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S-REGULARITY AND THE CORONA
FACTORIZATION PROPERTY

D. KUCEROVSKY and P. W. NG

Abstract

Stability is an important and fundamental property of C∗-algebras. Given a short exact sequence
of C∗-algebras 0 −→ B −→ E −→ A −→ 0 where the ends are stable, the middle algebra
may or may not be stable. We say that the first algebra, B, is S-regular if every extension of B
by a stable algebra A has a stable extension algebra, E. Rørdam has given a sufficient condition
for S-regularity. We define a new condition, weaker than Rørdam’s, which we call the corona
factorization property, and we show that the corona factorization property implies S-regularity.
The corona factorization property originated in a study of the Kasparov KK1(A,B) group of
extensions, however, we obtain our results without explicit reference to KK-theory.

Our main result is that for a separable stable C∗-algebra B the first two of the following prop-
erties (which we define later) are equivalent, and both imply the third. With additional hypotheses
on the C∗-algebra, all three properties are equivalent.

(1) B has the corona factorization property.

(2) Stability is a stable property for full hereditary subalgebras of B.

(3) B is S-regular.

We also show that extensions of separable stableC∗-algebras with the corona factorization property
give extension algebras with the corona factorization property, extending the results of [9].

1. Introduction

Stability is a fundamental property ofC∗-algebras, and in general is quite well-
behaved. It was therefore surprising when Rørdam gave an example showing
that stability does not have the two-out-of-three property. Specifically, Rørdam
constructed an example of a short exact sequence

0 −→ B −→ C −→ A −→ 0

of C∗-algebras in which B and A are stable but C is not [16].
This motivates the following definition:

Definition 1.1. AC∗-algebraB is S-regular if in any short exact sequence
of the form

0 −→ B −→ C −→ A −→ 0,
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C is stable when A is.

A S-regular C∗-algebra is necessarily stable, since an ideal in a stable al-
gebra is stable. The letter “S” in S-regularity is there to differentiate between
our concept and Rørdam’s, and could reasonably be taken to stand for either
stability or for short exact sequences.

Rørdam [18] proved the following:

Theorem 1.2. Let B be a separable C∗-algebra. If full hereditary subal-
gebras of B are stable whenever they have no nonzero unital quotients and no
nonzero bounded traces, then B is S-regular.

Rørdam uses the term regular for algebras satisfying the hypotheses of
theorem 1.2.

Some situations in which Rørdam’s theorem is applicable are:

(1) Simple, separable, exact C∗-algebras, with real rank zero, stable rank
one, and weakly unperforated ordered K0 group [18].

(2) Simple, separable, purely infinite C∗-algebras.

(3) Type I C∗-algebras with finite decomposition rank [12].

The purpose of this note is to give a simple algebraic sufficient condition for
S-regularity. This condition is called the corona factorization property, and
originated in a study of KK-theory [3], [10], [13].

Definition 1.3. A C∗-algebra B is said to have the corona factorization
property if every norm-full projectionP in the stable multiplier algebra M(B⊗
K ) is Murray-von Neumann equivalent to 1M(B⊗K ).

We remark that in a separable stable C∗-algebra, the corona factorization
property has several equivalent forms. The following is obtained by combining
the results of [10] and [13], see also [12]:

Theorem 1.4. In a stable separable C∗-algebra, the corona factorization
property is equivalent to any, hence all, of the following:

(1) Every positive element a of the corona such that C∗(a) has zero inter-
section with proper ideals of the corona is properly infinite.

(2) Every positive element a of the multipliers such that C∗(a) has zero
intersection with proper ideals of the multipliers is properly infinite.

(3) For every norm-full projection P in the corona algebra M(B)/B, there
is an x ∈ M(B)/B such that xPx∗ = 1M(B)/B .

(4) Every norm-full projection in M(B)/B is properly infinite.

(5) If c is a norm-full positive element of M(B), then cBc contains a stable
subalgebra that is full in B.
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(6) Every norm-full extension of B is nuclearly absorbing.

(7) Every norm-full trivial extension of B is nuclearly absorbing.

It follows from property v of the above list that regularity in Rørdam’s sense
will in most cases imply the corona factorization property. In this note, we study
the relationships between the corona factorization property and S-regularity.
Our first result is the following:

Theorem 1.5. LetB be a separable stableC∗-algebra. IfB has the corona
factorization property then B is S-regular

Hence, the corona factorization property rules out the type of counter-
example constructed by Rørdam in [17].

