p′′
with p′′ ∈ K ′

4 hence the six expected subschemes ζs of type (2, 2, 1, 1)
on Cp become three ζs of type (2, 2, 2) for the particular Klein quartic.
Notice that in such a case, the scheme ζs has a length decomposition
2·(p+p′+p′′) and there exists a point q ∈ K ′

4 so that h0(ϑ+q−x) = 1
whenever x ∈ {p, p′, p′′}. Let us denote by qx the intersection of Cx with
the line xq, then

p3 · qp + p′3 · qp′ + p′′3 · qp′′ = 0

is an equation of K4.

(ii) Suppose now the point p is one of 24 points of intersection of the quartic
K ′

4 and its Hessian H6. Such points come 3 by 3 and the groupµ3 acts on
each triplet (so there is an order p1, p2, p3 on such triplet). Put p = p1.
The conic Cp1 is no longer smooth and decomposes in two lines, say
/ = p1p2 and /′ = p2p3. Each generic point q of the line / gives
us a point 2p1 + q + q ′ + 2p3 = Cp1 ∩ Cq + p1 + q of � (hence
of type (2, 2, 1, 1)) with q ′ ∈ / defined such that the degree 4 divisor
p2 + p1 + q + q ′ on the line / is harmonic. One can even provide the
corresponding equation of the quartic K4:

ε(βx + αz)4 − ε(βx − αz)4 − 2αβ{(x + ε(β2z− α2y))4 − x4}
+ 2α3β((y + εz)4 − y4) = 0
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with coefficients in C[ε]/ε2. We can forget points of � arising from a
point of /′, for such points can be constructed as the preceding ones by
starting with the point p2 instead of the point p1. The possible degen-
eracies follow easily: when (α : β) tends to (1 : 0) we get back to the
well known (2, 2, 2)c case, the last equation becomes

(z+εx)4−z4+(x+ε y)4−x4+(y+εz)4−y4 = 4ε(z3x+x3y+y3z) = 0.

The last possible degeneration arises when (α : β) tends to (1 : 0) in
which case we get (4, 2) as partition of 6.

4. Degenerated abelian surfaces

Now that we have seen the boundary � of V22 in Hilb(6,P+2 ) we will show
that points on � naturally correspond to generalized G7-embedded abelian
surfaces that are singular. We shall call them ‘degenerated abelian surfaces’.
The method we are going to employ is very naïve: given s ∈ �, find a surface
As in P6 which intersects P+2 along s and check that this surface is sent to
a projective plane by the map κ , i.e. that h0(IAs (7))

G7 = 5. The so-called
translation scrolls are natural candidates for ‘degenerated abelian surfaces’.
Given a G7-invariant elliptic normal curve E of degree 7 with an origin in
P+2 and a point σ ∈ E, let lx,σ be the bisecant line through the points x and
x+σ onE. Then the union of bisecant lines (E, σ ) = ∪x∈Elx,σ form a surface
that is called a translation scroll. We will show that the general point on �
corresponds to a translation scroll, while further degenerations are formed
by reducible surfaces. Finally we prove Theorem 1.1 by showing that any
point outside the boundary� corresponds to a smooth abelian surface. In this
section, we work up to the action of P SL(2, F7).

4.1. Translation scrolls

We will need the

Proposition 4.1. Every translation scroll of an elliptic normal curve of
degree 7 by a 2-torsion point is a smooth elliptic scroll of degree 7 and contains
3 elliptic normal curves of degree 7.

Proof. Cf. [4, Proposition 1.1] or [15].

Let us start with s ∈ � with λ ∈ {(2, 1, 1, 1, 1), (3, 1, 1, 1)}. Only one
point of s has a multiple structure, say p ∈ K ′

4 and the support of s consists in
four distinct points on the conic Cp. The stabilizer of (s)red under P SL(2,C) �
Aut(Cp) is in general isomorphic to Z2

2 (if it is bigger consider the subgroup

{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}



178 f. melliez and k. ranestad

in StabP SL(2,C)((s)red) ⊂ �4). Consider the double cover Es of Cp ramified at
the four points Z2

2 ·p. It is a smooth elliptic curve and we choose p as origin on
Es . Note that, by Proposition 3.11, Es depends only on p so it will be denoted
by Ep. Now the linear system |7 · p| is a H7-module and we can embed Ep in
P6 in 168 distinct ways, one of them sends p ∈ Ep to p ∈ P+2 . Next p ∈ s is
double along a line that will intersect Cp in a further point, say ps (of course
p = ps if λ = (3, 1, 1, 1)). Denote by σs one of the inverse images of ps by
the 2 : 1 map Ep −→ Cp.

