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A MONGE-AMPÈRE NORM FOR
DELTA-PLURISUBHARMONIC

FUNCTIONS

URBAN CEGRELL∗ and JONAS WIKLUND

Abstract

We consider differences of plurisubharmonic functions in the energy class F as a linear space, and
equip this space with a norm, depending on the generalized complex Monge-Ampère operator,
turning the linear space into a Banach space δF . Fundamental topological questions for this
space is studied, and we prove that δF is not separable. Moreover we investigate the dual space.
The study is concluded with comparison between δF and the space of delta-plurisubharmonic
functions, with norm depending on the total variation of the Laplace mass, studied by the first
author in an earlier paper [7].

1. Introduction and notations

Convex-, subharmonic-, and plurisubharmonic functions are all convex cones
in some larger linear space. Given any such cone, K say, we can investigate
the space of differences from this cone δK . Such studies are often motivated
by algebraic completion of the cone, and differences of convex functions were
considered by F. Riesz in as early as 1911.
δ-convex functions, or d.c. functions as they sometimes are denoted, were

studied by Kiselman [15], and Cegrell [8], and have been given attention in
many areas ranging from nonsmooth optimization to super-reflexive Banach
spaces [13].
δ-subharmonic where first given a systematic treatise in [3]. δ-plurisubhar-

monic functions were studied by Cegrell [7], and Kiselman [15], where the
topology was defined by neighbourhood basis of the form (U ∩PSH )−(U ∩
PSH ), U a neighbourhood of the origin in L1

loc.
In this paper we study a subset of δ-plurisubharmonic functions. Let � be

a hyperconvex domain in Cn, then F (�) is a convex cones in the linear space
L1

loc(�). Let δF (�) denote the set of functions u ∈ L1
loc(�) that can be written

as u = u1 − u2, where ui ∈ F (�).
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We will define a norm, depending on the Monge-Ampère operator, for
functions in this class and discuss some of the topological questions that this
norm raises.

For convenience we will denote the class of negative plurisubharmonic
functions on a domain� by PSH −

(�), and as in [9] we will denote the class
of bounded plurisubharmonic functions with boundary value zero and finite
total Monge-Ampère mass by E0(�).

For the notation of the so called energy class F (�) on a hyperconvex
domain � we refer to the paper [10]. As for now we remind the reader that
the generalized complex Monge-Ampère operator is well defined in F (�),
and functions from F (�) has finite total Monge-Ampère mass, but that the so
called “comparison principle” do not hold in general, even if it is true that if
u ≥ v on � then

∫
�
(ddcu)n ≤ ∫

�
(ddcv)n.

In almost all results in this paper the domain� does not matter much, except
for the results in Section 5, and therefore we will often suppress the reference
to � from the notation.

This paper is an expanded version of a manuscript that can be found in the
second author’s doctoral thesis [19]. The authors would like to thank Alexan-
der Rashkovskii and Yang Xing for valuable comments and suggestions.

2. Definition of the norm

Definition 2.1. Let� be a hyperconvex set in Cn. Assume that u ∈ δF (�),
then we define the norm of u to be:

‖u‖ = inf
u1−u2=u
u1,u2∈F

[(∫
�

(ddc(u1 + u2))
n

) 1
n
]
.

Note that for functions u ∈ F we have ‖u‖n = ∫
(ddcu)n. To see this

choose u2 = 0 in the infimum of the definition and hence ‖u‖n ≤ ∫
(ddcu)n.

For an inequality in the other direction let u1, u2 ∈ F be any representation
of u = u1 − u2. Since u2 ≤ 0 we have u ≥ u1 − u2 + 2u2 = u1 + u2, and
thus

∫
(ddcu)n ≤ ∫

(ddc(u1 + u2))
n thus

∫
(ddcu)n ≤ ‖u‖n.

The following Lemma will be used repeatedly.

Lemma 2.2. Suppose u, v ∈ F , h ∈ E0, and that p, q are positive natural
numbers such that p + q = n. Then

∫
−h(ddcu)p ∧ (ddcv)q ≤

(∫
−h(ddcu)n

) p

n
(∫

−h(ddcv)n
) q

n

Proof. Cf. [10].
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The following inequality is very useful when working with the Monge-
Ampère operator, and will be essential for our work.

