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NON-STABLE K-THEORY FOR QB-RINGS

PERE ARA and FRANCESC PERERA∗

(Dedicated to the memory of Gert K. Pedersen)

Abstract

We study the class of QB-rings that satisfy the weak cancellation condition of separativity for
finitely generated projective modules. This property turns out to be crucial for proving that all
(quasi-)invertible matrices over a QB-ring can be diagonalised using row and column operations.
The main two consequences of this fact are: (i) The natural map GL1(R) → K1(R) is surjective,
and (ii) the only obstruction to lift invertible elements from a quotient is of K-theoretical nature. We
also show that for a reasonably large class of QB-rings that includes the prime ones, separativity
always holds.

Introduction

The object of this paper is the study of K-theoretical aspects of the class of
QB-rings. This class was introduced by G. K. Pedersen and the authors in
[8], and was subsequently studied in [9], [10], [28]. We say that a unital ring
R is a QB-ring if any left unimodular row can be reduced in a special way.
Specifically, R is a QB-ring if

Ra + Rb = R �⇒ a + yb ∈ R−1
q .

Here, R−1
q is the set of quasi-invertible elements of the ring R (see below for

the precise definition), which in the prime case is nothing else but the union of
right and left invertible elements. The reader will have noticed that by replacing
R−1

q with the set R−1 of invertible elements we are back to the definition of
stable rank one. The class of QB-rings is, however, much larger than the
class of rings with stable rank one, yet they enjoy specially good structural
properties. For example, the property of being a QB-ring is stable under matrix
formation, passage to corners, surjective pullbacks, suitable direct and inverse
limits (see [8], [10], [28]). The behaviour under extensions is considerably
more complicated than that for rings with stable rank one, hence an extension
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of two QB-rings is not always a QB-ring. This reflects the fact that to work
with QB-rings one needs a larger display of technology.

The notion of a QB-ring just explained comes from the geometrical concept
of extremal richness for C∗-algebras, coined by L. G. Brown and G. K. Ped-
ersen in [14] and explored further in other papers ([16], [15], [17], [23], [30],
among others). We say that a C∗-algebra A is extremally rich provided its unit
ball is the convex hull of its extreme points. This is in turn equivalent to the
fact that the set of quasi-invertible elements is dense in the norm-topology.

The fact that rings with stable rank one are particularly well behaved with
respect to non-stable K-theoretical properties motivates the quest for similar
results for this bigger class of rings. For example, it would be desirable that
the Whitehead group of any QB-ring is generated by the group of units of the
ring itself. Results in this direction have already been obtained for C∗-algebras
in [17].

One of the key aspects of rings with stable rank one is that their category
of finitely generated projective modules is cancellative. That is,

A ⊕ C ∼= B ⊕ C �⇒ A ∼= B,

whenever A, B and C are finitely generated projective modules.
Of course, we cannot expect that QB-rings enjoy full cancellation as simple

examples show, but weaker forms of cancellation might still hold. One of such
conditions is that of separative cancellation. This was introduced in Ring
Theory in [5] borrowed from Semigroup Theory (see, e.g. [19], [21]) and has
been around in the C∗-algebra scene for some time, notably in [17] (see also
[29]). If, for finitely generated projective modules A, B and C over a ring R,

A ⊕ C ∼= B ⊕ C with C <∼ nA, C <∼ mB �⇒ A ∼= B,

then the ring R is said to be separative. (Here, P <∼ Q means that P is
isomorphic to a direct summand of Q.) This condition plays an important role
in cancellation problems for the class of exchange rings. For example, if R is a
separative exchange ring, then its stable rank can only be 1, 2 or ∞, and every
(von Neumann) regular matrix can be brought to diagonal form by elementary
row and column operations (see [5], [6], [7]).

Restricting to the class of separative QB-rings, we prove in Section 2 (The-
orem 2.5) that any quasi-invertible matrix is also diagonalizable via elementary
operations. This can be thought as optimal, since quasi-invertible elements are
ubiquitous in QB-rings: they are always (von Neumann) regular, maximal in
a suitable sense and algebraically dense (see [8]). A key ingredient for the
proof is the previous result that, in an arbitrary QB-ring, any quasi-invertible
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matrix can be reduced to a special standard form. The preparatory work that
culminates in this fact (together with other tools) is carried out in Section 1.

We next exploit the diagonalisation theorem in Section 3. Namely, we prove
that the natural map GL1(R, I ) → K1(R, I ) is surjective (for any QB-ideal I

of a separative ring R). As a consequence, the natural map GL1(R) → K1(R)

is also surjective whenever R is a separative QB-ring.
In analogy with results obtained in [29] and [17], we study the condition

of lifting units modulo special ideals, and we find a similar theorem to [29,
Theorem 2.4], that applies to QB-ideals of separative rings and shows that
QB-rings have good index theory.

In view of the good behaviour of QB-rings under the presence of separ-
ativite cancellation, it is natural to ask how widely this condition holds. We
prove that all simple QB-rings are either purely infinite simple or else they
have stable rank one (and in particular they are separative). In the not neces-
sarily simple situation, we study in Section 4 the class of central QB-rings, in
which their quasi-invertible elements are somehow parametrized by the central
idempotents of the ring. We prove in Theorem 4.10 that any central QB-ring is
separative. The problem in the general case (as well as for the class of exchange
rings) remains open.

1. Composability

In this section we define the notion of equivalence between two quasi-invertible
matrices over any (unital) ring R and study some of its properties. Our approach
resembles the construction of K1(R) for a ring R and we prove a version
of the Whitehead lemma (Proposition 1.4). The main result, established in
Theorem 1.8, is the fact that a quasi-invertible matrix over any QB-ring has
a special form modulo equivalence. This result, technical in nature, will be a
key step towards the main result in Section 2.

Recall from [8] that two elements x and y in a ring R are said to be centrally
orthogonal, in symbols x ⊥ y, provided that xRy = yRx = 0. We say that
an element u in R is quasi-invertible, provided there exist elements v, w in
R such that (1 − uv) ⊥ (1 − wu). One can see ([8, Proposition 2.2]) that in
this case we may choose v = w and that u = uvu, v = vuv. Note that being
quasi-invertible means that u is left invertible modulo an ideal I of R, and right
invertible modulo another ideal J of R, in such a way that IJ = J I = 0. We
denote the set of quasi-invertible elements by R−1

q .

Proposition 1.1. If u ∈ R−1
q with quasi-inverse v, then un ∈ R−1

q with
quasi-inverse vn for every n ≥ 0.
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Proof. The expansion

1 − unvn =
n−1∑
k=0

uk(1 − uv)vk

shows that (1−unvn) ⊥ (1−vnun). It also shows that (1−unvn)(1−vu) = 0 =
(1 − vu)(1 −unvn), from which we deduce that (unvn)(vu) = (vu)(unvn) for
all n. An easy induction argument now proves that uvu = u implies unvnun =
un for all n, and thus the desired conclusion follows.

Remark 1.2. Despite the result above, the set R−1
q will never be a semi-

group unless R−1
q = R−1. The problem is the product between an element u

and its quasi-inverse v in R−1
q . If u /∈ R−1, then either uv �= 1 or vu �= 1. But an

idempotent p �= 1 can never be quasi-invertible. To realize this, recall from [8,
2.1] that we would then have p+I ∈ (R/I)−1

� and p+J ∈ (R/J )−1
r for some

orthogonal pair of ideals I and J . However, 1 is the only left or right invertible
idempotent in any ring, which means that 1 − p = (1 − p)2 ∈ IJ = 0,
contrary to our assumption.

Proposition 1.3. Let R be a unital ring, and let u, v be quasi-invertible
elements in R, with quasi-inverses x and y, respectively. Then the following
conditions are equivalent:

(a) (1 − ux) ⊥ (1 − yv) and (1 − xu) ⊥ (1 − vy);

(b) uv, vu ∈ R−1
q ;

(c)

(
u 0
0 v

)
∈ M2(R)−1

q .