Proposition 4.2. The translation scroll (Ep, σs) intersects P+2 along s and
is mapped by κ to a plane.

Proof. First the bisecant variety ofEp intersects P+2 along Cp: Indeed such
variety intersects P+2 along a conic (Ep being of degree 7 and invariant under a
symmetry which preserves P+2 ). Next by the previous proposition such a conic
must contain the three pairs of points of K ′

4
2 such as (q1, q2)where {p, q1, q2}

are associated to the same point of K ′
4 under the P SL(2, F7)-invariant (3, 3)

correspondence on K ′
4 . By Proposition 3.11, this conic is nothing but Cp.

Next as±σ moves along Cp, the set (Ep,±σ)∩Cp−2p describes a pencil
of degree 4 divisors on Cp, we need to identify this pencil with our pencil of
degree 4 divisors on Cp (proof of Proposition 3.13, item (i). But both pencils
contain the three divisors of type (2, 2) such as 2q1 + 2q2 so they are equal.

The point now is to prove that (Ep, σs) is mapped to a plane under κ , i.e.
that h0(O(Ep,σs )(7))

G7 = 3 or rather h0(O(Ep,σs )(7))
G7 � 3 by the previous

paragraphs. The scroll (Ep, σs) is a P1-bundle over Ep (in two ways, these
correspond to the choices σs and −σs to define the scroll) so we have a map

(Ep, σs) −→ Ep

and if R denotes a generic fiber we get a sequence

H0(O(Ep,σs )(7))
G7 −→ H0(OR(7))

G7 −→ 0

which turns out to be exact: if a G7-invariant septimic S contains the line R,
then its intersection with (Ep, σs) contains Ep ∪ G7 · R which is of degree
7 + 49 × 2 × 1. Now our scroll is of degree 14 and by Bezout’s theorem we
conclude (Ep, σs) ⊂ S. Using a semi-continuity argument we just need to find
one fiber R such that h0(OR(7))G7 ≤ 3. Choose one of the forty-nine P+2 and
pick up one of the four lines of (Ep, σs)which intersects it. Then the restriction

H0(OPV0(7))
G7 −→ H0(OR(7))

G7

is of rank 3 at most which is precisely what we needed.
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Of course to get the (2, 2, 2) cases it is natural to make σs tend to a 2-torsion
point. Then the translation scroll (Ep, σs) tends to a smooth scroll of degree 7
and everything is lost in virtue of the following remark.

Remark 4.3. Any translation scroll (Ep, σs) where σs is a non-trivial 2-
torsion point ofEp is contained in all ourG7-invariant septimic hypersurfaces.
Indeed such a scroll intersects any of the forty-nine P−3 ’s along a line and
contains the curve Ep itself, once again Bezout’s theorem together with the
inequality 49× 1+ 7 > 7× 7 allow us to conclude.

However we have

Proposition 4.4. If λs = (2, 2, 2), then there exist an elliptic curve Ep,
a two torsion point σs on Ep and a double structure on the translation scroll
(Ep, σs) intersecting P+2 along s and mapped to a plane by κ .

Proof. Let λs = (2, 2, 2). By Proposition 4.1 one and only one smooth
translation scroll X intersects P+2 along (s)red so we just need to find a double
structure X̃ on X such that h0(IX̃(7))

G7 = 5. Now X contains two (in fact
three by 4.1) elliptic curves Ep and Ep′ and by definition is contained in the
two corresponding bisecant varieties SEp and SEp′ . But these two varieties are
the proper transforms by κ−1 of the two quadric cones 6p and 6p′ (cf. Co-
rollary 3.8). These two cones intersect along the six-secant plane to κ(P+2 )
corresponding to s so we are done! The double structure is then easy to under-
stand: one considers the double structures on X\Ep (resp. X\Ep′ ) defined by
the embeddingX −→ SEp (resp.X −→ SEp′ ) and such structures coincide on
X\(Ep ∪ Ep′).

4.2. Union of seven quadrics

We still have to consider the missing cases, namely schemes s such that λs ∈
{(2, 2, 1, 1), (2, 2, 2)c, (4, 2)}. These are degenerations of the preceding ones.
A degenerated elliptic curve is nothing but a heptagon, and such curves come
in triplets (E0, E1, E2) (cf. Figure 3 of the appendix) withEi =⋃6

k=0 ekek+1+i
and {ex}x∈Z7 is an orbit of minimal cardinality under the action of G7.