Theorem 2.3 (Błocki’s inequality, [4]). Let � be an open subset of Cn,
and let h, u, v1, . . . , v2 ∈ PSH ∩ C (�). Furthermore, suppose u ≤ h, and
u = h close to ∂�, and that −1 ≤ vj ≤ 0 for 1 ≤ j ≤ n. Then∫

�

(h− u)nddcv1 ∧ · · · ∧ ddcvn ≤ n!
∫
�

(−vn)(ddcu)n.

Lemma 2.4. If λ ∈ R then ‖λu‖ = |λ|‖u‖.

Proof. Let λ ≥ 0. From the definition, we have

‖u‖n = inf
u1−u2=u

∫
�

(ddc(u1 + u2))
n

= inf
u1−u2=u

∫
�

(
ddc

(
λ

λ
(u1 + u2)

))n

= inf
u1−u2=u

∫
�

λ−n(ddc(λu1 + λu2))
n

= λ−n inf
ũ1−ũ2=λu

∫
�

(ddc(u1 + u2))
n = λ−n‖λu‖n.

Hence λ‖u‖ = ‖λu‖.
If λ < 0 we have λu = −λ(−u), and the same line of reasoning as above

applies.

Lemma 2.5. Suppose � is a hyperconvex domain in Cn and that u, v ∈
F (�), then

∫
�

(ddc(u+ v))n ≤
[(∫

�

(ddcu)n
) 1

n

+
(∫

�

(ddcv)n
) 1

n
]n

Proof. Take h ∈ E0 and let us consider the left hand side in the inequality
above.∫

�

−h(ddc(u+ v))n =
n∑

j=0

(
n

j

) ∫
�

−h(ddcu)n−j ∧ (ddcv)j

≤
n∑

j=0

(
n

j

)(∫
�

−h(ddcu)n
) n−j

n
(∫

�

−h(ddcv)n
) j

n

=
[(∫

�

−h(ddcu)n
) 1

n

+
(∫

�

−h(ddcv)n
) 1

n
]n
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where the inequality comes from the “Hölder-inequality” in Lemma 2.2. Fix
w ∈ �, and take h = max (k · g�,−1), where g�(z,w) is the pluricomplex
Green function with pole at w, then h ∈ E0 and h↘ −1 on� and the Lemma
follows.

Now we are in a position to prove the triangle-inequality for δF .

Corollary 2.6. Suppose� is a hyperconvex domain in Cn and that u, v ∈
δF (�), then

(1) ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

Proof. Take ε > 0, then there is ui, vi ∈ F such that

(∫
�

(ddc(u1 + u2))
n

)1/n

< ‖u‖ + ε

and (∫
�

(ddc(v1 + v2))
n

)1/n

< ‖v‖ + ε.

According to Lemma 2.5 we have

‖u‖ + ‖v‖ − 2ε >

(∫
�

(ddc(u1 + u2))
n

)1/n

+
(∫

�

(ddc(v1 + v2))
n

)1/n

≥
[∫

�

(ddc(u1 + u2 + v1 + v2))
n

]1/n

,

and furthermore, since u1 + v1 − (u2 + v2) = u− v, u1 + v1 and u2 + v2 are
two of the functions in the set we take infimum over we have

[∫
�

(ddc(u1 + u2 + v1 + v2))
n

]1/n

≥ ‖u+ v‖.

Hence ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

Lemma 2.7. If ‖u‖ = 0, then u = 0.

Proof. Take ε > 0. Since

‖u‖ = inf
u1−u2=u
u1,u2∈F

[(∫
�

(ddc(u1 + u2))
n

) 1
n
]
.

there is ũi ∈ F such that
∫
�
(ddc(ũ1 + ũ2))

n < ε.
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Take a sequence {vj } ⊂ E0 ∩ C (�̄), such that vj ↘ ũ1 + ũ2 as j → ∞.
Let t > 0 and define ht = max{vj ,−t}. According to Błocki’s inequality
(Theorem 2.3) we have

n!ε > n!
∫
�

(ddcvj )
n >

∫
�

(ht − vj )
n dV,

hence
n!ε > ‖ht − vj‖Ln vol (�).