For separable, stable, simple C∗-algebras of minimal real and stable ranks,
the converse of the above theorem will be shown to hold. It is an interest-
ing question whether weaker hypotheses would still allow the converse to be
shown. Also, is there a counterexample to the converse holding in general? We
feel that there will be for sufficiently unusual algebras, but do not currently
have a counterexample.

The ideas and techniques in this note are strongly influenced by Rørdam’s
fundamental papers on stability [18], [17], [19], [16].

2. The S-regularity property

We now prove our first result, theorem 1.5. Thus, we consider short exact
sequences of separable C∗-algebras,

0 −→ B −→ C −→ A −→ 0,

where the canonical idealB is stable and has the corona factorization property.
We are to show that C is stable if and only if A is, and the difficulties lie in
proving the “if” direction. We now assemble some lemmas and results needed
for our proof.

First, the following proposition, which is due to Rørdam [18, prop. 6.8]:

Proposition 2.1. LetA be a stable, closed, two-sided ∗-ideal of a separable
C∗-algebra B. Suppose that B/A is stable, or zero. Then the following are
equivalent:

(1) B is stable.

(2) For each positive contraction b ∈ B, the hereditary subalgebra (1 −
b)A(1 − b) of A is stable.

In particular, this proposition has an interesting special case (cf. [5, cor.
4.3]):
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Corollary 2.2. Let B be a stable and separable C∗-algebra. For each
positive contraction b ∈ B, the hereditary subalgebra (1 − b)B(1 − b) is
stable.

We also need the following proposition [8], [13], see also [4, 1.3.17]:

Proposition 2.3. LetB be a stable σ -unitalC∗-algebra. Let � be a nonzero
positive element of M(B). There is a projection P in M(B) such that the
hereditary C∗-algebra �B� is ∗-isomorphic to PBP.

Moreover, if � is a full element of M(B), thenP is a full projection in M(B).

The above isomorphism is given by an unitary equivalence in an appropriate
Hilbert module.

Theorem 2.4. Let A and C be separable C∗-algebras such that A ⊗ K

has the corona factorization property. Suppose that there is an extension of
C∗-algebras of the form

0 −→ A −→ B −→ C −→ 0.

Then B is stable if and only if A and C are stable.

Proof. The “only if” direction follows from the fact that ideals and quo-
tients of a stable C∗-algebra are always stable.

We now prove the converse direction, using proposition 2.1. Thus, we are
to show that (1 − b)A(1 − b) is stable for any positive contraction b of B. In
proving this, it is clear that we may as well replace B by its image in M(A),
since we are only concerned with properties of the action of B on A. We shall
prove that the given element 1−b is full in M(A), for then by proposition 2.3,
the algebra (1 − b)A(1 − b) is isomorphic to a hereditary subalgebra generated
by a full multiplier projection, and such a subalgebra is stable by the corona
factorization property.

We now show that 1 − b is full, using a method from [3, § 16]. Suppose,
to the contrary, that 1 − b is not full in M(A). Then there is a nonzero ∗-
homomorphism π on M(A), such that π(1 − b) = 0. Restricting π to B̃, the
unitization of B in M(A), we see that π(1) = π(b), implying that π(B) is
actually unital (and nonzero). But then, if J := ker π |B , we have the short
exact sequence

0 −→ A

J ∩ A −→ B

J
−→ C

(J/A)
−→ 0

giving a unital algebra as an extension of stable (or zero) algebras. One sees
that B

J
cannot in fact be unital1.

1 This argument is similar to lemma 6.6 in [18].
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We will later show that under appropriate conditions, there is actually a
converse to the above result.

3. Short exact seqences of C∗-algebras with the corona factorization
property

It would be interesting to know whether S-regularity has a two-of-three prop-
erty: in particular, if the C∗-algebras A and C in

0 −→ A −→ B −→ C −→ 0

are S-regular, does theC∗-algebraB have this property? We do not know if this
is the case or not, but we can show that the possibly stronger corona factoriza-
tion property is preserved when forming extension algebras. This generalizes
an earlier result in [9], where we had to restrict the class of exact sequences
considered.

Theorem 3.1. Suppose that we are given a short exact sequence of separ-
able C∗-algebras

0 −→ A −→ B −→ C −→ 0.

Then:

(1) IfA andC are stableC∗-algebras with the corona factorization property,
then B is a stable C∗-algebra with the corona factorization property.

(2) If B is a stable C∗-algebra with the corona factorization property, then
C is a stable C∗-algebra with the corona factorization property.