The Heisenberg action on each curve Ei reduces to an action of Z7. Let us
denote by PI the projective space spanned by the points {ei}i∈I .

For i ∈ {0, 1, 2} put Bi = ⋃6
k=0 PI ki with I ki = {k + i + 1, k − i −

1, k + 3i + 3, k − 3i − 3}. Then the bisecant variety of Ei is Bj + Bk with
{i, j, k} = {0, 1, 2}.

Finally let us choose one of the forty nine P+2 and suppose Ei intersects it
in pi+1. We are then ready to check the remaining cases:

Let s ∈ � such that λs = (2, 2, 1, 1) and s = 2 ·p1+2 ·p3+q+q ′ with q
and q ′ on the linep1p2 (cf. Figure 1 of the appendix). So we have s ∈ Cp1∩Cp3 .
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The corresponding degenerated abelian surface As needs to be on the bisecant
varieties of E0 and E2 so we have As ⊂ B1. As B1 is the union of seven P3’s
the surface As is the union of seven quadrics.

When s moves along Cp1 ∩Cp3 we get the two other kinds of degenerations:

• if λs = (2, 2, 2)c, then the surface As degenerates in the union of the
fourteen planes B0 ∩ B1 ∪ B1 ∩ B2 ∪ B2 ∩ B0;

• if λs = (4, 2), then the surface As degenerates in the union of the seven
planes

⋃6
k=0 P{k,k+3,k−3} double along B1.

4.3. The smooth case

In order to complete the proof of Theorem 1.1, we need to show that a gen-
eralized G7-embedded abelian surface A is smooth and abelian provided the
type of ζA is (1, 1, 1, 1, 1, 1). Now, by the Enriques-Kodaira classification of
surfaces (see [3, chapter VI]) complex tori are entirely characterized by their
numerical invariants. So any generalized G7-embedded abelian surface is an
abelian surface provided it is smooth. Our strategy is to considerA as a divisor
on a Calabi Yau threefold as in remark 3.9.

First we treat the case of surfaces A singular along a curve:

Lemma 4.5. A generalizedG7-embedded abelian surfaceA, singular along
a curve, intersects ‘the’ plane P+2 in a non reduced scheme.

Proof. LetA be a singular generalizedG7-embedded abelian surface. The
proposition is obviously true if A is singular in codimension 0 that is to say if
A carries a double structure. For such surface, the intersection of its reduced
structure (of degree 7) with any P+2 cannot be six distinct points so ζA = A∩P+2 ,
which is of length six, cannot be reduced.

By assumption the singular locus of A contains a curve C. We can also
assume C is G7-invariant (if not we replace C by its orbit under G7).

IfC has degree 7, it is necessarily elliptic and, beingG7 invariant, intersects
P+2 in a point of the Klein curve K ′

4 so we are done. Indeed the rationality of
C (if irreducible) is totally excluded (such a curve admits either a unique four-
secant plane, a unique trisecant line or a (unique) double point, this would be a
contradiction with the irreducibility of V0 as H7-module), but C can still split
in the union of seven lines. We want to prove that C in this case is a heptagon
(that is to say elliptic). The stabilizer of one of the lines under the action ofH7

is isomorphic to Z7 so we get, on each line / ⊂ C, two fixed points under the
action of StabH7(/) � Z7 and then an orbit of fourteen points on C. Noticing
all the components have the same stabilizer (the only group morphism from
Z7 to the symmetric group �6 is constant) and considering the symmetries of
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G7 it is easy to prove that these fourteen points coincide two by two, implying
C is a heptagon.

If the singular locus C has degree 14, then the reduced structure of it has
degree 7 or 14. Only the latter is a problem. The normalization of the surface
would have sectional genus (−6) so it would consist of at least seven compon-
ents. They have the same degree i.e. 1 or 2, so their number must be 7 and their
degree must be 2. In particular, either the surface A is contained in one orbit
of seven p3’s under G7 or the reduced structure of A consists of seven planes.
In both cases, it is a simple matter to conclude for the only orbits of seven P3’s
under G7 are listed in the subsection 4.2 (consider for instance their possible
intersections with the forty-nine P+3 ) so the surface A appears already in the
subsection 4.2 and the proposition is true for such surfaces.