Letting t ↘ 0 we get
n!ε

vol (�)
> ‖vj‖Ln,

independent of j . Thus ‖u1 +u2‖Ln < Cε, and letting ε → 0 we get ‖u‖Ln =
0, so u = 0, except for a set of measure zero, but since u ∈ δF we have u ≡ 0.

A remark on other energy classes
Since other type of energy-classes, for instance Ep(�) also are convex cones
we can form the linear spaces δEp. It is natural to try to generalize our norm
to a norm for these spaces. Consider a hyperconvex domain � ⊂ C2, and the
energy class E1(�). Since

∫
�
(ddcu)2 is not finite in general we have to replace

it with
∫
�
−u(ddcu)2. Thus the natural generalization of the norm would be

to take u ∈ δE1, and set

q(u) = inf
u1−u2=u
u1,u2∈E1

{(∫
�

−(u1 + u2)
(
ddc(u1 + u2)

)2
) 1

3
}
.

Unfortunatelyq is not a norm, since it does not satisfy the triangle inequality.
Using the energy estimate in [11], and repeating the calculations in Lemma 2.5
we only get q(u+ v) ≤ e2/3(q(u)+ q(v)).

3. On the Topology of δF

Theorem 3.1. (δF , ‖ · ‖) is a Banach space.

Proof. Lemmata 2.4 and 2.7, and Corollary 2.6 shows that (δF , ‖ · ‖) is
a normed vector space. It remains to show completeness.

Suppose (un) is a Cauchy sequence in δF . For each integer k there is an
integer nk such that ‖un− um‖ < 2−k for n,m > nk . We choose the nk’s such
that nk+1 > nk .

We have unk = un1 + (un2 − un1) + · · · + (unk − un(k−1) ). Since unj ∈ δF
for j = 1, . . . , k we can write unj − unj−1 = φ1

j − φ2
j , for φ1

j , φ
2
j ∈ F , where
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the φ1
j and φ2

j are chosen such that

‖unj −unj−1‖ = inf

(∫
(ddc(ϕ1+ϕ2))n

)1/n

≥
(∫

(ddc(φ1
j +φ2

j ))
n

)1/n

−2−j−1.

Then we have

unk = un1 + (φ1
2 − φ2

2)+ · · · + (φ1
k − φ2

k )

= un1 + (φ1
2 + · · · + φ1

k )− (φ2
2 + · · · + φ2

k )

and since
∑k

j=2 φ
1
j ∈ PSH −

(�) is a decreasing sequence and

(∫ (
ddc

( k∑
j=2

φ1
j

))n)1/n

≤
(∫ (

ddc
( k∑
j=2

φ1
j + φ2

j

))n)1/n

≤
k∑

j=2

(∫ (
ddc

(
φ1
j + φ2

j

))n)1/n

≤
k∑

j=2

(‖unj − unj−1‖ + 2−j−1
)1/n =

k∑
j=2

(
2−j + 2−j−1

)1/n
<

1
n
√

2 − 1
.

Thus
∑k

j=2 φ
1
j is an decreasing sequence of plurisubharmonic functions with

bounded total mass, and in the same way
∑k

j=2 φ
2
j is. Therefore unk is conver-

gent to some u ∈ δF , and since (un) is a Cauchy sequence un → u.

Lemma 3.2. F is closed in the topology of δF .

Proof. Take any Cauchy-sequence (um) in F . Choose a suitable sparse
subsequence (u′m), then up = u0 + u1 − u0 + · · · + up − up−1, and by the
exact same reasoning as in the proof of completeness for δF , we get that
up → u ∈ F .

Proposition 3.3. The continuous functions are not dense in δF . Further-
more δF is not separable.

Proof. Let us denote the Lelong number of u at x with ν(u, x). The Lelong
number at the origin is of course a linear functional on all of δF , furthermore
ν(·, 0) is a continuos linear functional on δF , by Theorem 4.3 or directly by
the estimate:

(2πν(u, x))n ≤ (ddcu)n({x}),
for functions u ∈ F (see e.g. [10]).
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For all functions u ∈ PSH ∩ C we have ν(u, 0) = 0, thus log |z| can not
be approximated by continuos functions in our topology.