Remark 3.2. Statement ii holds, with the same proof, if B is just σ -unital.
In fact, the only place in this article where we apply separability is in the use
of proposition 2.1

Proof. First, we prove statement i. Stability ofB follows from theorem 2.4.
It is sufficient to prove that ifP is a full projection in M(B), then PBP is stable.
By [20, Proposition 2.2.16], the given maps in the short exact sequence induce
a surjective unital map r : M(B) −→ M(C) and a unital map i : M(B) −→
M(A) that is not necessarily injective – in fact, this holds even if the algebras
given are not separable. A unital ∗-homorphism will map a full projection to a
full projection 2, so we see that the projection P will map to a full projection in
M(A) and in M(C). Thus, the first and last algebras in the short exact sequence

0 −→ i(P )A i(P ) −→ PBP −→ r(P )C r(P ) −→ 0

are stable by the corona factorization propery of A and of C.

2 If m ∈ M(B) is full, and under some nonzero homomorphism h, the image h(m) were not
full, then h(m) would be in the kernel of some unital homomorphism, and composing the two
homomorphisms, we would see thatm is in the kernel of a nonzero homomorphism out of M(B).
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By theorem 2.4, the algebra A is S-regular. Recall that by Brown’s the-
orem [2], there is an isomorphism of i(P )Ai(P ) andA, and it follows from the
definition of S-regularity that S-regularity is preserved by isomorphism. Thus,
i(P )Ai(P ) is a S-regular C∗-algebra, and hence PBP is stable as claimed.

Next, we prove statement ii. SinceB is stable,C is stable. Now suppose that
P is a norm-full projection in M(C). Let b be a norm-full positive element of
M(B) such that r(b) = P . By proposition 2.3, letQ be a norm-full projection
in M(B) such thatQBQ is ∗-isomorphic to bBb. Since M(B) has the corona
factorization property, Q is Murray-von Neumann equivalent to the unit of
M(B), and QBQ is a stable C∗-algebra. Hence, bBb is a stable C∗-algebra,
implying that PCP ∼= r(bBb) is a stable, full, hereditary subalgebra of C, and
since P is arbitrary, it follows that C has the corona factorization property.

We note that the corona factorization property does not pass to ideals. For
example, let X be the countably infinite Cartesian product of spheres. Let
C := C(X)⊗ K . Since C is stable, there exists a sequence {Si}∞i=1 of partial
isometries in M(C) that generate a copy ofO∞. LetC1 be the unital subalgebra
of M(C), generated byC and {Si}∞i=1. LetB := C1 ⊗K , and let J be the ideal
of B given by J := C⊗ K . Then B has the corona factorization property, but
in fact J ∼= C(X)⊗ K does not have the corona factorization property [13],
[12].

4. When stability is a stable property

In this section, we relate the corona factorization property to an interesting
property concerning the stability of full hereditary subalgebras ofC∗-algebras.

Definition 4.1. A C∗-algebra B0 is said to be asymptotically stable if
Mn(B0) is stable for some positive integer n.

Stable algebras are asymptotically stable. One might hope that the converse
is true, but Rørdam has constructed an example of a simple, separable, σP -
unital AH -algebra B0, with stable rank one, such thatM2(B0) is stable but B0

is not stable (see [18]). In the presence of the corona factorization property,
this phenomena cannot occur:

Theorem 4.2. Suppose that B is a σ -unital stable C∗-algebra. Then the
following are equivalent:

(1) B has the corona factorization property.

(2) A full hereditary subalgebra D of B is stable if and only if Mn(D) is
stable for some positive integer n.

As a corollary to theorem 4.2, we get the following result:
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Corollary 4.3. Suppose thatB0 is a σ -unitalC∗-algebra such thatB0⊗K

has the corona factorization property. Then B0 is stable if and only ifMn(B0)

is stable for some positive integer n.

Hence, in the presence of the corona factorization property, stability is a
stable property.

The above result, together with the abovementioned example of Rørdam in
[18], will give us an example of a simple, separable, stable, σP -unital nuclear
C∗-algebra without the corona factorization property:

Corollary 4.4. There exits a simple, separable, σP -unitalAH -algebraB0,
with stable rank one, such that B0 ⊗ K does not have the corona factorization
property.

We will need a result due to Brown ([1, th. 4.23]) in order to prove the main
result of this section:

Theorem 4.5. Let B be a separable stable C∗-algebra, and let P be a
projection in M(B). Then PBP is a stable full hereditary subalgebra of B if
and only if P is Murray-von Neumann equivalent to 1M(B).

