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SELF-IMPROVING PROPERTIES OF GENERALIZED
POINCARÉ TYPE INEQUALITIES THROUGH

REARRANGEMENTS

ANDREI K. LERNER and CARLOS PÉREZ∗

Abstract

We prove, within the context of spaces of homogeneous type, Lp and exponential type self-
improving properties for measurable functions satisfying the following Poincaré type inequality:

inf
α

(
(f − α)χB

)∗
µ

(
λµ(B)

) ≤ cλa(B).

Here, f ∗
µ denotes the non-increasing rearrangement of f , and a is a functional acting on balls B,

satisfying appropriate geometric conditions.
Our main result improves the work in [11], [12] as well as [2], [3] and [14]. Our method avoids

completely the “good-λ” inequality technique and any kind of representation formula.

1. Introduction

The main purpose of this paper is both to improve the main result in [11], [12]
and to provide a proof that avoids the use the classical good-λ inequality of
Burkholder and Gundy (cf. [17]).

Let (X, d, µ) be a space of homogeneous type, and a : B → [0,∞) be a
functional defined on the family B of all balls in X. Recall that d denotes a
quasi-metric on X and that µ is a measure that is doubling with respect to d.

In [11], it is proved that if the functionala satisfies the weightedDr condition
defined below and if f is any given locally integrable function satisfying

(1)
1

µ(B)

∫
B

|f − fB | dµ ≤ a(B)

for all balls B, then one can deduce higher Lp-integrability of f .

Definition 1.1. Let 0 < r < ∞ and w be a weight. We say that a satisfies
the weighted Dr condition if there exists a finite constant c such that for each
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ball B and any family {Bi} of pairwise disjoint sub-balls of B,

(2)
∑
i

a(Bi)
rw(Bi) ≤ cra(B)rw(B).

In the main results of this paper we will be considering weights that belong
to the A∞(µ) class of Muckenhoupt, see Section 3 below. The model example
is given by the fractional average

(3) a(B) = r(B)α
(
ν(B)

µ(B)

)1/p

where α ≥ 0, p > 0 and ν is a nonnegative measure. IfD denotes the doubling
order of µ (cf. (7)) and αp < D, this functional satisfies the Dr condition with
r = Dp/(D − αp).

The precise Lp self-improving phenomenon is the following result.

Theorem 1.2 ([11]). Let δ > 0 and suppose that the functional a satisfies
the weighted Dr condition (2) for some 0 < r < ∞ and some w ∈ A∞(µ).
Suppose that f is a locally integrable function satisfying (1), then there exists
a constant c such that for any ball B ⊂ X

‖f − fB‖Lr,∞(B,w) ≤ ca(B̂),

where B̂ = (1 + δ)κB.

Here we denote by fB the integralµ-average of f overB and by ‖·‖Lr,∞(B,w)

the normalized weak Lr norm. Also κ denotes the quasi-metric constant of d.
Observe that the interesting δ’s are those that are small, in fact we will assume
that 0 < δ < 1.

Theorem 1.2 yields a different proof of the classical Poincaré-Sobolev in-
equalities which avoids completely the use of any representation formula. See
[2], [11] for details and also [4] for a more complete background and for the
references therein.

A natural question arises: Is it possible to relax the L1 norm in (1) to derive
such self-improving property? In this paper, we study this issue and weaken
the hypothesis to obtain such self-improving property. More precisely, we will
show that the L1 norm can be replaced by any Lq quasi-norm with 0 < q < 1.
Even further, we will show that the left hand side of (1) can be replaced by a
weaker expression which is defined in terms of non-increasing rearrangements.

Our main result is the following.
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Theorem 1.3. Let δ > 0 and suppose that the functional a satisfies the
weighted Dr condition (2) for some 0 < r < ∞ and some w ∈ A∞(µ).
Suppose that f is a measurable function such that for any ball B ⊂ X

(4) inf
α

(
(f − α)χB

)∗
µ

(
λµ(B)

) ≤ cλa(B), 0 < λ < 1.

then there exists a constant c such that for any ball B ⊂ X

(5) ‖f − fB‖Lr,∞(B,w) ≤ ca(B̂),

where B̂ = (1 + δ)κB.