The last possible case is whenC has degree 21, but then the surfaceA has 14
components (its normalization would have sectional genus (−13)). Therefore
C splits and, as gcd(49, 21) = 7, contains threeG7-invariant curves of degree
7 so we are back to the first case.

End of the proof of Theorem 1.1.

LetA be a generalizedG7-embedded abelian surface, preimage of a six-secant
plane of κ(P+2 ) by κ , i.e. ζA = (1, 1, 1, 1, 1, 1). Since A ∩ K ′

4 = ∅ we may
divide in two cases; A intersects H6 but not K ′

4 in P+2 , and A intersects neither
H6 nor K ′

4 .
If A intersects H6 in P+2 , then A is a smooth plane curve fibration and has

a trisecant line in P+2 : see construction in [11].
So we are left with the case that A∩H6 = A∩K ′

4 = ∅. Thus, A is neither
a translation scroll nor a plane curve fibration.

By the previous lemma, A is irreducible with isolated singularities. First
we compute some invariants of A.

Lemma 4.6. ωA = OA and χ(OA) = 0.

Proof. Let us choose a ∈ P+2 ∩A and consider (identifying P+2 with PW3)
the Calabi Yau threefold Ya preimage of the cone 6a by κ . We know that
Ya =⋃

t∈Ca At . Ya has a quadratic singularity at a, and the general surface At
is smooth at a, so after a small resolution of Ya at a, the surface At will be
Cartier there.

We want to prove that the surface A is Cartier as a divisor on Ya except
in the preimage κ−1(κ(a)). Since A is the pullback of a plane on 6a by κ ,
it could fail to be Cartier only in κ−1(κ(a)) and in the restriction of the base
locus of κ to A. In fact, it could fail to be Cartier only on the intersection
Ba =⋂

t∈Ca At ⊂ Ya .
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Consider the restriction of κ to a smooth abelian surface At in Ya . The
restriction of the base locus of κ contains already the intersection of At with
the 49 P−3 ’s, i.e. 49 × 10 points so the degree of κ restricted to At is at most
7 × 7 × 14 − 49 × 10 = 196. On the other hand, the G7-orbits of degree
98 form a Kummer surface (cf. Proposition 2.6). Since κ(At) is a plane, the
degree is at least 196. ThereforeBa contains no points outside κ−1(κ(a))), and
A is Cartier on Ya outside κ−1(κ(a))).

After a small resolution Y ′a of Ya along κ−1(κ(a))), the strict transform of
A is Cartier everywhere on Y ′a . We may even assume that the small resolution
restricted to A is an isomorphism.

Now, Y ′a is still Calabi-Yau and the surfaces At form a pencil without base
points on Y ′a , so we have that ωA = OA. Indeed, the general At is smooth
(in particular At is a smooth elliptic fibration for t ∈ H6) with normal bundle
OA(A) = OA so ωA = OA(KYa ) = OA. Furthermore χ(OA) = χ(OAt ) = 0
as claimed.

Finally, we show that A is smooth. By assumption, A has only isolated
singularities. The length of any G7-orbit is a multiple of 7, so A has at least
7 singular points. Furthermore, A has trivial canonical sheaf and χ(OA) = 0.
Let Ã → A be a minimal desingularization of A. Then there are no (−1)-
curves in the exceptional locus. On the other hand the canonical divisor K
on Ã is supported on the exceptional locus. Let H be the pullback of the
hyperplane divisor on A. Then H · K = 0, so K2 ≤ 0, with equality only if
K is trivial. Furthermore any effective pluricanonical divisor is supported on
the exceptional locus. In fact we get that h0(mK) = h0(K) = pg , for m > 0.
If pg = 1, and K2 < 0, then Ã is necessarily a nonminimal surface, i.e. it
contains (−1)-curves. But any such curve is contained inK , so by assumption
it is contained in the exceptional locus of the desingularization map. This
contradicts the minimality of the desingularization. If K is trivial, then the
singularities are rational double points, while Ã is an abelian surface. This is
again a absurd. If pg = 0, then Ã has no effective pluricanonical divisors, and
K2 < 0. So Ã is birational to a ruled surface. Let F be a general member of its
ruling. Then K · F = −2. On the other hand the image in A of the support of
K is invariant underG7, soK ·F must be divisible by 7. This is a contradiction
that completes the proof.