Remark 4.6. This theorem implies that if p is a full projection in B, then
p ⊗ 1 ∈ M(B ⊗ K ) is equivalent to 1.

Proof of theorem 4.2. First, we prove that i implies ii. Suppose that B
has the corona factorization property, D is a full, hereditary subalgebra of B
and n ≥ 1 is a positive integer, such thatMn(D) is a stable C∗-algebra.

Now since D is a full hereditary subalgebra of B, by Brown’s stable iso-
morphism theorem [1], the stabilization D ⊗ K is ∗-isomorphic to B, and
therefore D ⊗ K has the corona factorization property. Let P be the projec-
tion in M(D⊗K ) given byP := 1⊗e11, where 1 is the unit of M(D) and e11 is
a rank one projection in K . ClearlyP(D⊗K )P is a full hereditary subalgebra
ofD⊗ K , and is ∗-isomorphic toD. SinceD⊗ K is stable, let v1, v2, . . . , vn
be isometries with pairwise orthogonal ranges which generate a unital copy
of the Cuntz algebra On in M(D ⊗ K ). The stable C∗-algebra Mn(D) is ∗-
isomorphic to Q(D ⊗ K )Q, where Q is the projection in M(D ⊗ K ) given
byQ := v1Pv

∗
1 + v2Pv

∗
2 +· · ·+ vnPv∗

n. By Theorem 4.5, the projectionQ is
Murray-von Neumann equivalent to the unit of M(D⊗ K ), so in particular P
is a norm-full projection in M(D⊗ K ). By the corona factorization property,
the subalgebra P(D ⊗ K )P is therefore stable, implying that D is stable.

Next, we prove that ii implies i. Suppose that B satisfies ii. Suppose that
P is a norm-full projection in M(B), so that M(B)PM(B) = M(B). Hence,
BPB = B, and PBP is a full, hereditary subalgebra of B. Since P is norm-
full in M(B), there is a positive integer n such that

⊕n
1 P is equivalent to
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1M(B). This means that Mn(PBP) is (isomorphic to) a stable C∗-algebra, and
therefore, by the hypothesis PBP is stable. Thus, by theorem 4.5, the projection
P is Murray-von Neumann equivalent to the unit of M(B).

5. A converse for C∗-algebras with cancellation

To prove a converse to theorem 1.5, we need a preliminary result. We show
that that if (G,G+) is a partially ordered group with the Riesz decomposition
property, then (G,G+) has “asymptotic two-unperforation.”

Lemma 5.1. Let (G,G+) be a partially ordered group with the Riesz de-
composition property. Suppose that x, y are elements ofG+ such that 2x ≤ 2y
in G+. Then, for every positive integer n ≥ 1, there exist x1, x2 ∈ G+ such
that

(1) x = x1 + x2,

(2) nx2 ≤ x1, and

(3) x1 ≤ y.

Proof. We prove the result by induction on the integer n.
Initial step (n = 1): Since 2x ≤ 2y, we have x ≤ 2y. Hence, let z ∈ G+

such that x+z = y+y. Since (G,G+) has the Riesz decomposition property,
let {ui,j }1≤i,j≤2 be a subset ofG+ such thatx = u1,1+u1,2 andy = u1,1+u2,1 =
u1,2 +u2,2. From the second equation, and by another application of the Riesz
decomposition property, we have a subset {wi,j }1≤i,j≤2 of G+ such that

u1,1 = w1,1 + w1,2

u2,1 = w2,1 + w2,2

u1,2 = w1,1 + w2,1

u2,2 = w1,2 + w2,2

Hence, x = 2w1,1 + w1,2 + w2,1, and y = w1,1 + w1,2 + w2,1 + w2,2. Let
x1 = w1,1 + w1,2 + w2,1, and let x2 = w1,1. Then x = x1 + x2, x1 ≤ y, and
x2 ≤ x1. This finishes the case n = 1.

Induction step: Suppose that the conclusion of the lemma holds for a positive
integer n. We show that the conclusion also holds for n+ 1.

Since 2x ≤ 2y, it follows by the induction hypothesis that we have the
following equations:

i. x = u1 + u2, where u1, u2 ∈ G+.

ii. nu2 ≤ u1.

iii. y = u1 + v2, where v2 ∈ G+.
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Since 2x ≤ 2y, we must have that 2u2 ≤ 2v2. Hence, by another application
of the induction hypothesis, we also have the following equations:

iv. u2 = w1 + w2, where w1, w2 ∈ G+.

v. w2 ≤ w1.

vi. v2 = w1 + z2, where z2 ∈ G+.