Recall that the non-increasing rearrangement f ∗
µ of a measurable function

f is defined by

f ∗
µ(t) = inf

{
λ > 0 : µf (λ) < t

}
, 0 < t ≤ µ(X),

where µf (λ) = µ
{
x ∈ X : |f (x)| > λ

}
, λ > 0, is the distribution function

of f .
Chebyshev’s inequality yields for any δ > 0,

(f χB)
∗
µ(λµ(B)) ≤

(
1

λµ(B)

∫
B

|f |δ dµ
)1/δ

.

Hence we have the following.

Corollary 1.4. Let f , a and ω as in Theorem 1.3. Suppose that for some
δ < 1 and for any ball B ⊂ X

inf
α

(
1

µ(B)

∫
B

|f − α|δdµ
)1/δ

≤ a(B)

Then there is a geometric constant c such that for any ball B ⊂ X

‖f − fB‖Lr,∞(B,w) ≤ ca(B̂).

A similar result holds if theLδ quasi-norm is replaced the by the quasi-norm
‖f ‖L1,∞ since by a well known real analysis result(

1

µ(B)

∫
B

|f |δ dµ
)1/δ

≤ cδ ‖f ‖L1,∞(B,µ).

Our proof of Theorem 1.3 is essentially based on the following two ingredi-
ents. The first one is a relation between rearrangements and oscillations of a
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function f . This technique goes back to [1], and it was further developed in [8],
[9]. We also use some ideas from the works [6], [15]. The second ingredient
is an appropriate covering lemma of Calderón-Zygmund type. In the context
of the standard Euclidean space Rn with doubling measure such covering lem-
mas can be obtained simply by application of the usual Calderón-Zygmund
lemma to characteristic functions (see, e.g., [1], [8]. In the case of Rn with non-
doubling measure a covering lemma of such type has been recently proved in
[13]. Our covering lemma, in the context of spaces of homogeneous type, is
presented in Section 3 below.

The main result of this paper can be applied to improve the results of [12],
[14]. In [12], an exponential self-improving property was established assuming
(1) with a functional a satisfying the so-called Tp condition, stronger than
the Dr condition. In Section 5, we will improve this result by relaxing the
initial assumption (1) as in Theorem 1.3. In [14], a non-homogeneous variant
of Theorem 1.2 was proved in the context of Rn with any (non-doubling)
measure. We will show that this result can be also proved under similar relaxed
assumptions.

We also obtain an analogue of the main results of [8], [9] concerning the so-
called local sharp maximal function, in the context of spaces of homogeneous
type.

2. Preliminaries

2.1. Space of Homogeneous type

A quasimetric d on a set X is a function d : X × X → [0,∞) which satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y;

(iii) there exists a finite constant κ ≥ 1 such that

d(x, y) ≤ κ(d(x, z) + d(z, y))

for all x, y, z ∈ X.

Given x ∈ X and r > 0, let B(x, r) = {y ∈ X : d(x, y) < r} be the ball
with center x and radius r . If B = B(x, r) is a ball, we denote its radius r by
r(B) and its center x by xB . If ν is a measure and E is a measurable set, ν(E)
denotes the ν-measure of E.

Definition 2.1. A space of homogeneous type (X, d, µ) is a set X together
with a quasimetric d and a nonnegative Borel measure µ on X such that the
doubling condition

(6) µ(B(x, 2r)) ≤ C µ(B(x, r))
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holds for all x ∈ X and r > 0.

The balls B(x, r) are not necessarily open, but by a theorem of Macias and
Segovia [10], there is a continuous quasimetric d ′ which is equivalent to d

(i.e., there are positive constants c1 and c2 such that c1d
′(x, y) ≤ d(x, y) ≤

c2d
′(x, y) for all x, y ∈ X) for which every ball is open. We always assume

that the quasimetric d is continuous and that balls are open.
IfC is the smallest constant for which (6) holds, then the numberD = logC

is called the doubling order of µ. By iterating (6), we have

(7)
µ(B)

µ(B̃)
≤ Cµ

(
r(B)

r(B̃)

)D

for all balls B̃ ⊂ B.

A weight ω is a nonnegative measurable function integrable on any ball.
Also if E is any µ-measurable set we let ω(E) = ∫

E
ω(x)dµ(x).