Proof. (a)⇒(b). Write

1 − uvyx = 1 − ux + u(1 − vy)x, 1 − yxuv = 1 − yv + y(1 − xu)v.

Since 1 − ux is centrally orthogonal to 1 − xu and 1 − yv, and since 1 − vy

is centrally orthogonal to 1 − yv and 1 − xu, we conclude that (1 − uvyx) ⊥
(1 − yxuv), whence uv ∈ R−1

q .
For vu, we proceed similarly, writing

1 − vuxy = 1 − vy + v(1 − ux)y, 1 − xyvu = 1 − xu + x(1 − yv)u.

(b)⇒(a). Assume that uv ∈ R−1
q . Then there exists an element z in R such

that (1 − (uv)z) ⊥ (1 − z(uv)). Since (1 − zuv)y(1 − uvz) = 0, we get that
y = zuvy + yuvz − zuvyuvz, and so

1 − yv = (1 − zuv)(1 − yuvzv).
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Analogously, since (1 − zuv)x(1 − uvz) = 0, we get x = zuvx + xuvz −
zuvxuvz, whence

1 − ux = (1 − uzuvx)(1 − uvz).

Thus we conclude that (1 − ux) ⊥ (1 − yv). Using that vu ∈ R−1
q in a similar

way, we get that (1 − xu) ⊥ (1 − vy).
(a)⇒(c) is a trivial matrix calculation.

(c)⇒(a). Assume that

(
u 0
0 v

)
∈ M2(R)−1

q , and choose a quasi-inverse(
a b

c d

)
. A straightforward (albeit tedious) matrix calculation shows that

u = uau, v = vdv and also that

(1 − ua) ⊥ (1 − au), (1 − vd) ⊥ (1 − dv),

(1 − ua) ⊥ (1 − dv), (1 − au) ⊥ (1 − vd).

Observe that 1 −ux = (1 −ux)(1 −ua) and that 1 − yv = (1 − dv)(1 − yv).
It follows that (1 − ux) ⊥ (1 − yv), and similarly (1 − xu) ⊥ (1 − vy).

As in [15, 2.6], if u and v in R−1
q satisfy one of the (equivalent) conditions

of Proposition 1.3, we say that u and v are composable.
We also say that two elements u and v in Mn(R)−1

q are equivalent provided
there exist matrices α and β in En(R) such that u = αvβ. Thus, in analogy with
[15, Proposition 2.7] (see also, e.g. [24, Lemma 9.7] or [32, Proposition 2.1.4]),
we have:

Proposition 1.4. Let R be a unital ring, and let u and v be composable
elements in R−1

q . Then the matrices(
uv 0
0 1

)
,

(
vu 0
0 1

)
and

(
u 0
0 v

)

are all equivalent.

Proof. Choose quasi-inverses x and y for u and v respectively. By Pro-
position 1.3 we have that (1 − ux) ⊥ (1 − yv). Let α and β be the elements
in E2(R) given by:

α =
(

1 u

0 1

) (
1 0

−x 1

) (
0 −1
1 0

) (
1 0

−u 1

)
,

β =
(

1 0
y 1

) (
1 (1 − xu)v

0 1

) (
1 0

−y 1

)
.
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Now check that

α

(
1 0
0 uv

)
β =

(
u 0

1 − xu xuv

)
β =

(
u 0
0 v

)
.

The proof works similarly for

(
vu 0
0 1

)
.

Corollary 1.5 (cf. [15, 2.8]). Let R be a unital ring, and let u be

a quasi-invertible element and v an invertible element. Then

(
u 0
0 1

)
and(

vuv−1 0
0 1

)
are equivalent.

Proof. Obviously, v and uv−1 are composable.

The reader will have noticed that quasi-inverses of quasi-invertible elements
are not unique, but their precise form was given in [8, Theorem 2.3]. For
technical reasons (namely, the proof of Theorem 1.8 below), we shall need a
slight generalization of that result, that extends its validity to the context of the
so-called skew corners. We recall the main definitions and give some details
of the proof.

Given idempotents p and q in a unital ring R such that pRq �= 0, we say that
an element u ∈ pRq is quasi-invertible (in symbols u ∈ (pRq)−1

q ) provided
that there exists an elementv inqRp such thatu = uvu and (p−uv) ⊥ (q−vu)

(we may also choose v so that v = vuv). (See [8, §5].)

Proposition 1.6. Let R be a unital ring, and let p and q be two idempotents
in R such that pRq �= 0. If u ∈ (pRq)−1

q with a quasi-inverse v in qRp, then
each element of the form

(1) v′ = v + a(p − uv) + (q − vu)b,

with a in qR and b in Rp, is a quasi-inverse for u and we have

(p − uv′) ⊥ (q − v′u), (p − uv′) ⊥ (q − vu), (p − uv) ⊥ (q − v′u).

Conversely, if v′ in qRp is a partial inverse for u, then v′ has the form in (1),
with a = b = v′.

Proof. Since uv′ = uv + ua(p − uv), we get uv′u = uvu = u. Now
(p − u(ap))(p − uv) = p − uv − uap + uauv = p − uv′, and similarly
q − v′u = (q − vu)(q − (qb)u). This shows that (p − uv′) ⊥ (q − v′u), and
also that v′ is a quasi-inverse for u.
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Observe that (q − v′u)(q − vu) = q − vu, whence (p − uv′) ⊥ (q − vu).
The relation (p − uv) ⊥ (q − v′u) follows similarly.

Conversely, assume that v′ ∈ qRp and that it is a partial inverse for u. Then
0 = (q − vu)v′(p − uv) = v′ − vuv′ − v′uv + v. Thus

v′ = 2v′ − vuv′ − v′uv + v = v + (q − vu)v′ + v′(p − uv) ,

so that v′ ∈ (qRp)−1
q with (p −uv′) ⊥ (q −v′u), by the first part of the proof.

Lemma 1.7. Let R be a unital ring. Let a be a quasi-invertible element in
R, and choose a quasi-inverse b for a. Let u and v be invertible elements in R

and take any x in R.

(a) Let b1 = bu + (1 − ba)x. Then a1 := u−1a ∈ R−1
q and has b1 as

quasi-inverse.

(b) Let b1 = ubv. Then a1 := v−1au−1 ∈ R−1
q and has b1 as a quasi-inverse.

Proof. (a) Let y = b1u
−1 = b + (1 − ba)xu−1. By [8, Theorem 2.3], y is

a quasi-inverse for a. Now, we have that

a1b1a1 = (u−1a)yu(u−1a) = u−1a = a1,

b1a1b1 = (yu)u−1a(yu) = yu = b1,

and also
1 − a1b1 = u−1(1 − ay)u, 1 − b1a1 = 1 − ya,

whence the conclusion follows.
(b) Straightforward computations show that in this case also a1 = a1b1a1

and that b1 = b1a1b1, and moreover 1 −a1b1 = v−1(1 −ab)v and 1 −b1a1 =
u(1 − ba)u−1.

Theorem 1.8. Let R be a unital QB-ring. Then, every element in M2(R)−1
q

is equivalent to a matrix of the form(
a b

c d

)
,

where a, d ∈ R−1
q , and if s, t are quasi-inverses for a and d respectively, then

b ∈ ((1 − as)R(1 − td))−1
q , and c ∈ ((1 − dt)R(1 − sa))−1

q

(and b = 0 if (1 − as)R(1 − td) = 0, and c = 0 if (1 − dt)R(1 − sa) = 0).

Proof. Let α be a quasi-invertible element in M2(R), and choose a quasi-
inverse β, so that α = αβα, β = βαβ, and (12 − αβ) ⊥ (12 − βα). The
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process carried out in [8, Theorem 6.4] to show that M2(R) is also a QB-ring
can be performed in this setting to the trivial equation:

βα + (12 − βα) = 12.