Now take x1 = u1 + w1 and x2 =df w2. Clearly, x = x1 + x2 and x1 ≤ y.
Also, (n+ 1)w2 = nw2 + w2 ≤ nu2 + w2 ≤ u1 + w1, by equations ii and v.
Hence, (n+ 1)x2 ≤ x1. This completes the induction step.

We are now in a position to prove the converse of theorem 2.4, under
appropriate hypotheses.

The idea of the proof is to, for each algebra B in the given class that does
not have the corona factorization property, construct a short exact sequence

0 −→ B −→ C −→ K −→ 0

where C is not stable.
As mentioned earlier, it seems likely that the hypotheses can be weakened

moderately, but at present we have neither a more general proof nor a counter-
example.

Theorem 5.2. Let B be a separable, simple, stable, real rank zero C∗-
algebra with cancellation of projections. Then the following conditions are
equivalent:

(1) B has the corona factorization property.

(2) Every extension of B by a separable stable C∗-algebra gives a stable
extension algebra.

(3) Every extension ofB by the compact operators K gives a stable extension
algebra.

Before giving the proof, we mention some corollaries of the theorem. Recall
that an extension of AF algebras is AF . Because the stability of AF algebras
can be characterized in terms of traces, an extension of stable AF algebras is
stable, and hence:

Corollary 5.3. All simple AF algebras have the corona factorization
property.

Moreover, any separable simple C∗-algebra that is regular in Rørdam’s
sense will, if in the class covered by the above theorem, have the corona
factorization property. For example, theorems 1.2 and 5.2 imply that:
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Corollary 5.4. Simple, separable, exactC∗-algebras, with real rank zero,
stable rank one, and weakly unperforated ordered K0 group have the corona
factorization property.

Now a lemma on strict convergence, actually a special case of a result from
§ 4.1 of [15].

Lemma 5.5. Let (pn) be a sequence of projections that sum strictly to 1
in the multipliers of the given algebra. Then, for any bounded sequence of
elements (xn), the series ∞∑

1

pnxnpn

converges strictly in the multipliers.

Proof of theorem 5.2. That (1) implies (2), follows from theorem 2.4.
It is clear that (2) implies (3). Hence, it suffices to show that (3) implies (1).

Suppose that B does not have the corona factorization property. We will
show that (3) does not hold.

Since B is stable, we can take finite direct sums of elements, whether or
not they are orthogonal, by forming Cuntz sums

⊕N
1 Pi := ∑N

1 viPiv
∗
i where

the vi are generators of an unital copy of ON in the multipliers. Infinite direct
sums such as

⊕∞
1 P are defined to be

∑∞
1 viP v

∗
i where the vi are isometries

generating an unital copy ofO∞ in the multipliers. In general, such sums give
elements of the multipliers, with convergence following from lemma 5.5. If a
sequence of projections are orthogonal, there is no distinction between sums
and direct sums.

Since B does not have the corona factorization property, let P be a norm-
full projection in M(B) such that P is not Murray-von Neumann equivalent
to 1M(B). Since P is norm-full, there is a least positive integer n such that
the Cuntz sum

⊕n
i=1 P is Murray-von Neumann equivalent to 1M(B), and by

replacing P by a suitabble multiple, we may as well suppose that n = 2.
Similarly, we may replace B by the isomorphic algebra (P ⊕ P)B(P ⊕ P),
so that in effect P ⊕ P = 1M(B).

Let {pk}∞k=1 be a sequence of pairwise orthogonal projections in the real
rank zero subalgebra PBP such that P = ∑∞

k=1 pk , where the sum converges,
by lemma 5.5, in the strict topology in M(B).