For the second statement of the proposition, let us assume that δF is indeed
separable. Let {ui} be a dense subset of δF . It is well known that the set where
the Lelong number is positive for a given function u, is of Lebesgue measure
zero. Thus the union of the sets where the Lelong number is positive for
functions from {ui} is also of Lebesgue-measure zero. Take any point x not in
this union, i.e. ν(ui, x) = 0 for allui’s, and then we see thatv(z) = ∫

�
log |z| δx

cannot be approximated from functions in {ui}.
A vector space L over R with an order structure defined by a binary relation

“≤” being reflexive, transitive and anti-symmetric is called an ordered vector
space over R if the relation satisfies:

(1) translation-invariance, x ≤ y �⇒ x + z ≤ y + z for all x, y, z ∈ L
(2) x ≤ y �⇒ λx ≤ λy for all x, y ∈ L and λ > 0.

Clearly every vector space of real-valued functions f on a parameter set X is
an ordered vector space under the natural order f ≤ g if f (x) ≤ g(x) for all
x ∈ X.

If L is a topological vector space, and an ordered vector space, we say that
if is an ordered topological vector space if the positive cone C = {x | x ≥ 0}
is closed on L. In particular δF is an ordered topological vector space since
{u ∈ δF | u ≥ 0} is closed on the topology of δF .

A comprehensive treatise of ordered topological vector spaces is found in
the book of Schaefer and Wolff [18].

It is natural to ask wether δF has even more ordered structure.
Remember that a vector lattice is an ordered vector spaceL over R such that

sup(x, y) and inf(x, y) exist for every pair (x, y) ∈ L×L. For a vector lattice
L set |x| = sup(x,−x). Of course δF is a vector lattice since sup(u, v) =
max(u, v) exist and the same for infimum.

Given a topological vector space L over R, with a vector lattice structure, a
set X ⊂ L is called solid if x ∈ X and |x| ≤ |y| imply that y ∈ X.

We call L locally solid if it has a 0-neighbourhood base of solid sets, i.e.
the norm is compatible with the lattice structure.

Unfortunately δF is not locally solid. It suffices to show that the the unit
ball B ⊂ L is not solid, (see e.g. [18] or [17]), and this is showed in the example
below.

Example 3.4. Consider the function f (ζ ) = max(log |ζ |,−1)−
max(log |ζ |,−1/2) in the unit-disc D in C1. We have ‖ log |ζ |‖ = π , and
|f | ≤ | log |ζ ||.
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Since max(log |ζ |,−1) = pµ, and max(log |ζ |,−1/2) = pν , where µ and
ν are the Lebesgue measure on the circles {|ζ | = e−1} and {|ζ | = e−1/2},
and therefore have disjunct support we can calculate that ‖f ‖ = π + π . Thus
δF (D) is not locally solid. In particular: δF is not a so-called Banach lattice.
(A Banach lattice is a locally solid Banach space.)

4. The dual space

Let us denote the topological dual of δF by (δF )′.
It is natural to ask which elements of the dual can be given by Borel meas-

ures.

Theorem 4.1. Take ψ ∈ F . Suppose . ∈ (δF )′ is given by

.(u) =
∫

ddcu ∧ (ddcψ)n−1,

then ‖.‖ = ‖ψ‖n−1, and if ψ �= 0 there is no Borel measure on � such that
.(u) = ∫

u dµ.

Proof. Let u ∈ F . According to Lemma 2.2 we have

.(u) =
∫

ddcu ∧ (ddcψ)n−1 ≤
(∫

(ddcu)n
) 1

n
(∫

(ddcψ)n
) n−1

n

.

Thus.(u) ≤ ‖u‖ · ‖ψ‖n−1. Take f ∈ δF and choose any u, v ∈ F such that
f = u− v, then

|.(f )| = |.(u− v)| ≤ |.(u)| + |.(v)| = .(u)+.(v)

= .(u+ v) ≤
(∫

(ddc(u+ v))n
) 1

n

· ‖ψ‖n−1,

and we get that

|.(f )| ≤ inf
u−v=f ;u,v∈F

(∫
(ddc(u+ v))n

)1/n

· ‖ψ‖n−1 = ‖f ‖ · ‖ψ‖n−1

On the other hand, take u = ‖ψ‖−1ψ . Then ‖u‖ = 1 and

.(u) =
∫

ddc(‖ψ‖−1ψ) ∧ (ddcψ)n−1 = ‖ψ‖n−1.