The inspection of this process reveals that (in a finite number of steps n) we
get matrices αn and βn, so that

βn =
(

u w12

w21 v

)
,

where u, v ∈ R−1
q , and if x, y are quasi-inverses for u and v respectively, then

w12 ∈ ((1−ux)R(1−yv))−1
q ∪{0}, and w21 ∈ ((1−vy)R(1−xu))−1

q ∪{0}.
We also have that α0 = α and β0 = β, and each pair αi , βi is obtained
from the previous one according to the operations (a) or (b) in Lemma 1.7,
using as invertible elements elementary matrices (and replacing a by αi , and
b by βi). In particular, αn and βn are quasi-inverses for one another, and αn is
obtained from α by elementary changes. Thus, without loss of generality, we

may assume that α = αn and β = βn. Hence, writing α =
(

a b

c d

)
, we have

the equation:(
u w12

w21 v

)
=

(
u w12

w21 v

) (
a b

c d

) (
u w12

w21 v

)
.

The (1, 1) equation gives:

u = uau + w12cu + ubw21 + w12dw21,

where the last summand is actually zero, because (1 − ux) ⊥ (1 − xu).
Multiplying this equation on the left by 1 − ux we get w12cu = 0, and
multiplying afterwards on the right by 1 − xu we get ubw21 = 0. Hence
u = uau. By [8, Theorem 2.3] (or also Proposition 1.6), a ∈ R−1

q . In fact,
a = x+(1−xu)a+a(1−ux) and (1−au) ⊥ (1−ua), whence also a = aua.
Similar computations using the (2, 2) equation yield d = dvd , v = vdv and
(1 − dv) ⊥ (1 − vd), so also d ∈ R−1

q .
Now the (1, 2) equation gives:

w12 = uaw12 + w12cw12 + ubv + w12dv .

After left multiplication by 1 − ux and right multiplication by 1 − yv we get
w12 = w12cw12. If, instead, we multiply on the left by ux and on the right



non-stable K-theory for QB-rings 273

by yv, we get ubv = 0. Similarly, working with the (2, 1) equation, we get
w21 = w21bw21 and vcu = 0.

In principle there is no reason to believe that, e.g. (1 − au)b(1 − vd) = b,
hence we need to perform some more changes on α, as follows:(

1 0
−cu 1

) (
a b

c d

) (
1 −ub

0 1

)
=

(
a (1 − au)b

c(1 − ua) d − cub

)
.

Set d1 := d − cub. Since cubv = 0, we have that cub(1 − vd) = cub, hence
by [8, Theorem 2.3] (or also Proposition 1.6) d1 and v are quasi-inverses for
one another. Thus d1vd1 = d1. On the other hand, and using also that vcu = 0,
we see that d1vd1 = d, hence d = d1. Finally, we compute:(

1 −(1 − au)b

0 1

) (
a (1 − au)b

c(1 − ua) d

) (
1 0

−vc(1 − ua) 1

)

=
(

a (1 − au)b(1 − vd)

(1 − dv)c(1 − ua) d

)
.

It is clear that we only have to consider the cases where the skew corners
(1−au)R(1−vd) or (1−dv)R(1−ua) are different from zero. Observe also
that (1 − au)R(1 − vd) = (1 − xu)R(1 − vy) and that (1 − dv)R(1 − ua) =
(1 − yv)R(1 − ux). Hence, Proposition 1.6 implies that (1 − au)b(1 − vd) ∈
((1 − au)R(1 − vd))−1

q . Similarly, we get that (1 − dv)c(1 − ua) ∈ ((1 −
dv)R(1 − ua))−1

q .

For a unital ring R, we denote the monoid of isomorphism classes of finitely
generated right projective R-modules by V (R) (where the addition is given by
the direct sum of representatives).

Alternatively, V (R) can be described by using an idempotent picture that
will prove more suitable to us in some cases. Given idempotents p and q in R,
we say that p and q are (Murray-von Neumann) equivalent, and write p ∼ q,
provided there exist elements x in pRq and y in qRp such that p = xy and
q = yx. Let M∞(R) = lim−→ Mn(R) under the mappings x �→ diag(x, 0).
Denote by [p] the equivalence class of an idempotent in M∞(R). Then V (R)

can also be viewed as the set of all equivalence classes of idempotents from
M∞(R), with addition defined by [p] + [q] = [p ⊕ q] (p ⊕ q stands for
diag(p, q)). Write p <∼ q if there is an idempotent p′ such that p ∼ p′ ≤ q.
The passage from one picture of V (R) to the other consists of identifying every
finitely projective right module with an idempotent in some matrix ring over
R in the standard way. Whilst ∼ translates into isomorphism, the symbol <∼
translates into the statement “is isomorphic to a direct summand of”.
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If R is a unital ring and u is a quasi-invertible element in R, with a quasi-
inverse v, we set p = 1−uv and q = 1−vu. We shall refer to the idempotents
p and q as the defect idempotents associated with the quasi-invertible element
u. It was observed in [10, p. 77] that, even though quasi-inverses are not unique,
the defect idempotents corresponding to different quasi-inverses are equivalent
(in fact, they are conjugate by a unit of the ring). We therefore denote these
classes by λu and ρu.

Corollary 1.9. Let R be a unital QB-ring, and let α be a quasi-invertible
element in M2(R). Then the classes λα and ρα admit a diagonal representative.

Proof. By Theorem 1.8, there exist matrices β and γ in E2(R) such that

βαγ =
(

a b

c d

)
, where a, d ∈ R−1

q , and if x, y are quasi-inverses for a and

d respectively, then

b ∈ ((1 − ax)R(1 − yd))−1
q , and c ∈ ((1 − dy)R(1 − xa))−1

q

(and b = 0 if (1 − ax)R(1 − yd) = 0, and c = 0 if (1 − dy)R(1 − xa) = 0).

Let α′ =
(

x s

t y

)
, where s is a quasi-inverse for b (or s = 0), and t is a

quasi-inverse for c (or t = 0). It is straightforward to check that βαγα′ is a
diagonal idempotent. Since β(12 − α(γ α′β))β−1 = 12 − βαγα′, we see that
λα = [12 − βαγα′]. In a similar way, 12 − α′βαγ = γ −1(12 − (γ α′β)α)γ ,
whence ρα = [12 − α′βαγ ], and the result follows.

2. Diagonalization of matrices and cancellation conditions

Our goal in this section is to show that all quasi-invertible matrices over a separ-
ative QB-ring can be diagonalized by performing elementary row and column
operations. In particular, we see that a large subset of the set of von Neumann
regular elements can be understood. This parallels the corresponding result es-
tablished in [7] (see also [6]), where it is shown that all von Neumann regular
matrices over a separative exchange ring can be diagonalised with elementary
operations. It also recovers the corresponding result for extremally rich C∗-
algebras ([17]), although our methods are different. The main consequences of
our theorem will be derived in the next section, where some interesting facts
concerning the K-Theory of QB-rings will be established.

The ingredient we require, as already mentioned, is that our rings R are
separative. It is convenient for our purposes in the current secion to use the
idempotent picture of the monoid V (R) described above, and thus R is separ-
ative if, for idempotents p, q and r in M∞(R), we have

p ⊕ r ∼ q ⊕ r and r <∼ n · p, m · q �⇒ p ∼ q.
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All known examples of QB-rings satisfy this weakened cancellation condi-
tion. In view of the results in this and the next section, the following question
imposes itself:

Question 2.1. Are all QB-rings separative?

We shall present in the next sections some instances where the answer to
this question turns out to be positive.

In the case of operator algebras, L. G. Brown and G. K. Pedersen have
proved the remarkable result that all extremally rich C∗-algebras with real
rank zero are separative, see [17]. Since the C∗-algebras that are exchange
rings are precisely the ones with real rank zero ([5, Theorem 7.2]), it would
be interesting to know whether or not every exchange QB-ring is separative.
This is connected to the Fundamental Separativity Question formulated for
exchange rings (see [5]).

In order to achieve our main result we assemble three lemmas, as follows.
Let n ∈ N. Recall that En(R) is used to denote the subgroup of GLn(R)

generated by the elementary matrices of size n. If I is an ideal of R, denote by
En(R, I) the normal subgroup of En(R) generated by the elements in En(I).
Define GLn(R, I ) as the kernel of the map GLn(R) → GLn(R/I). In other
words, the elements in GLn(R, I ) are those matrices α in GLn(R) such that
πI (α) = 1n.