Choosing an order-unitp ∈ B – it can be taken to be any nonzero projection,
sinceB is simple – we can suppose, replacing the elementspk by finite sums of
the original ones if necessary, that for each k, p⊕ p is Murray-von Neumann
equivalent to a subprojection ofpk⊕pk . This follows from the fact thatP⊕P =∑∞

1 (pk ⊕ pk) = 1.
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For each projection r ∈ B, let [r] be the class of r in the ordered K-group
(K0(B),K0(B)+). Hence, for each k, 2[p] ≤ 2[pk] in K0(B). Now, by [21,
Th. 1.1 and Cor 1.6] sinceB has real rank zero and cancellation of projections,
the ordered group (K0(B),K0(B)+)must have the Riesz decomposition prop-
erty. Hence, by lemma 5.1, for each k, there exists a projection qk in K0(B)+
(hence in B) such that

k[qk] ≤ [pk]

[p] ≤ [pk] + [qk]

in K0(B). Since B has cancellation of projections, in terms of comparison of
projections, we have that for each index k,

(1) the sum
⊕k
i=1 qk is Murray-von Neumann equivalent to a subprojection

of pk , and

(2) p is Murray-von Neumann equivalent to a subprojection of pk ⊕ qk .
Since this statement only involves equivalence classes of projections, we

can replace the pk and the qk by Murray-von Neumann equivalent families of
orthogonal projections.

Thus, we now have sequences (pk) and (qk) such that:

(3) the (pk) and (qk) are pairwise orthogonal familes of projections.

Sincep is equivalent to a subprojection ofpk+qk , it follows that the Cuntz sum⊕∞
1 p is equivalent to a subprojection of

∑∞
1 (pk + qk). But, by remark 4.6,

the Cuntz sum
⊕∞

1 p is equivalent to 1M(B).
In the multipliers of a stable algebra, a projection that majorizes a projection

equivalent to 1 is itself equivalent to 1. This is because a projection equivalent
to 1 is properly infinite and full, as is any projection majorizing it. Then one
applies the K-theoretical properties of properly infinite projections (due to
Cuntz) and the triviality of theK0-group of the multipliers of a stable algebra.
It follows that

(4)
∑∞

1 pk + qk ∼ 1M(B).

Recall that for each k,
⊕k
i=1 qk is Murray-von Neumann equivalent to a sub-

projection of pk . Hence, for each k, define q1
k to be qk , and let q2

k , q
3
k , . . . , q

k
k

be equivalent pairwise orthogonal projections subordinate to pk . We thus have
the following array of projections, with each projection orthogonal to every
other, and all projections in a column mutually equivalent:

q1
1 q1

2 q1
3 q1

4 · · ·
q2

2 q2
3 q2

4 · · ·
q3

3 q3
4 · · ·
q4

4 · · ·


 where the kth column is ≤ pk.
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Let vijk be the partial isometry linking qik to qjk . Let Sii := ∑∞
j=i q

i
j be the

multiplier projection obtained by summing the rows in the diagram, and let
V i,i+1 be the partial isometry obtained by summing the partial isometries vi,i+1

k

linking the ith and (i + 1)th rows.
Let us pause for a moment to discuss the convergence of these two sums.

Since the qij , as functions of j , are majorized by the pj , lemma 5.5 gives the
convergence of the sum defining the Sii . Furthermore, both the source and the
range projections of vi,i+1

k are majorized by pk , so that pkv
i,i+1
k pk = v

i,i+1
k ,

and we again have a situation where lemma 5.5 can be applied.
Now that convergence has been established, we have that, for example, V 1,2

implements an equivalence of S22 and S11 − q1
1 . We thus see, by transitivity of

the equivalence relation, that the Sii are mutually equivalent (by V ij ∈ M(B))
in the quotient M(B)/B. This gives us a copy of K in the corona M(B)/B,
where, for example, the usual rank-one elementary operator eij corresponds
to V ij mod B. Let C = C∗(V ij , B) be the C∗-algebra generated by the V ij

and B.
We thus have an exact sequence

0 −→ B −→ C −→ K −→ 0.

Now consider S11∈C. Note that 1M(B)− S11 is equal to
∞∑
k=1
pk =P . If C were

stable, then by corollary 2.2, the hereditary subalgebra (1 − S11)C(1 − S11)

is stable, and hence the projection 1 − S11 is the unit of a copy of O∞. It
follows that 1 − S11 is properly infinite in M(C), but since M(C) is a (unital)
subalgebra of M(B), of course 1 − S11 is also properly infinite as an element
of M(B). Thus P is properly infinite, contrary to assumption.

Hence the algebra C gives an extension of B by K , but is not itself stable.

A proof similar to that of theorem 5.2 shows:

Corollary 5.6. Suppose that B is a simple, separable, stable, exact, real
rank zero C∗-algebra with cancellation of projections. Then the following
properties of B are equivalent:

(1) B has the corona factorization property.

(2) Suppose that whenever

0 −→ B −→ C −→ K −→ 0.

is an essential, quasidiagonal extension, with C having real rank zero,
then C is necessarily stable.
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