A relevant class of weights is given by the A∞(µ) class of Muckenhoupt:
if there are positive constants c, ε such that

(8) ω(E) ≤ c

(
µ(E)

µ(B)

)ε

ω(B)

for every ball B and every measurable set E ⊂ B.

2.2. Rearrangements

We mention here some simple properties of rearrangements. It follows easily
from the definition that

µf (f
∗
µ(t)) ≤ t and µ

{
x ∈ X : |f (x)| ≥ f ∗

µ(t)
} ≥ t.

Next, for any 0 < λ < 1,

(9) (f + g)∗µ(t) ≤ f ∗
µ(λt) + g∗

µ((1 − λ)t).

For any measurable set R with finite positive measure we have,

(10) inf
R

|f | ≤ (f χR)
∗
µ(µ(R)).

Finally we recall that the (weighted normalized) weak Lr norm is defined
by

‖g‖Lr,∞(B,ω) = sup
λ>0

λ

(
ω({x ∈ B : |g(x)| > λ})

ω(B)

)1/r

or, equivalently,

‖g‖Lr,∞(B,ω) = sup
0<t≤ω(B)

(gχB)
∗
ω(t)

(
t

ω(B)

)1/r

.
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We will need the following two propositions about local rearrangements.

Proposition 2.2. For any measurable function f , any weight ω, and each
measurable set R ⊂ X with 0 < ω(R) < ∞, and for any 0 < λ < 1:(
f χR

)∗
ω

(
λω(R)

) ≤ 2 inf
c

(
(f − c)χR

)∗
ω

(
λω(R)

)+ (
f χR

)∗
ω

(
(1 − λ)ω(R)

)
.

Proof. Essentially the same was proved in [8] in a less general context.
The proof of this proposition follows the same lines, and we shall recall it only
for the sake of completeness.

Using (9) and (10), for any constant c we get

|c| ≤ inf
x∈R
(|f (x) − c| + |f (x)|) ≤ (

(|f − c| + |f |)χR
)∗
ω

(
ω(R)

)
≤ (

(f − c)χR
)∗
ω

(
λω(R)

)+ (
f χR

)∗
ω

(
(1 − λ)ω(R)

)
.

From this and from the estimate(
f χR

)∗
ω

(
λω(R)

) ≤ (
(f − c)χR

)∗
ω

(
λω(R)

)+ |c|
we get immediately the required inequality.

Proposition 2.3. Let ω ∈ A∞(µ). For any ball B and any measurable f ,
and for any 0 < λ < 1:(

f χB
)∗
ω

(
λω(B)

) ≤ (
f χB

)∗
µ

((λ
c

)1/ε
µ(B)

)
,

where c and ε are A∞-constants of ω.

Proof. It follows from the definitions of A∞ and of the rearrangement that
for any δ > 0,

ω

{
x ∈ B : |f (x)| > (

f χB
)∗
µ

((λ
c

)1/ε
µ(B)

)
+ δ

}

≤ c

(
µ
{
x ∈ B : |f (x)| > (

f χB
)∗
µ

((
λ
c

)1/ε
µ(B)

)+ δ
}

µ(B)

)ε

ω(B) < λω(B),

which is equivalent to that(
f χB

)∗
ω

(
λω(B)

) ≤ (
f χB

)∗
µ

((λ
c

)1/ε
µ(B)

)
+ δ.

Letting δ → 0 yields the required inequality.
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3. A basic covering lemma

In this section we prove a covering lemma of Calderón-Zygmund type that
will be a key object in the proof of Theorem 1.3. To do this we define for each
ball an appropriate basis. We adapt ideas from [11].

For a given ball B and for x ∈ B we define the basis

BB(x) = {B ′ : x ∈ B ′, xB ′ ∈ B and r(B ′) ≤ δr(B)}.

It is easy to see that any ball B ′ ∈ BB(x) is contained in B̂ = κ(1 + δ)B.

Lemma 3.1. Let ω be a doubling weight. There are positive constants
c1, c2 ≤ 1 and c3 ≥ 1 such that for any 0 < λ < 1, any ball B and any set
E ⊂ B with ω(E) ≤ c1λω(B), there is a countable family of pairwise disjoint
balls {Bi} from ∪x∈EBB(x) such that

(i) ω(Bi ∩ B) ≥ c2ω(Bi);

(ii) ω(Bi ∩ E) ≥ λω(Bi ∩ B);

(iii) ω(E) ≤ c3λ
∑

i ω(Bi ∩ B).