Let GL(R, I ) = lim−→ GLn(R, I ) through the maps x �→ diag(x, 1) and let
E(R, I) = lim−→ En(R, I). Then E(R, I) is a normal subgroup of GL(R, I )

(see, e.g. [32]).

Lemma 2.2. Let R be a ring and let I be a two-sided ideal of R. Let a ∈ R

and assume that a − 1 ∈ I and that a is von Neumann regular (i.e. a = axa

and x = xax for some x in R). Assume there exists an idempotent e in I and a
unit u in R such that u(1 − e)u−1 = ax. Then there is a matrix α in E2(R, I )

such that (a, ue)α = (1, 0).

Proof. Let α1 =
(

1 xu

0 1

)
. Then (a, ue)α1 = (a, u). Next, take α2 =(

1 0
u−1(1 − a) 1

)
. Then (a, u)α2 = (1, u). Finally, let α3 =

(
1 −u

0 1

)
, so

that (1, u)α3 = (1, 0).
Let α = α1α2α3. Note that α = α1α3α

−1
3 α2α3. Since 1 − a ∈ I , we

have α2 ∈ E2(I ), so that α−1
3 α2α3 ∈ E(R, I). On the other hand, α1α3 =(

1 (x − 1)u

0 1

)
∈ E2(I ) (since also x − 1 ∈ I ).

The following observation is easy and has been made in [17]. Recall that
an idempotent p in a ring R is called full provided that RpR = R (hence
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the module pR is a generator in the category of finitely generated projective
modules).

Lemma 2.3. Let a be a quasi-invertible element in a ring R, and let x be a
quasi-inverse for a. Then the idempotent ax is full in R.

Proof. Since (1 − ax)(1 − xa) = 0, we have that 1 − ax = (1 − ax)xa.
Therefore

ax + [(1 − ax)x]axa = ax + (1 − ax)xa = ax + 1 − ax = 1.

The next lemma requires the notion of a non-unital QB-ring, as defined in
[8, §4]. This will allow us to obtain further results in relative K-Theory (see
Section 3). We recall the definition (that will be used in the next section) and
an equivalent formulation that is more convenient for our proof below.

Let I be any ring (unital or not). We shall denote Ĩ = I ⊕ Z, which is
a canonical unitization of I with componentwise addition and multiplication
given by the rule (a, n)(b, m) = (ab + an + bm, nm). This is a unital ring
that contains I as a two-sided ideal.

We say that I is a QB-ring provided that whenever (1−x)(1−a)+b = 1 (in
Ĩ ) for x, a, b in I , then there is an element y in I such that 1−x +by ∈ (Ĩ )−1

q .
If I sits as a two-sided ideal of a unital ring R, then it was proved in [8,
Theorem 4.9] that I is a QB-ring if and only if, whenever (1 − x)a + b = 1,
for x in I , and a, b in R, there is an element y in R such that 1−x +by ∈ R−1

q .
We shall say in this situation that I is a QB-ideal of the ring R.

Lemma 2.4. Let R be a separative ring, and let I be a QB-ideal of R.
Assume that J is an ideal of R such that J I = 0. Let α ∈ M2(R) be such that

α =
(

a b

c d

)
,

where a − 1, b, c ∈ I , and πJ (α) ∈ M2(R/J )−1
r . Then there exist matrices β,

γ in E2(R, I ) such that βαγ =
(

1 0
0 d1

)
, with πJ (d1) ∈ (R/J )−1

r .

Proof. Denote, for the proof, πJ (x) = x. We have an equation

(2)

(
a b

c d

) (
a′ b′
c′ d ′

)
=

(
1 0
0 1

)

from which we obtain aa′ + bc′ + j = 1 for some j in J . Write a = 1 − a1,
where a1 ∈ I , and a′ = 1 − a′

1, so we have (1 − a1)(1 − a′
1) + (bc′ + j) = 1.

By [8, Lemma 4.6], we can rearrange this equality so that (1 − a1)(1 − x1) +
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(bc′ + j)x2 = 1, for elements x1 and x2 in I , and since J I = 0, we get
(1 − a1)(1 − x1) + bc′x2 = 1.

Now we use that I is a QB-ideal of the ring R, hence there exists z in R

satisfying a + bc′x2z = 1 − a1 + bc′x2z ∈ R−1
q . We compute that(

a b

c d

) (
1 0

c′x2z 1

)
=

(
a + bc′x2z b

c + dc′x2z d

)
,

where c′x2z ∈ I . Hence, without loss of generality, we can assume that a ∈
R−1

q and that equation (2) still holds.
Next, let x be a quasi-inverse for a, so that a = axa, x = xax and

(1 − xa) ⊥ (1 − ax). Observe that 1 − x ∈ I , and thus 1 − ax, 1 − xa ∈ I .
Compute:(

1 0
−cx 1

) (
a b

c d

) (
1 −xb

0 1

)
=

(
a (1 − ax)b

c(1 − xa) d1

)
.

Hence, without loss of generality, we can also assume that axb = cxa = 0,
and that equation (2) is still valid.

Look at the equality aa′ + bc′ + j = 1 for some (possibly different) j

in J . Multiply this equation left and right by 1 − ax, an element of I . Since
J I = 0, (1 − ax)a = 0 and axb = 0, we obtain bc′(1 − ax) = 1 − ax. Let
e = c′(1 − ax)b = c′b. Then e is an idempotent in I and e ∼ 1 − ax. Note
that

(1 − e)c′(1 − ax) = (1 − c′b)c′(1 − ax) = c′(1 − ax) − c′(1 − ax) = 0,

and also

b(1 − e) = b(1 − c′b) = (1 − bc′(1 − ax))b = axb = 0.

We now claim that 1 − e is full in R.
To see this, compute

d(1 − e)d ′ = dd ′ − dc′bd ′.

We know that ca′ + dc′ = k ∈ J . Then

dc′bd ′ = (k − ca′)bd ′ = (k − ca′)(1 − ax)bd ′ = −ca′(1 − ax)bd ′

= −c(1 − xa)a′(1 − ax)bd ′ = 0,

because J I = 0, 1−ax ∈ I , and (1−ax) ⊥ (1−xa). Therefore d(1−e)d ′ =
dd ′.
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On the other hand,

c(1 − e)(1 − xa)b′ = c(1 − c′(1 − ax)b)(1 − xa)b′ = cb′,

since axb = 0 and (1−xa) ⊥ (1−ax). Hence d(1−e)d ′+c(1−e)(1−xa)b′ =
cb′ + dd ′ ∈ 1 + J . Since e ∈ I and J I = 0, we obtain

d(1 − e)d ′e + c(1 − e)(1 − xa)b′e = e.

This implies that e ∈ R(1 − e)R. Since we also have 1 − e ∈ R(1 − e)R, we
get R = R(1 − e)R, which establishes the claim.

In V (R) we have that

[ax] + [1 − ax] = [1] = [1 − e] + [e] = [1 − e] + [1 − ax],

where 1 − e is full and ax is also full (by Lemma 2.3). Using the separativity
of R, we conclude that ax ∼ 1 − e. Write ax = st and 1 − e = ts, where
s ∈ axR(1 − e) and t ∈ (1 − e)Rax. We had previously that e = c′(1 − ax)b

and 1−ax = bc′(1−ax). We conclude that the element u = s+b is invertible
in R, with inverse u−1 = t + c′(1 − ax), and u(1 − e)u−1 = ax. Observe that,
by our computations, ue = b.

Invoking Lemma 2.2, we find a matrix α in E2(R, I ) such that(
a b

c d

)
α =

(
1 0
c1 d1

)
,

where, by our computations, c1 ∈ I . The last routine calculation is done

multiplying on the left by

(
1 0

−c1 1

)
∈ E2(I ).