Thus ‖.‖ = sup
‖f ‖=1

|.(f )| = ‖ψ‖n−1.
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To see that . is not given by a Borel measure, take u, v ∈ F such that
u = v near ∂�. Then

(2)
∫
�

ddcu ∧ (ddcψ)n−1 =
∫
�

ddcv ∧ (ddcψ)n−1,

by “Stokes’ theorem”, and if .(u) = ∫
�
u dµ then

∫
�
(v − u) dµ = 0. Since

C∞
0 ⊂ δE0 (see Lemma 3.1, [10]) it follows that dµ has its support on the

boundary of �. But then .(u) = 0 for all u ∈ E0. Take a sequence {uj } ⊂ E0

such that uj ↘ ψ , and by continuity we get
∫
�
(ddcψ)n = 0, thus ψ = 0.

Example 4.2. Suppose q > 1. Let g ∈ Lq(�). For any u ∈ F (�), define
T (u) = ∫

ug dV , then T ∈ (δF )′.

Proof. From [12] we have for every u ∈ F with
∫
(ddcu)n ≤ 1 there is a

constant A, depending only on � such that
∫
e−u dV ≤ A. Thus u ∈ Lp,∀p.

Theorem 4.3. If T is a linear functional on δF such that T (x) ≥ 0, for
all x ∈ F , then T is continuous.

Proof. Take a bounded sequence {fk} ⊂ δF , such that ‖fk‖ < M . By
construction there is xk, yk ∈ F such thatfk = xk−yk , and ‖xk+yk‖ < M+1.
We have ‖xk‖ = ‖fk + yk‖ ≤ ‖fk‖+ ‖yk‖ ≤ M +‖yk‖ ≤ M +‖xk + yk‖ ≤
2M + 1, where the second to last inequality follows from that yk ≥ xk + yk ,
thus

∫
(ddcyk)n ≤

∫
(ddc(xk + yk))

n,
If T is bounded on all bounded sequences {xk} ⊂ F then |T (fk)| =

|T (xk)− T (yk)| ≤ |T (xk)| + |T (yk)|, and T (fk) would be bounded as well.
Suppose T is not continuous. Then there has to be a bounded sequence

{fk} ⊂ δF such that {T (fk)} is not bounded. Thus there has to be a bounded
sequence {xk} in F such that T (xk) > k > 0.

Now defineφ = ∑∞
k=1 k

−2xk . Since F is a convex cone and {xk} is bounded
φ ∈ F . Note that T (φ) = T

(∑p

1 xk
) + T

(∑∞
p+1 xk

) ≥ T
(∑p

1 xk
)
, since

T ≥ 0 on F . But then T (φ) ≥ ∑p

1 k
−1, for all positive numbers p, i.e.

T = +∞, and we have a contradiction.

Let us recall the notion of dual cones.

Definition 4.4. If C is a cone in the topological vector space L, the dual
cone C ′ of C is defined to be the set

C ′ = {T ∈ L | T (u) ≥ 0 if u ∈ C}.

Theorem 4.5. (δF )′ = F ′ − F ′ = δF ′.

Proof. This follows more or less immediately from [16], (see also Lemma 1
p. 218 [18]), since one can show that F is a so called normal cone, but to avoid
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giving the rather abstract definitions of normal cones, we give a self contained
proof.

Take T ∈ (δF )′ and define p : F → R+ by p(u) := sup{T (v) | u ≤ v ≤
0}. By the linearity of T , p(λu) = λp(u), for λ ≥ 0, and since {φ | u + v ≤
φ ≤ 0} ⊃ {φ | u ≤ φ ≤ 0} + {φ | v ≤ φ ≤ 0}, p(u+ v) ≥ p(u)+ p(v) also.
Thus the set V = {(t, u) | 0 ≤ t ≤ p(u)} ⊂ R × δF is a convex cone.