Proof. Since ω is doubling we have as in (7) that

(11)
ω(B)

ω(B̃)
≤ c4

(
r(B)

r(B̃)

)c5

for every pair B̃, B of balls such that B̃ ⊂ B. The constants c4 and c5 depend
on the doubling condition of ω and on κ .

We will be using the following important geometric fact (see, e.g., [5, p. 2]):

Let B and B ′ two balls such that xB ′ ∈ B and r(B ′) ≤ r(B) . Then, then there
is a geometric constant c2 such that

(12) ω(B ∩ B ′) ≥ c2 ω(B
′).

Set now

c1 = c2

c4

(
δ

1 + δ

1

κ2(4κ + 1)

)c5

.

Let E ⊂ B be any set with ω(E) ≤ c1λω(B). Suppose that for some B ′ ∈ BB

we have

(13)
ω(B ′ ∩ E)

ω(B ′ ∩ B)
> λ.
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Observe that by (12) ω(B ′ ∩ B) ≥ c2 ω(B
′) since B ′ ∈ BB recalling that we

assume that δ < 1. Hence, this combined with (13) yields

c2

c1
<

ω(B̂)

ω(B ′)
≤ c4

(
κ(1 + δ)r(B)

r(B ′)

)c5

,

and therefore,

(14) r(B ′) <
δ

κ(4κ + 1)
r(B).

We now define

(λ =
{
x ∈ B : sup

B ′∈BB(x)

ω(B ′ ∩ E)

ω(B ′ ∩ B)
> λ

}
,

and for x ∈ (λ we let

r(x) = sup

{
r(B ′) : B ′ ∈ BB(x) and

ω(B ′ ∩ E)

ω(B ′ ∩ B)
> λ

}
,

and note that by (14).

r(x) <
δ

κ(4κ + 1)
r(B).

Denote by E′ the set of ω-density points of E (recall that ω is doubling).
Then, by Lebesgue differentiation theorem E = E′ ω-a.e. and E′ ⊂ A. For
any x ∈ E′ we can find a ball Bx ∈ BB such that

ω(Bx ∩ E)

ω(Bx ∩ B)
> λ and

r(x)

2
< r(Bx) ≤ r(x).

Thus the ball Bx satisfies both (i) and (ii).
Now, if we denote B∗ = κ(4κ + 1)B we have B∗

x ∈ BB by (14) and

ω(B∗
x ∩ E) ≤ λω(B∗

x ∩ B).

Applying the Vitali-type covering lemma (cf. [5, p. 14]) to the family
{Bx}x∈E′ , we get a countable subfamily of pairwise disjoint balls {Bi} such
that E′ ⊂ ∪iB

∗
i . Every Bi clearly satisfies item (i) and (ii) but further,

ω(E) ≤
∑
i

ω(B∗
i ∩ E) ≤ λ

∑
i

ω(B∗
i ∩ B)

≤ λ
∑
i

ω(B∗
i ) ≤ cκ,ωλ

∑
i

ω(Bi) ≤ cκ,ω

c2
λ
∑
i

ω(Bi ∩ B),



self-improving properties of generalized poincaré type . . . 225

and thus we have verified item (iii) of the lemma, which completes the proof.

4. Proof of Theorem 1.3

Adapting ideas from [8], [9] we prove in this section the main theorem of this
paper.
Proof of Theorem 1.3. The goal is to prove the following estimate: there

is a constant c′ such that for any ball B and for any 0 < t < ω(B)

(15) (f χB)
∗
ω(t) ≤ c′ a(B̂)

(
ω(B̂)

t

) 1
r

+ (f χB)
∗
µ(λµ(B)).

First we will prove this estimate for small values of t .
The key result in the proof is the following estimate for the rearrangement

of f : there exists a constant λ′, 0 < λ′ < 1 such that for any 0 < t < c1λ
′

2 ω(B)

(16) (f χB)
∗
ω(t) ≤ c a(B̂)

(
ω(B̂)

t

) 1
r

+ (f χB)
∗
ω(2t).