Let M be an abelian monoid. We equip M with its natural (algebraic) pre-
order, given by x ≤ y if x+z = y for some z in M . We say that M is separative
if

a + c = b + c with c ≤ na, c ≤ mb �⇒ a = b.

The example we have in mind is that of V (R) for a ring R. Clearly, V (R) is
a separative monoid precisely when R is a separative ring. The need for the
more general definition will be clear from the following definition and in the
proof of the theorem below.

If I is a submonoid of an abelian monoid M , then I is said to be an order-
ideal (or an o-ideal) of M if x ≤ y with y in I forces x ∈ I . One can define
a congruence on M by declaring that x ∼ y if there are elements z and t in
I such that x + z = y + t . We denote M/I = M/∼, and this becomes an
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abelian monoid under πI (x) + πI (y) = πI (x + y), where πI (x) denotes the
congruence class of x.

In the particular case that I is an ideal of a ring R, it is easily checked
that V (I) is an order-ideal of V (R). There is a natural map V (R)/V (I) →
V (R/I), which is surjective if idempotent matrices lift modulo I . It is easy to
verify that if R is a separative ring, then V (R)/V (I) is a separative monoid,
although it is not necessarily true that R/I is also separative (see [5]). We shall
denote by πJ ([p]) the class in V (R)/V (J ) of an element [p] in V (R) (rather
than using πV (J )).

We are now ready for the harvest.

Theorem 2.5. Let R be a separative QB-ring, and let α ∈ M2(R)−1
q . Then

there exist matrices β, γ in E2(R) such that

βαγ =
(

1 0
0 d

)
,

with d ∈ R−1
q .

Proof. Without loss of generality (using Theorem 1.8), we may assume
that

α =
(

a w12

w21 b

)
,

where a, b ∈ R−1
q with (respective) quasi-inverses x and y such that

w12 ∈ ((1−ax)R(1−yb))−1
q ∪{0} and w21 ∈ ((1−by)R(1−xa))−1

q ∪{0}.
If wij = 0 for all i, j , then by combining Propositions 1.3 and 1.4, we have

that ab ∈ R−1
q and α is equivalent to

(
1 0
0 ab

)
.

Thus, we may assume that some of the wij are not zero. It is enough to
consider the case that wij �= 0 for all i and j . In this case, pick quasi-inverses
w′

ij for wij and check that

(
a w12

w21 b

) (
x w′

21
w′

12 y

)
=

(
ax + w12w

′
12 0

0 by + w21w
′
21

)
.

Let J = R(1 − ax − w12w
′
12)R + R(1 − by − w21w

′
21)R. Denoting by v the

classes modulo J , we have the following equation in R/J :(
a w12

w21 b

) (
x w′

21

w′
12 y

)
=

(
1 0
0 1

)
.
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We start as in the previous lemma, so that we multiply the equation

ax + w12w
′
12 = 1

on the left by 1 − ax, and we get w12w
′
12 = 1 − ax. Set e = w′

12w12, which
is an idempotent, equivalent to 1 − ax. Our goal is to see that also 1 − e is
equivalent to ax, so that we will be in position to apply Lemma 2.2.

Note the following relations:

b(1 − w′
12w12)y = by, w21(1 − w′

12w12)w
′
21 = w21w

′
21.

(The second one holds since, for example, (1 − ax) ⊥ (1 − xa).) Therefore,
the idempotent by + w21w

′
21 can be rewritten as ε1ε2ε3, where

ε1 =
(

b w21

0 0

)
, ε2 = diag(1 − w′

12w12, 1 − w′
12w12),

and ε3 =
(

y 0
w′

21 0

)
.

If we letf = ε2ε3ε1ε2, then we have that [by+w21w
′
21] = [f ] ≤ 2[1−w′

12w12]
in V (R).

Recall that πJ ([p]) denotes the class in V (R)/V (J ) of an element [p] from
V (R). Since 1 − by − w21w

′
21 ∈ J , we get in V (R)/V (J ) that

πJ ([1 − ax]) ≤ πJ ([1]) = πJ ([by + w21w
′
21])

= πJ ([f ]) ≤ 2πJ ([1 − w′
12w12]).

On the other hand, since ax is full in R (by Lemma 2.3 and also its proof)
we have that πJ ([1]) ≤ 2πJ ([ax]) in V (R)/V (J ), hence also πJ ([1−ax]) ≤
2πJ ([ax]).

Notice also that πJ ([w′
12w12]) = πJ ([1 − ax]) in V (R)/V (J ), because

1−ax −w12w
′
12 ∈ J and [w′

12w12]+ [1−ax −w12w
′
12] = [1−ax] in V (R).

Now, as in the comments preceding the proof, V (R)/V (J ) is a separative
monoid. Therefore, the fact that

πJ ([1 − ax]) + πJ ([ax]) = πJ ([w′
12w12]) + πJ ([1 − w′

12w12])

= πJ ([1 − ax]) + πJ ([1 − w′
12w12]),

coupled with the inequalities we just observed above implies that πJ ([ax]) =
πJ ([1 − w′

12w12]). This carries over to V (R/J ), hence we get that ax is equi-
valent to 1 − e, as claimed.

Write ax = st and ts = 1 − e for appropriate s and t . Then the element
u = s + w12 is a unit in R/J such that u(1 − e)u−1 = ax (and one can check
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that ue = w12). We can therefore apply Lemma 2.2 (with the ideal being R/J )

to get β ′ ∈ E2(R/J ) such that αβ ′ =
(

1 0
c1 d1

)
. We may obviously assume

that β ′ = β, for some β ∈ E2(R). Necessarily also, d1 is right invertible in
R/J . Thus, after right multiplication by a suitable elementary matrix, we can
assume that c1 = 0. Upstairs, this translates into the following

αβ =
(

1 + x11 x21

x12 d

)
,

where xij ∈ J .
Now, let I = R(1 − xa − w′

21w21)R + R(1 − yb − w′
12w12)R. It follows

from our relations that IJ = J I = 0. Since also(
x w′

21
w′

12 y

) (
a w12

w21 b

)
=

(
xa + w′

21w21 0
0 yb + w′

12w12

)
,

we know that πI (αβ) ∈ M2(R/I)−1
l . Thus the left version of Lemma 2.4

applies, so that we find γ and ε ∈ E2(R) such that γαβε =
(

1 0
0 d ′

)
, and

necessarily d ′ ∈ R−1
q .

In the case of exchange rings, the same type of diagonalisation result (for
all von Neumann regular matrices) turns out to characterize separativity (see
[6, Theorem 3.4]). Given the symmetry between these two classes of rings, it is
thus natural to expect that a similar result holds for QB-rings. In the remaining
part of this section we explore this possibility and establish a partial result (see
Theorem 2.13).

Given any (unital) ring R, denote by D(R) the two-sided ideal generated
by all defect idempotents of R, that is, the idempotents of the form 1 − ux

where u ∈ R−1
q and x is a quasi-inverse for u. We shall refer to D(R) as the

defect ideal.

Lemma 2.6 (cf. [16, Proposition 3.2]). Let R be a unital QB-ring. Then
R/D(R) has stable rank one and D(R) is the smallest ideal of R such that
this holds.

Proof. Using [8, Proposition 3.9], we only need to verify that (R/D(R))−1
q

= (R/D(R))−1. Since R is a QB-ring, we have that (R/D(R))−1
q = (R−1

q +
D(R))/D(R). We therefore take u in R−1

q , and pick any quasi-inverse x for
u. Then 1 − ux, 1 − xu ∈ D(R), and hence the class u + D(R) of u modulo
D(R) is invertible (with inverse x + D(R)). This shows that (R/D(R))−1

q ⊆
(R/D(R))−1, and since the converse inclusion is obvious, the first part of our
assertion holds.
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Next, suppose that I is an ideal of R such that R/I has stable rank one.
Since R/I is also a QB-ring, this implies that (R/I)−1

q = (R/I)−1, and by
[8, Proposition 7.1], this set equals (R−1

q + I )/I . Let u ∈ R−1
q and take a

quasi-inverse x. Then u = uxu and since the class of u is invertible in R/I ,
we have that 1 − ux, 1 − xu ∈ I . Therefore all defect idempotents belong to
I , from which we infer that D(R) ⊆ I , as desired.