Clearly R × δF is a normable space. Take a sequence {uk} ⊂ F such that
‖uk‖ → 0, as k → ∞. Ifϕ ∈ F anduk ≤ ϕ ≤ 0 then

∫
(ddcϕ)n ≤ ∫

(ddcuk)n,
and hence ‖ϕ‖ ≤ ‖uk‖, thus p(uk) → 0, as k → ∞ by the continuity of T .
We conclude that (1, 0) �∈ V̄ .

Since δF is locally convex there is a closed real hyperplane H = {t, u) |
h(t, x) = −1}, separating V̄ and (1, 0)where we can choose h such that h ≥ 0
on V and h(1, 0) = −1. Since (R × δF )′ is algebraically isomorphic with
(R⊕ δF )′, (see Theorem 4.3 p. 137, [18]) we have h(t, u) = αt + g(u). Now
h(1, 0) = α = −1.

Since (0, u) ∈ V , for all u ∈ F , and g ∈ (δF )′, we have g(u) ≥ 0 on F

according to our choice of H . V was chosen such that (p(u), u) ∈ V , hence
h(p(u), u) = −p(u) + g(u) ≥ 0, and we get T (u) ≤ p(u) ≤ g(u). To sum
up: T = g − (g − T ), where g − T ≥ 0. Note that by Theorem 4.3, linear
operators that are positive on F are continuous.

We can extend the definition of the Monge-Ampère operator to the whole
of δF . Suppose u ∈ δF , then u = u1 − u2, for some u1, u2 ∈ F , and
we can define (ddcu)n = ∑n

j=0(−1)j
(
n

j

)
(ddcu1)

n−j ∧ (ddcu2)
j . To see that

this definition is independent of the choice of the functions from F , suppose
u = u1 − u2 = v1 − v2, and that h ∈ E0. Then∫

h ddc(u1 − u2) ∧ · · · ∧ ddc(u1 − u2)

=
∫
(u1 − u2) ddch ∧ ddc(u1 − u2) ∧ · · · ∧ ddc(u1 − u2)

=
∫
(v1 − v2) ddch ∧ ddc(u1 − u2) ∧ · · · ∧ ddc(u1 − u2)

=
∫
h ddc(v1 − v2) ∧ ddc(u1 − u2) ∧ · · · ∧ ddc(u1 − u2),

and continuing iteratively we have
∫
h ddc(u1−u2)∧· · ·∧ddc(u1−u2) =

∫
h ddc(v1−v2)∧· · ·∧ddc(v1−v2).
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Corollary 4.6. The following functionals are all continuous on δF :

• The total mass of the Monge-Ampère measure.
• Demailly’s generalized Lelong numbers ν(ddcu, ϕ) for the current ddcu

with weight ϕ.

For a definition of ν(T , ϕ)—the Lelong number of the currentT with weight
ϕ see [14].

5. Comparison with delta-subharmonic functions

Let us turn our attention to the class of delta-subharmonic functions in domains
in Cn.

If we have a generating family of seminorms on a Fréchet spaceX and ifK
is a closed convex cone inX we can turnK into a Fréchet space with topology
defined by the seminorms

‖f ‖j = inf{|g|j + |h|j ; f = g − h, for g and h in K}, j ∈ N,

where | · |j are a generating family of seminorms on X.

Definition 5.1. The set δm. Letm(�) be the set of positive measures that
can be written as µ = 5ϕ, for some ϕ ∈ PSH (�). We denote the space of
differences from this cone by δm(�) as usual.

Since any open domain� ⊂ Cn is para-compact it suffices to define a semi-
norm for any compactK�� and generate the topology from these seminorms.

Using the topology on δPSH , the delta-plurisubharmonic functions, de-
fined in the introduction we have a continuity property of the Laplace operator.

Theorem 5.2. Assume that � is pseudoconvex then δm(�) is a Fréchet
space with seminorms defined by

‖µ‖K = inf

(∫
K

µ1 + µ2 | µ = µ1 − µ2, µ1, µ2 ∈ m(�)
)
, K � �.

Furthermore the Laplace operator5 : δPSH (�) !→ δm(�) is continuos.

Proof. Cf. [7]. (By assuming that� is pseudoconvex we don’t have to deal
with some homotopy intricacies.)