Throughout the proof c3 ≥ 1, c2, c1 ≤ 1 are the geometric constants from
Lemma 3.1 and c and ε are the constants from the A∞-condition (8) of ω.

For any t we consider the set E = Et

E = {x ∈ B : |f (x)| ≥ (f χB)
∗
ω(t)}.

We can assume that (f χB)∗ω(t) > (f χB)
∗
ω(2t), since otherwise (16) is trivial.

Observe that t ≤ ω(E) ≤ 2t .
Set λ′ = 1

4c3
and λ = (

c2λ
′

c

)1/ε
and let 0 < t < c1λ

′
2 ω(B). Then we have

that
ω(E) ≤ c1λ

′ω(B),

and we can apply Lemma 3.1 to the setE and numberλ′. Hence, we get a count-
able family of pairwise disjoint balls {Bi} satisfying (i)–(iii) of Lemma 3.1.
Thus combining item (ii) and Proposition 2.2 we have,

(f χB)
∗
ω(t) ≤ inf

x∈E |f (x)| ≤ inf
i

inf
x∈E∩Bi

|f (x)|
≤ inf

i
(f χE∩Bi

)∗ω
(
ω(E ∩ Bi)

)
≤ inf

i
(f χB∩Bi

)∗ω
(
λ′ω(B ∩ Bi)

)
≤ inf

i

[
2 inf

α

(
(f − α)χB∩Bi

)∗
ω

(
λ′ω(B ∩ Bi)

)
+ (

f χB∩Bi

)∗
ω

(
(1 − λ′)ω(B ∩ Bi)

)]
.
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Applying item (i) together with Proposition 2.3 we obtain for each i

inf
α

(
(f − α)χB∩Bi

)∗
ω

(
λ′ω(B ∩ Bi)

) ≤ inf
α

(
(f − α)χBi

)∗
ω

(
c2λ

′ω(Bi)
)

≤ inf
α

(
(f − α)χBi

)∗
µ

(
λµ(Bi)

)
≤ cλa(Bi),

where in the last step we have used the basic hypothesis (4) to the ball Bi .
Hence,

(f χB)
∗
ω(t) ≤ inf

i

(
2cλa(Bi) + (

f χBi∩B
)∗
ω

(
(1 − λ′)ω(Bi ∩ B)

))
.

Since the balls Bi are disjoint and contained in B̂ we have by the Dr con-
dition (2) ∑

i

a(Bi)
rw(Bi) ≤ dra(B̂)rw(B̂).

We split the family of balls as follows: i ∈ I if

(17) a(Bi) ≤ 101/rda(B̂)

(
w(B̂)

t

) 1
r

and i ∈ II if it satisfies the opposite inequality. The proof below shows that
the family I is not empty. We claim that

(18)
∑
i∈I

w(Bi ∩ B) ≥ (4 − 1/10)t.

Indeed, by the Dr condition ∑
i∈II

w(Bi) ≤ t/10,

and hence (18) follows from the item (iii) of Lemma 3.1 and our choice of λ′.
Therefore we have

(f χB)
∗
ω(t) ≤ 2cλ101/rda(B̂)

(
w(B̂)

t

) 1
r

+ inf
i∈I
(
f χBi∩B

)∗
ω

(
(1−λ′)ω(Bi∩B)

)
.

Set now for i ∈ I

Ei = {
x ∈ Bi ∩ B : |f (x)| ≥ (

f χBi∩B
)∗
ω

(
(1 − λ′)ω(Bi ∩ B)

)}
.
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By (18),

ω(∪i∈IEi) =
∑
i∈I

ω(Ei) ≥ (1 − λ′)
∑
i∈I

ω(Bi ∩B) ≥ (
1 − 1

4

)(
4 − 1

10

)
t > 2t.

Thus,

inf
i∈I
(
f χBi∩B

)∗
ω

(
(1 − λ′)ω(Bi ∩ B)

) ≤ inf
i∈I inf

x∈Ei

|f (x)|
= inf

x∈∪i∈I Ei

|f (x)| ≤ (f χB)
∗
ω

(
ω(∪i∈IEi)

) ≤ (f χB)
∗
ω(2t),

and hence (16) is proved for the values 0 < t < c1λ
′

2 ω(B).
Now, for one of these values of t , there is k = 1, . . ., such that

c1λ
′

2k+1
ω(B) ≤ t <

c1λ
′

2k
ω(B).