Corollary 2.7. Let R be a unital QB-ring.

(i) If n ≥ 1, then D(Mn(R)) = Mn(D(R)).

(ii) If e is an idempotent, D(eRe) ⊆ eD(R)e, and equality holds in the case
that e is full in R.

Proof. (i) Since Mn(R)/Mn(D(R)) ∼= Mn(R/D(R)) and R/D(R) has
stable rank one, we have that Mn(R)/Mn(D(R)) has stable rank one too. If I

is an ideal of R such that Mn(R)/Mn(I) ∼= Mn(R/I) has stable rank one, then
R/I , being a corner of the matrix ring, will also have stable rank one, hence
D(R) ⊆ I and Mn(D(R)) ⊆ Mn(I).

(ii) Since eRe/eD(R)e = (e + D(R))R/D(R)(e + D(R)), we see that
eRe/eD(R)e has stable rank one, and so D(eRe) ⊆ eD(R)e. Assume now
that e is full. If I is an ideal of eRe, we have that I = eI ′e for some ideal I ′ of
R (see, e.g. [22, Theorem 21.11]). If eRe/I = (e + I ′)R/I ′(e + I ′) has stable
rank one, then using again that e is full we find that R/I ′ will also have stable
rank one, hence D(R) ⊆ I ′ and so eD(R)e ⊆ eI ′e = I .

Lemma 2.8. Let R be a unital ring and let e be a full idempotent of R. Then,
the unital map ι: eRe → R given by ι(x) = x +1−e induces an isomorphism
ι∗: K1(eRe) → K1(R).

The lemma below is basically [17, Proposition 2.2]. We include a proof
because the argument can be stretchted to give some more information that
will be used later on. Recall that, if R is a unital ring, then K0(R) is the
Grothendieck group of the monoid V (R).

Lemma 2.9. Let R be a unital QB-ring, and let p and q be idempotents
in R such that [p] = [q] in K0(R). Then, either p ⊥ q or else pRq is a
QB-corner, and for every x in (pRq)−1

q with quasi-inverse y in (qRp)−1
q , we

have that p − xy, q − yx ∈ D(R).

Proof. Since [p] = [q], we have [1 − p] = [1 − q] in K0(R). Therefore,
for a suitable m, we have (1 − p) ⊕ m · 1 ∼ (1 − q) ⊕ m · 1 in Mm+1(R),

that is, 1m+1 −
(

p 0
0 0

)
∼ 1m+1 −

(
q 0
0 0

)
, where 1m+1 denotes the unit of

Mm+1(R).
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Now, by [8, Corollary 5.8], either

(
p 0
0 0

)
⊥

(
q 0
0 0

)
(and that implies

p ⊥ q), or else (
pRq 0

0 0

)
=

(
p 0
0 0

)
Mm+1(R)

(
q 0
0 0

)

is a QB-corner, that is, pRq is a QB-corner.

In this last situation, write 1m+1 −
(

p 0
0 0

)
= uv and 1m+1 −

(
q 0
0 0

)
=

vu for some u, v in Mm+1(R).
Now let x ∈ (pRq)−1

q with quasi-inverse y ∈ (qRp)−1
q . Then, by the proof

of [8, Theorem 5.5], u + x ∈ Mm+1(R)−1
q with quasi-inverse v + y, and

p − xy ∼ 1m+1 − (u + x)(v + y) ∈ D(Mm+1(R)) = Mm+1(D(R)),

by Corollary 2.7. Therefore p − xy ∈ D(R) and similarly q − yx ∈ D(R).

Lemma 2.10. Let R be a (unital) ring. If α in M2(R)−1
q is equivalent to a

matrix of the form

(
1 0
0 d

)
, where d ∈ R−1

q , then the corresponding defect

idempotent for α is equivalent to a defect idempotent in R.

Proof. By assumption there are matrices β and γ in E2(R) such that

βαγ =
(

1 0
0 d

)
. Let α′ be any quasi-inverse for α. Then, as in Lemma 1.7,

we have that γ −1α′β−1 is a quasi-inverse for βαγ , and 12 − αα′ is equival-
ent (in fact, conjugate) to the defect idempotent corresponding to βαγ (and
γ −1α′β−1).

Let d ′ be a quasi-inverse for d. Then

(
1 0
0 d ′

)
is also a quasi-inverse for

βαγ , with defect idempotent equivalent to 1−dd ′ (a defect idempotent in R).
By the considerations preceding Corollary 1.9, this is also equivalent to the
defect idempotent corresponding to βαγ (and γ −1αβ−1).

By using Propositions 1.1 and 1.4, the argument in the lemma below can
be almost entirely excised from the proof of [17, Theorem 2.6], and hence we
omit the details.

Lemma 2.11. Let R be a (unital) ring such that, for any idempotent p in

R, every matrix in M2(pRp)−1
q is equivalent to a matrix of the form

(
1 0
0 d

)
,

where d ∈ (pRp)−1
q . If u, v ∈ R−1

q with respective quasi-inverses x, y, then
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there exists an idempotent e in R such that(
1 − ux 0

0 1 − vy

)
∼ e.

Remark 2.12. By an argument based on induction, it can be shown that
the conclusion of the lemma can be extended to finite families of defect
idempotents. That is, if u1, . . . , un are quasi-invertible elements with respect-
ive quasi-inverses v1, . . . , vn, then there is an idempotent e in R such that
e ∼ (1 − u1v1) ⊕ · · · ⊕ (1 − unvn).

We say that a ring R is weakly cancellative provided that

p ⊕ r ∼ q ⊕ r for idempotents p, q, r in R

such that r <∼ n · p, n · q �⇒ p ∼ q.

This is, by its very definition, a weaker version of separativity. It can be proved
to be equivalent to the following condition (that was introduced by L. G. Brown
and G. K. Pedersen for C∗-algebras, and also termed weak cancellation, see
[12] and [17]): Given idempotents p and q in R such that I = RpR = RqR

and [p] = [q] in K0(I ), then p ∼ q.
For the proof of the following result, we shall denote by δ: K1(R/I) →

K0(I ) the connecting map in algebraic K-Theory, and recall this fits into a
(long) exact sequence

K1(R) → K1(R/I) → K0(I ) → K0(R) → K0(R/I)

(see, e.g. [32]).

Theorem 2.13 (cf. [17, Theorem 2.6]). Let R be a QB-ring such that, for
any idempotent e in R, every matrix in M2(eRe)−1

q is equivalent to a matrix

of the form

(
1 0
0 d

)
where d ∈ (eRe)−1

q . Then R is weakly cancellative.

Proof. Assume that p ⊕ r ∼ q ⊕ r for idempotents p, q, r in R and that
r <∼ n · p, n · q.

Put S = Mn+1(R). By a standard argument, we can reduce to the case
where we have the previous equivalence in S with p = e11 (the usual matrix
unit) and q ∈ S, both full idempotents. Since [p] = [q] in K0(S), we have, by
Lemma 2.9 and the fact that p and q are full, that pSq is a QB-corner. Pick
any x in (pSq)−1

q with quasi-inverse y in (qSp)−1
q . Then we know (also by

Lemma 2.9) that the idempotents p − xy and q − yx belong to D(S). A proof
akin to the one of Lemma 2.3 shows that the idempotent e = xy is also full in
S.
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Obviously [p − xy] = [q − yx] in K0(S), hence

[p − xy] − [q − yx] ∈ ker(K0(D(S)) → K0(S)).

By exactness we find an element s ′ in K1(S/D(S)) such that δ(s ′) = [p −
xy] − [q − yx].