Definition 5.3. The set δM . Let us denote the set of all positive real Borel
measures on� byM(�), and the signed real Borel measures as δM(�). Then
the total variation of a measure µ ∈ δM(�) is by Jordan’s decomposition
theorem given as

|µ| = inf

(∫
�

µ1 + µ2 | µ = µ1 − µ2, µ1, µ2 ∈ M(�)
)
.
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We will view δM(�) as a Banach space with norm defined by the equation
above.

Let5 denote the Laplacian as a map from δF to δM . Clearly5 is a linear
map. Continuity of the map, however, turns out to be more subtle.

Theorem 5.4. Suppose� is a strict pseudoconvex domain with C∞-smooth
boundary, then the map 5 : δF → δM is continuous.

Proof. According to [6] the solution ϕ ∈ PSH (�) to the Dirichlet prob-
lem: {

(ddcϕ)n = 1 on �

ϕ = −‖z‖2 on ∂�

satisfy ϕ ∈ C∞(�̄). Thus it follows that ‖z‖2 + ϕ ∈ E0(�).
Direct calculation gives that

ddcu ∧ (ddc‖z‖2)n−1 = 4n−1(n− 1)!5u.

Thus we have that

4n−1(n− 1)!
∫
�

5u =
∫
�

ddcu ∧ (ddc‖z‖2)n−1

≤
∫
�

ddcu ∧ (ddc(‖z‖2 + ϕ))n−1

≤
(∫

�

(ddcu)n
)1/n(∫

�

(ddc(‖z‖2 + ϕ))n
)(n−1)/n

≤ C ·
(∫

�

(ddcu)n
)1/n

for some positive constant C. The second inequality above follows from
Lemma 2.2.

Take u ∈ δF and any ε > 0, then there is a choice of u1, u2 such that
u = u1−u2 where

∫
(ddc(u1+u2))

n < ‖u‖n+ε. According to the calculation
above we have
∫
�

5u1+5u2 =
∫
�

5(u1+u2) ≤ C ′ ·
(∫

�

(ddc(u1+u2))
n

)1/n

< C ′‖u‖+ε

for some constantC ′, not depending on ε. Let ε → 0 and the theorem follows.

Unfortunately, continuity of 5 does not hold in general, in particular not
where the boundary of the domain is “flat”, as can be seen from the following
example.
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Example 5.5. Let uk = max(k log |z1|, (1/k) log |z2|). Then there is a
constant c, not depending on k, such that∫

D2
5uk ≥ c · k,

but ∫
D2
(ddc(uk))

2 = (2π)−2.

Proof. Take χ1, χ2 ∈ C∞
0 (D), where D is the unit disc. Then∫

D2
χ1χ25uk =

∫
D2
uk(z1, z2)5(χ1(z1)χ2(z2))

=
∫

D2
uk(z1, z2)

(
χ2(z2)51χ1(z1)+ χ1(z1)52χ2(z2)

)

=
∫

D
χ2

∫
D
uk51χ1 +

∫
D
χ1

∫
D
uk52χ2 ≥

∫
D
χ2

∫
D
uk51χ1

=
∫

D
χ2

∫
D
χ151uk.

Take χ2 such that χ2 ≡ 1 on D(1/2). For z2 fixed with |z2| < 1/2 we know that
51 max(k log |z1|, k−1 log |z2|) is k times the (normalized) Lebesgue measure
on the circle {z1 ∈ C ; |z1|k2 = |z2|}. Choose χ1, depending on k, such that

χ1 ≡ 1 at least where |z1| ≤
(

1
2

)1/k2

. After making all these choices we have∫
D
χ2

∫
D
χ151uk =

∫
D
χ2

k

2π
dz2 ∧ dz̄2 > c · k,

for some constant c, independent of k.
It is well known that

∫
D2(ddc(uk))2 = (2π)−2.

Remark 5.6. Let � be a hyperconvex domain and take a sequence {uk} in
F (�) such that

∫
5uk diverges. Exhaust� with smooth, strict pseudoconvex

domains from inside, then Theorem 5.4 implies that the Laplace mass of the
uk has to be pushed out towards the boundary.