We add a characterization of the intersection of A ∩ P−3 :

Remark 4.7. Choose coordinates (yi)i∈{0,...,6} inV0 together with one of the
forty-nine P−3 ’s of equations y4 = y3, y5 = y2, y6 = y1. Using theN7-invariant
isomorphism �2V4 = W∨

3 ⊗ V0 let us introduce for x = (x1 : x2 : x3) ∈ PW3
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and y = (y0 : − : y4) ∈ P−3 ⊂ PV0 the matrix

My(x) =
(
x2y2 −x3y1 − x1y3 x3y0 −x2y1 − x1y2

−x3y3 −x3y2 + x2y3 −x2y1 + x1y2 x1y0

−x1y1 x2y0 x3y1 x3y2 + x2y3

)

It is the restriction to P−3 of a skew-symmetric Moore matrixM(x, y) (see re-
marks 2.5, 3.9 and [10]). This matrixM(x, y) defines the CalabiYau threefold
which is the strict transform of the cone6x by κ−1. For general y ∈ P−3 ,My(x)

defines six points in PW3, meaning there is one abelian surface containing y
and six CalabiYau threefolds of the preceding type which contain this surface.
But My(x) may degenerate for special points y ∈ P−3 (for such cases we get
more than six points in PW3):

rank of �3My(x) y in x in abelian varieties passing through y

3 K6 H6 have a trisecant line
2 C18 K ′

4 translation scrolls
1 Z K ′

4 ∩H6 reducible

where K6 is the unique P SL(2, F7)-invariant curve of degree 6 and genus 3
in P−3 , C18 is a P SL(2, F7)-invariant curve of degree 18 and genus 35 in P−3
(analogue of the Bring curve in the (1, 5) case) and Z is the minimal orbit (of
cardinality eight) under the action of P SL(2, F7) on P−3 .

4.4. Some questions

Let A be a smooth abelian surface embedded in PV0. As already noticed in
Proposition 2.6 there is a factorization

A& 49:1−−−−−→ A∨& 2:1−−−−→ K
&

A∨
2:1−−−−→ κ(A).

What is the ramification locus of the last map? Of course, the map to the right
needs to define a K3 surface so it is certainly a sextic curve (of genus 4), but
it doesn’t explain how to recover it (using representation theory for instance).
A good understanding of this point should enable one to get a reconstruction
method, as in the (1, 5) case, of the abelian surface A∨. Note that this rami-
fication locus admits the six points κ(A) ∩ κ(P+2 ) as double points. Next the
surface A intersects P−3 in ten points, so projecting A from P−3 we get maps

A& 2:1−−−−→ K
&

A
2:1−−−−→ P+2 .

The last map is ramified along a sextic curve with the six pointsA∩P+2 as double
points. Hence there are two maps K&

A
2:1−−−−→ P+2 and K&

A
2:1−−−−→ κ(A∨).
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Is it possible to find an (in fact 168) identification(s) between P+2 and κ(A∨)
such that the two maps coincide? The answer is positive in the (1, 5) case and
allows one to identify the moduli space of (1, 5) polarized abelian surfaces
(without level structure) up to duality. Note that one can easily show that the
two sets of six pointsA∩P+2 and κ(A)∩κ(P+2 ) are associated in Coble’s sense.
This phenomenon is in fact true for any Fano threefold V22: given a six-secant
plane to V ′

2,9 (Veronese surface isomorphic to PW ), it intersects it along six
points associated to the corresponding set in PW .

It is possible to show that the Fano threefold VSP(K4, 6) is ‘stable’ by
association of points i.e. that there exists a (dual) Klein curve C in the plane
κ(A) such that κ(A)∩κ(P+2 ) is a point of the corresponding variety VSP(C, 6),
isomorphic, up to P SL(2, F7), to VSP(K4, 6). It is therefore natural to ask
whether one can find a quotient of VSP(K4, 6) by P SL(2, F7) and an involution
defined by association that forms the moduli space of (1, 7) polarized abelian
surfaces (without level structure) up to duality?
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5. Appendix
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Figure 1. Possible configurations of ζs when s ∈ �, where each arrow gives the
(first) direction along which the point is doubled (oriented in a purely decorative way).
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Cb

K4 (3, 1, 1, 1)

K4 (2, 2, 2)

(2, 2, 2)c

(2, 2, 2)(4, 2)

b

(4, 2)

(2, 1, 1, 1, 1)

(3, 1, 1, 1)

8 times

(2, 2, 1, 1)

Figure 2. Stratification of the surface �.
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Figure 3. A triplet of degenerate elliptic curves.
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