Since c1 ≈ 2−m, for some m = 1, 2, . . ., iterating (16) yields

(f χB)
∗
ω(t) ≤ ca(B̂)

(
ω(B̂)

t

) 1
r k+m∑
j=1

(2−j )
1
r + (f χB)

∗
ω(λ

′ω(B))

≤ c′ a(B̂)
(
ω(B̂)

t

) 1
r

+ (f χB)
∗
ω(λ

′ω(B)).(19)

Next, we observe that (19) trivially holds for t ≥ λ′ω(B), and hence this
formula holds for any 0 < t < ω(B).

Applying Proposition 2.3 to the second term on the right-hand side of (19),
we obtain (15).

To finish the proof we observe that if α is any number, f − α also satisfies
the initial assumption (4) and hence (15) holds for f − α as well:

((f − α)χB)
∗
ω(t) ≤ c′ a(B̂)

(
ω(B̂)

t

) 1
r

+ ((f − α)χB)
∗
µ(λµ(B)).

Recalling that

‖g‖Lr,∞(B,ω) = sup
0<t≤ω(B)

(gχB)
∗
ω(t)

(
t

ω(B)

)1/r

,
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we have by multiplying
(

t
ω(B)

) 1
r and taking the supremum over 0 < t < ω(B)

that

‖f − α‖Lr,∞(B,ω) ≤ c′ a(B̂)
(
ω(B̂)

ω(B)

) 1
r

+ ((f − α)χB)
∗
µ(λµ(B))

≤ c′′ a(B̂) + ((f − α)χB)
∗
µ(λµ(B))

(we have used that ω is doubling). Taking the infimum over all α and using
again (4) combined with the Dr condition we have

inf
α

‖f − α‖Lr,∞(B,ω) ≤ c′′ a(B̂) + inf
α

(
(f − α)χB)

∗
µ(λµ(B)

)
≤ c′′ a(B̂) + cλa(B)

≤ c′′′ a(B̂).

The proof is now complete.

5. Exponential self-improving properties

By imposing a stronger condition on the functional a it has been proved in
[12] that it is possible to go beyond the Lp self-improving property to deduce
higher integrability. In this section we improve the main result from that paper.

We will be assuming the following geometrical condition which is different
but within the “spirit” of the Dr condition.

Definition 5.1. Let 1 < p < ∞. We say that the functional a satisfies
the Tp condition if there exists a finite constant c such that for each ball B ⊂ X

(20)
∑
j

a(Bj )
p ≤ cpa(B)p

whenever {Bj } is a family of pairwise disjoint sub-balls of B.

We remark that the Tp condition is stronger than theDr condition, for any r ,
since in particular the functional a is increasing, class Tp is increasing, namely
ifB ′ ⊂ B then a(B ′) ≤ ca(B). The main examples are given by the expression

a(B) =
(∫

B

gp
) 1

p

,

where g ∈ L
p

loc(X) and, more generally,

a(B) = ν(B)
1
p
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where ν is a locally finite measure.
We will assume that X satisfies that the annuli are not empty, namely

(21) if x ∈ X and 0 < r < R < ∞ then BR(x) \ Br(x) �= ∅.
Also, this condition can be replaced by assuming that X is connected as done
in [12].

Theorem 5.2 ([12]). Suppose that the functional a satisfies theTp condition
for some 1 < p < ∞, and thatw is a doubling measure on X that is absolutely
continuous with respect to µ. Also, let δ > 0 be given.

If f is a locally integrable function for which there exist constants τ ≥ 1
such that for all balls B

(22)
1

µ(B)

∫
B

|f − fB | dµ ≤ a(τB),

then there exists a constant C independent of f such that

(23) ‖f − fB‖expLp′
(B,w) ≤ Ca(τ B̂).

for any ball B.

Using this result we now state the following consequence of Theorem 1.3.

Corollary 5.3. Let ω ∈ A∞(µ). Let f be a measurable function and
suppose that a satisfies the Tp condition with respect to ω. Suppose that for
any ball B ⊂ X

inf
α

(
(f − α)χB

)∗
µ

(
λµ(B)

) ≤ cλa(B), 0 < λ < 1.