By Lemma 2.6, the ring S/D(S) has stable rank one, hence s ′ admits a repre-
sentative s0+D(S)with s0 inS, which is an invertible element inS/D(S). Next,
since e is full in S, we have by condition (ii) in Corollary 2.7 that D(eSe) =
eD(S)e. It follows from this that eSe/D(eSe) = (e + D(S))S/D(S)(e +
D(S)), which is also a ring with stable rank one. Observe that e + D(S) is
a full idempotent in S/D(S), hence we have by Lemma 2.8 an isomorphism
K1(eSe/eD(S)e) ∼= K1(S/D(S)) induced by the natural map eSe/eD(S)e →
S/D(S) that adds p − e.

Therefore, there is an invertible element s + eD(S)e in eSe/eD(S)e such
that

[(s + p − e) + D(S)] = [s0 + D(S)] in K1(S/D(S)).

Since eSe is also a QB-ring, we may of course assume that s is quasi-invertible
in eSe and choose a quasi-inverse t (whose class modulo eD(S)e will be the
inverse of s). Then p − (p − e + s)(p − e + t) = e − st and p − (p − e +
t)(p − e + s) = e − ts and both idempotents belong to D(S). Note that, since
ts (and st) is full in eSe we have that ts is full in S.

Since p − e + s is a von Neumann regular element with partial inverse
p − e + t , we may invoke, e.g. [26, Proposition 1.3] (which assumes, but does
not use, regularity for all elements) and conclude that

δ(s ′) = [e − ts] − [e − st] = [p − xy] − [q − yx].

Put

f = (p − xy) ⊕ (e − st), g = (q − yx) ⊕ y(e − ts)x and h = st.

Then f ⊕ h = p, g ⊕ h ∼ q and also [f ] = [g] in K0(D(S)).
Let T = hSh. Then SD(T )S = SD(hSh)S = ShSD(S)ShS = D(S),

by Corollary 2.7. Therefore D(S) is generated, as an ideal, by the defect
idempotents in T . Moreover, by [2, Theorem 7.4] we have K0(D(S)) =
G(V (D(S))).

Then, since [f ] = [g] in K0(D(S)) we have quasi-invertible elements
u1, . . . , um in T with respective quasi-inverses v1, . . . , vm such that

f ⊕ (h − u1v1) ⊕ · · · ⊕ (h − umvm) ∼ g ⊕ (h − u1v1) ⊕ · · · ⊕ (h − umvm)
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in M∞(D(S)).
Since h ∈ eSe and e ∈ pSp, we see that in fact h = h′p = h′e11 and h′ is

an idempotent in R. Thus T = hSh ∼= h′Rh′. We then combine Lemma 2.11
with Remark 2.12 in order to find an idempotent h0 in T such that h0 ∼
(h − u1v1) ⊕ · · · ⊕ (h − umvm).

Finally, p = f ⊕h = f ⊕h0 ⊕ (h−h0) ∼ g⊕h0 ⊕ (h−h0) ∼ g⊕h ∼ q,
as desired.

Question 2.14. Can the conclusion of the theorem be improved to show
that R is separative, rather than just weakly cancellative? In other words, is
the condition of weak cancellation stable for QB-rings? (It is known that this
is the case for C∗-algebras, see [17, Theorem 3.9].)

In the positive direction we offer the following result.

Corollary 2.15. Let R be a QB-ring such that, for any idempotent e in

R, every matrix in M2(eRe)−1
q is equivalent to a matrix of the form

(
1 0
0 d

)
where d ∈ (eRe)−1

q .
Then, for any idempotent f in Mn(R), the ideal D(f Mn(R)f ) is separative.

In particular D(R) is separative.

Proof. Our hypothesis guarantees, after using Lemma 2.11, that any idem-
potent in Mn(D(R)) is equivalent to an idempotent in D(R). Thus, by The-
orem 2.13, we conclude that D(R) is separative.

Since D(Mn(R)) = Mn(D(R)) we have that D(Mn(R)) is also separative.
Thus, in order to finish the proof, we only need to show that D(f Rf ) is
separative for any idempotent f in R.

Suppose that p ⊕ r ∼ q ⊕ r for idempotents p, q and r in Mn(D(f Rf ))

and that also r <∼ n · p, n · q. Since D(f Rf ) ⊆ f D(R)f ⊆ D(R) and
using the first part of the proof, we have that p ∼ q in Mn(D(R)). But
then p = xy and q = yx, where x = diag(p, . . . , p)x diag(q, . . . , q) and
y = diag(q, . . . , q)y diag(p, . . . , p). Therefore

x ∈ Mn(D(f Rf ))Mn(D(R))Mn(D(f Rf )),

and
D(f Rf )D(R)D(f Rf ) = D(f Rf )f D(R)f D(f Rf )

⊆ D(f Rf )2 = D(f Rf ),

since D(f Rf ) is generated by idempotents. Thus x ∈ Mn(D(f Rf )) and
similarly for y.
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3. Non-stable K-Theory

The main goal of this section is to draw consequences of the results we have
achieved before on diagonalisation of matrices. Basically, what we obtain are
results of K1-surjectivity type and index theorems. These are known in the
case of rings with stable rank one (see, e.g. [25]), separative exchange rings
(see [7], [29]) and also extremally rich C∗-algebras ([17]).

We know already that these results are relevant for QB-rings as their stable
rank is usually different from one. In fact, from the examples we know of (see
[8], [10], [28]) the following question is quite pertinent:

Question 3.1. Is the stable rank of a (separative) QB-ring always one,
two or infinity?

We prove below the answer to this question is positive in case the ring is
simple. It also shows that all simple QB-rings are separative, although this
will follow from Theorem 4.10.

Our starting point is the observation that, within the class of QB-rings,
stable rank one can be easily identified in the monoid V (R). (See also [5] and
[11].)

Lemma 3.2. Let R a QB-ring. Then R has stable rank one if and only if
V (R) is a cancellative monoid.

Proof. Since it is well-known that stable rank one implies cancellation in
general, we need only to check the converse.

Assume that V (R) is cancellative. Let u ∈ R−1
q , and let x be any quasi-

inverse, so that (1 − ux) ⊥ (1 − xu). Since V (R) has cancellation and since
ux ∼ xu, it follows that 1 − ux ∼ 1 − xu. This implies that ux = xu = 1,
because 1 − ux and 1 − xu are centrally orthogonal. This shows that R−1 =
R−1

q , and the result now follows using [8, Proposition 3.9].

We need the following technical lemma.

Lemma 3.3. Let R be a unital QB-ring, and let I be a left ideal of R. Then
I is a QB-ring (as a non-unital ring).

Proof. We will use the definition of a non-unital QB-ring (see [8, Defini-
tion 4.4]). Assume that we have an equation

xa − x − a + b = 0,

for some elements x, a and b in I . In R, this reads as

(1 − x)(1 − a) + b = 1.
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Thus a = a(1 − x)(1 − a) + ab, and so

1 = 1 + 0 = 1 − a + a(1 − x)(1 − a) + ab = (1 + a(1 − x))(1 − a) + ab,

and a(1 − x) = a − ax ∈ I . Thus, changing notation we may assume that

1 = (1 − x)(1 − a) + ab,

where x, a and b ∈ I . Since R is a QB-ring by hypothesis, there exists an
element z in R such that 1−a+(za)b ∈ R−1

q , and za ∈ I . Set t = a−zab, and
choose any quasi-inverse for 1 − t , written on the form 1 − s for some s in R.
The equation 1−t = (1−t)(1−s)(1−t) shows that s = −t+t2+ts+st−tst ,
and therefore s − ts ∈ I .

The defect idempotents for the pair 1 − t and 1 − s are t + s − ts and
t + s − st . By [8, Theorem 2.3], any element of the form

1 − s + u(t + s − ts) + (t + s − st)v,

for u and v in R, is a quasi-inverse for 1 − t . Taking u = v = 1, we get that
1 + 2t − st + s − ts is a quasi-inverse for 1 − t , and 2t − st + s − ts ∈ I .
Therefore, without loss of generality, we may assume that s ∈ I . Thus t+s−ts

and t + s − st are centrally orthogonal in R, and so they are also in Ĩ . This
implies that I is a QB-ring.