LetU(0, f ) be the Perron-Bremermann function off , i.e. the largest locally
bounded plurisubharmonic function that has boundary values at most f . (See
e.g. [9])

In his Doctoral Thesis, Åhag [1] generalized the notion Fp(f ) of energy
classes with “boundary data” f , from [9], and introduced F (f,�). Assume
that

lim
�"z→ζ

U(0, f ) = f (ζ )
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for every ζ ∈ ∂�, then we define the F (f,�) to be set of plurisubharmonic
functions on � such that there is a ϕ ∈ F such that U(0, f ) ≥ u ≥ ϕ +
U(0, f ).

Example 5.7. Let

u(z) =
∞∑
k=1

max(log |z1|, k−4 log |z2|).

Then u ∈ F (D2), but
∫

D2 5u = +∞. Furthermore take f = |z2|2 − 1, then

f ∈ C∞(D
2
) and (ddcf )2 = 0 but (ddc(u+ f ))2 is not bounded on D2.

Proof. Let uk = max(log |z1|, k−4 log |z2|), then
∫

D2(ddc(uk))2 =
(2πk2)−2.

By Lemma 2.5 we get

∫
D2

(
ddc

( N∑
k=1

uk

))2

≤
( N∑
k=1

(∫
(ddcuk)

2

)1/2)2

=
( N∑
k=1

1

2πk2

)2

≤ π2

144
,

thus u ∈ F , and u+ f ∈ F (f ). But we have
∫

ddcuk ∧ ddc(|z2|2 − 1) =
∫

ddcuk ∧ (2i dz2 ∧ dz̄2) = 16
∫
51uk > c,

where the constant c is independent of k, by the inequality in Example 5.5
above. Thus

∫ (
ddc

(
f +

N∑
k=1

uk

))2

≥ 2
∫ N∑

k=1

ddcuk ∧ ddc(|z2|2 − 1) ≥ N,

and we get that the total mass of u+ f diverges.

To ensure that if u ∈ F (f ) we have
∫
�
(ddcu)n < +∞ Åhag introduced

the concept of compliant functions f . A continuous function f : ∂� → R
is said to be compliant if the Perron-Bremermann function U(0, f ) satisfies
U(0, f ) = f on the boundary and

∫
(ddc(U(0, f )+ U(0,−f )))n < +∞.

Åhag proved, using the smoothness result for the Monge-Ampère operator
of Caffarelli-Kohn-Nirenberg-Spruck [6], that under the assumption that � is
strict pseudoconvex and smooth, any smooth boundary function is compliant.

In relation to this Åhag [2] has posed the following problem:

Problem. Suppose � is hyperconvex, f ∈ C∞, and f = U(0, f ). If
u ∈ F (�), is

∫
�
(ddc(u+ f ))n < +∞?
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According to Example 5.7 above the answer to this problem is no, not
always. To see this it simply suffices to take f and u as in the example.

Since the dual of the space δM is well understood it would be nice to pull
back (δM)′ to (δF )′. At the moment this does not seems feasible considering
the example below.

Example 5.8. Let B be the unit ball in C2. The inverse Laplace-operator
5−1 : δM(B) !→ δF (B) is not continuous. Let u(z1, z2) = −(1− |z1|2)1/2 +
|z2|. Then u ∈ PSH ∩ C (B), and u = 0 on the boundary of the ball. Away
from the z1-axis we have that

4 ∂∂̄u =
( |z1|2
(1 − |z1|2)3/2 + 2

(1 − |z1|2)1/2
)
dz1 ∧ dz̄1 + 1

|z2|dz2 ∧ dz̄2.

Thus setting r = |z1| and ρ = |z2| we calculate

∫
B
5udV = 4(2π)2

∫ 1

0

∫ √
1−r2

0

(
r2

(1 − r2)3/2
+ 2

(1 − r2)1/2
+ 1

ρ

)
rρ dρ dr

= 4π2.

In [5] Błocki pointed out that even though (ddc(−(1−|z1|2)1/2))2 = (ddc|z2|)2
= 0 we still have that

∫
B(ddcu)n dV = +∞, since for any real number 0 <

a < 1, we have

∫
B
(ddcu)n dV ≥ 1

16
(2π)2

∫ a

0

∫ √
1−r2

0

2 − r2

(1 − r2)3/2
r dρ dr

= π2

4

∫ a

0

2r − r3

1 − r2
dr = π2

8
(a2 − log(1 − a2))

which of course diverges as a tends to one.
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