Then, there is a geometric constant c such that for any ball B ⊂ X

(24) ‖f − fB‖expLp′
(B,w) ≤ ca( ̂̂B).

The proof is the following. Since the Tp condition implies theDr condition,
Theorem 1.3 applied to the underlying measure µ yields

inf
α

‖f − α‖Lr,∞(B,µ) ≤ ca(B̂)

for any ball B. On the other hand, if we choose r > 1 we have that

1

µ(B)

∫
B

|f −fB | dµ ≤ 2 inf
α

1

µ(B)

∫
B

|f −α| dµ ≤ cr inf
α

‖f − α‖Lr,∞(B,µ) .
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From this and from the previous estimate we get that (22) holds with τ =
(1 + δ)κ , which, in view of (23), yields (24).

6. Local sharp maximal function

Essentially the same ideas used in the proof of Theorem 1.3 can be applied
to obtain a rearrangement inequality for the Local Sharp Maximal Function.
This is a maximal type operator that was introduced by Strömberg in [15]
following ideas of John’s paper [6]. Given a measurable function f , the local
sharp maximal function M#

λ,BB
f by

(25)
M#

λ,BB
f (x) = sup

B ′∈BB(x)

inf
c

(
(f − c)χB ′

)∗
µ

(
λµ(B ′)

)
(x ∈ B, 0 < λ < 1),

where BB(x) is the basis defined in Section 3.

Theorem 6.1. Let ω ∈ A∞(µ). There are constants λ, λ0 < 1 such that
for any measurable function f and any ball B ⊂ X,
(26)
(f χB)

∗
ω(t) ≤ 2

(
(M#

λ,BB
f )χB

)∗
ω
(t/2) + (f χB)

∗
ω(2t) (0 < t ≤ λ0ω(B)).

Remark 6.2. Variants of this theorem was proved in [8], [9]. On the other
hand the Theorem is new in the context of spaces of homogeneous type.

Proof. We are going to outline the proof since it follows along the line
of the proof Theorem 1.3. Following the notation there we set λ′ = 1

4c3
and

λ = (
c2λ

′
c

)1/ε
and we choose λ0 = c1λ

′
2 .

Fix t ≤ λ0ω(B). Set

E = {x ∈ B : |f (x)| ≥ (f χB)
∗
ω(t)}

and
( = {

x ∈ B : M#
λ,BB

f (x) >
(
(M#

λ,BB
f )χB

)∗
ω
(t/2)

}
.

We easily obtain that t/2 ≤ ω(E\() ≤ 2t ≤ c1λ
′ω(B). Applying Lemma 3.1

to the set E \( and number λ′, we get a countable family of pairwise disjoint
balls {Bi} satisfying (i)–(iii) of that lemma. By item (ii) and Proposition 2.2,

(f χB)
∗
ω(t)

≤ inf
i

(
2 inf

c

(
(f −c)χBi∩B

)∗
ω

(
λ′ω(Bi∩B)

)+(f χBi∩B
)∗
ω

(
(1−λ′)ω(Bi∩B)

))
.

Next, using the fact that the balls Bi belong to ∪x∈E\(BB(x) and applying
item (i) and Proposition 2.3, we obtain for each i

inf
c

(
(f − c)χBi∩B

)∗
ω

(
λ′ω(Bi ∩ B)

) ≤ (
(M#

λ,BB
f )χB

)∗
ω
(t/2).
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Therefore,

(f χB)
∗
ω(t) ≤ 2

(
(M#

λ,BB
f )χB

)∗
ω
(t/2) + inf

i

(
f χBi∩B

)∗
ω

(
(1 − λ′)ω(Bi ∩ B)

)
.

Now, exactly as in the prove of Theorem 1.3 one can show that

inf
i

(
f χBi∩B

)∗
ω

(
(1 − λ′)ω(Bi ∩ B)

) ≤ (f χB)
∗
ω(2t),

which completes the proof.

The standard iteration of (26) (e.g. [8, p. 282]) yields the following.

Corollary 6.3. Letω ∈ A∞(µ). Then for any measurable function f and
each ball B ⊂ X,
(27)

inf
c

(
(f−c)χB

)∗
ω
(t) ≤ 4

log 2

∫ ω(B)

t/4

(
(M#

λ,BB
f )χB

)∗
ω
(τ )

dτ

τ
(0 < t ≤ ω(B)),

where λ is the constant from Theorem 6.1.

It follows immediately from (27) the following.

Corollary 6.4 (The John-Strömberg inequality). Let ω ∈ A∞(µ). Then
for any ball B ⊂ X and any measurable f ,

(28) inf
c

(
(f − c)χB

)∗
ω
(t) ≤ 4‖M#

λ,BB
‖∞

log 2
log

4ω(B)

t
(0 < t ≤ ω(B)).

The John-Strömberg inequality was proved in the paper by [6], [15] in the
usual euclidean context with the Lebesgue measure. In the context of spaces
homogeneous type this inequality is implicitly contained in [16] but our proof
is different.

Let BMO(B) be the space of all locally integrable f for which

‖f ‖BMO(B) ≡ sup
B ′∈BB

1

µ(B ′)

∫
B ′

|f − fB ′ | dµ < ∞.

By Chebyshev’s inequality,

‖M#
λ,BB

‖∞ ≤ 1

λ
‖f ‖BMO(B),

and therefore (28) implies the following.
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Corollary 6.5 (The John-Nirenberg inequality). Let ω ∈ A∞(µ). Then
for any ball B ⊂ X and any locally integrable f ,

(29) inf
c

(
(f − c)χB

)∗
ω
(t) ≤ 6‖f ‖BMO(B)

λ
log

4ω(B)

t
(0 < t ≤ ω(B)).

The John-Nirenberg inequality was originally proved in [7] in the clas-
sical situation. In the context of spaces homogeneous type this inequality is
contained in [16]. See also [12].

7. The non-homogeneous context

The technique used in the proof of Theorem 1.3 can be adapted to the non-
homogeneous context. That is, consider for example, the usual Euclidean space
Rn and let µ be any nonnegative Radon measure vanishing on any hyperplane
parallel to the axes (cf. [13]). For a given cube Q and for each x in the interior
of Q we define the basis (cf. [13], [14])

CQ(x) = {Qx(r)},
whereQx(r) is the unique cube with sidelength r , containing x, contained inQ
and with center y closest to x. A main geometrical property of the cube Qx(r)

is that the ratio of any two sidelengths of the unique rectangle Rx centered at
x such that Rx ∩ Q = Qx(r) is bounded by 2.

The following covering lemma, proved in [13], is essentially based on this
property of the basis {Qx(r)}.
Lemma 7.1. Let E be a subset of Q, and suppose that µ(E) ≤ λω(Q),

0 < λ < 1. Then there exists a sequence of cubes {Qi} contained in Q such
that

(i) µ(Qi ∩ E) = λµ(Qi);

(ii)
⋃
i

Qi =
Bn⋃
k=1

⋃
i∈Fk

Qi , where each of the family {Qi}i∈Fk
is formed by

pairwise disjoint cubes;

(iii) E′ ⊂ ∪iQi , where E′ is the set of µ-density points of E.

Actually the proof of this lemma shows that one can choose the sequence
{Qi} from ∪x∈ECQ(x). Next, since any A∞(µ) weight ω (cf. [14]) vanishes
also on hyperplanes parallel to the axes, we have that Lemma 7.1 holds also
for ω. Further, from items (i)–(iii) of this lemma we obtain that there exists
a subsequence of pairwise disjoint cubes {Qi} for which we have analogs of
items (ii) and (iii) of Lemma 3.1:

ω(E ∩ Qi) = λω(Qi)
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and
ω(E) ≤ Bnλ

∑
i

ω(Qi).

So, we see that the family Q of all cubes in Rn satisfies an analogue of
Lemma 3.1 with respect to any ω ∈ A∞(µ) with constants c1 = c2 = 1 and
c3 = Bn.

Next, we note that full analogs of Propositions 2.2 and 2.3 hold in this
context and therefore, full analogs of Theorems 1.3 and 6.1 hold as well. We
remark that this version of Theorem 1.3 yields an improvement of the main
result from [14]. Finally we note that a similar version of Theorem 6.1 was
proved in [9].
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