The following non-unital version of [8, Proposition 3.9] will be also needed.
Its proof is very similar to the unital version, and therefore we omit it here.

Proposition 3.4. Let R be any QB-ring (unital or not). Denote by R̃ the
standard unitization of R. Then R has stable rank one if and only if (R̃)−1 ∩
(1 − R) = (R̃)−1

q ∩ (1 − R)

Recall that a (unital) simple ring R is purely infinite if R is not a division
ring and for any non-zero element x in R, there exist elements a, and b in R

such that axb = 1 (see [4], [8]). It follows from, e.g. [4, Proposition 2.1], that
every purely infinite simple ring is separative.

Theorem 3.5. Let R be a simple unital ring. Then R is a QB-ring if and
only if either sr(R) = 1 or else R is a purely infinite simple ring.

Proof. Assume that R is a simple QB-ring. Suppose first that there is a
finite idempotent e in R. Then (eRe)−1

q = (eRe)−1, and by [8, Proposition 3.9]
eRe has stable rank one. Since R is simple, eRe and R are Morita equivalent
and therefore R has also stable rank one.

So, we may assume that all non-zero idempotents in R are infinite. In order
to prove that R is purely infinite simple, we have to show that every principal
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(non-zero) left ideal of R contains a non-zero idempotent. Pick a non-zero
element x in R and consider the left ideal Rx.

Since sr(R) > 1, we first show that sr(Rx) > 1. There exist a natural
number n and elements s1, . . . , sn, t1, . . . , tn in R such that

∑n
i=1 sixti = 1.

Let S = Mn(R) and y = x1n, where 1n is the unit element in S. If s = ∑
sie1i

and t = ∑
j tj ej1, where eij stands for the usual set of matrix units in S,

we then have the equation syt = e11. Now e := tsy is an idempotent in
Sy = Mn(Rx), which is infinite in S, because it is equivalent to 1. But now it
is trivial to verify that e is also infinite when viewed as an idempotent in Sy.
Therefore Sy = Mn(Rx) cannot have stable rank one and thus Rx does not
have stable rank one either.

By Lemma 3.3, Rx is a QB-ring. Then Proposition 3.4 and the argument in
the previous paragraph imply that there exists a quasi-adversible element a in
Rx which is not adversible. This means that there exists b in Rx such that the
idempotents a + b − ab and a + b − ba are centrally orthogonal in R̃x and at
least one of them is non-zero. In any case this produces a non-zero idempotent
in Rx, as desired.

The converse implication is provided by [8, Definition 3.4] and [8, Propos-
ition 3.10].

Let I be a two-sided ideal of a unital ring R. The relative K1 group is then
defined as K1(R, I ) = GL(R, I )/E(R, I). (Of course, K1(R) = K1(R, R).)

Theorem 3.6. Let R be a separative ring and let I be a QB-ideal of R.
Then the natural map GL1(R, I ) → K1(R, I ) is surjective.

Proof. By induction, it is enough to show that given an element α ∈
GL2(R, I ), there is an invertible element d ∈ GL1(R, I ) such that [α] = [d].
Applying Lemma 2.4 to α (and taking J = 0), we find elements β, γ ∈
E2(R, I ) such that βαγ =

(
1 0
0 d

)
, and necessarily d ∈ GL1(R, I ). It

follows that [α] = [βαγ ] = [d] in K1(R, I ), as desired.

Corollary 3.7. If R is a separative QB-ring, then the natural map
GL1(R) → K1(R) is surjective.

In view of this result, it is natural to ask for the kernel of this map, which
would provide a more complete understanding of K1(R). Results in this dir-
ection exist for rings with stable rank one (see, e.g. [25], and [33]).

Theorem 3.8. Let R be a separative QB-ring. Then, for any ideal I of R,
the natural map GL1(R/I) → K1(R/I) is surjective.

Proof. Let x ∈ K1(R/I). Then x = [α] for some α in GLn(R/I). By using
induction, we may assume that n = 2. Since R is a QB-ring, there exists a
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quasi-invertible matrix β in M2(R) such that πI (β) = α. Now, Theorem 2.5

provides us with matrices γ and δ in E2(R) such that γβδ =
(

1 0
0 d

)
, and d ∈

R−1
q . Notice that πI (γ )απI (δ) =

(
1 0
0 πI (d)

)
, so that πI (d) ∈ GL1(R/I).

Since also x = [πI (γ )απI (δ)], the result follows.

Note that the previous theorem would follow immediately from Corol-
lary 3.7 in case we knew that R/I was separative for any separative QB-ring
R. This is true for C∗-algebras, as proved in [17, Proposition 3.4], but the
corresponding result in the algebraic context remains open.

We now turn to establish a lifting theorem for QB-rings that is closely
related to [29, Theorem 2.4] and [17, Theorem 5.4]. Let R be any ring and let
I be a two-sided ideal of R. Define the set of Fredholm elements of R relative
to I as F(R, I) = π−1(GL1(R/I)).

We of course have GL1(R) + I ⊆ F(I, R), with equality if sr(R) = 1. We
define the index map as the semigroup homomorphism

index: F(I, R) → K0(I ),

by index(x) = δ([π(x)]), where δ: K1(R/I) → K0(I ) is the connecting map
in K-Theory.

Theorem 3.9. Let R be a separative ring, and let I be a QB-ideal. Let x

be a Fredholm element relative to I . Then there exists y in GL1(R) such that
x − y ∈ I if and only if index(x) = 0.

Proof. It is enough to prove the “if” part. Assume that index(x) = 0. Then,
by exactness of the sequence

K1(R) → K1(R/I) → K0(I ),

we find y1 in GLk(R) (for some k) such that [π(y1)] = [π(x)]. Therefore,
if m = 2n is large enough, there exists a z in Em(R) such that π(z)π(y1) =
π(x) ⊕ 1m−1. Set w1 = zy1, and apply Lemma 2.4 (replacing I and R by
Mm/2(I ) and Mm/2(R), and taking J = 0). Thus we get an element w2 in
GLm/2(R) and α, β in Em(R) such that π(α) = π(β) = 1m and αw1β = w2 ⊕
1m/2, and π(w2) = π(x) ⊕ 1m/2−1. Therefore, in K1(R), [w1] = [αw1β] =
[w2]. A recursive procedure shows that we get w1, . . . , wn with wn ∈ GL1(R)

satisfying π(wn) = π(x) and [w1] = [w2] = . . . = [wn].
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4. Central QB-rings

The main purpose of this section is to study a class of QB-rings, which we term
central, whose quasi-invertible elements are close to being the union of left
or right invertible elements. Our main result states that such rings are always
separative (Theorem 4.10), and also any (semi-prime) QB-ring is ‘close’, in
a certain sense, to a central QB-ring (see Propositions 4.1 and 4.2).

Throughout the section, we shall denote by IdZ(R) the set of all central
idempotents in a ring R. We say that a unital ring R is a central QB-ring
provided that R is a QB-ring and
(3)

R−1
q = {u + v ∈ R | u ∈ (eR)−1

r , v ∈ ((1 − e)R)−1
l for some e in IdZ(R)}.

This is connected with the notion of related comparability introduced earlier
by Chen. Following [18], we say that a unital ring R satisfies related comparab-
ility if whenever we have two idempotents p and q in R such that 1−p ∼ 1−q,
then there is a central idempotent e in R such that epR is isomorphic to a dir-
ect summand in eqR and (1 − e)qR is isomorphic to a direct summand in
(1 − e)pR. In general, a central QB-ring satisfies related comparability by [8,
Corollary 5.11] and [18, Theorem 2] (see also [8, Proposition 2.9]), but Z is
an example where the converse does not hold. However, for exchange rings,
both notions coalesce. To make the connection explicit, observe that if R is
an exchange ring satisfying related comparability, then R is a QB-ring, by
the arguments in [8, 8.8]. Since quasi-invertible elements are von Neumann
regular, we may apply [18, Theorem 2] to conclude that R−1

q has the form in
(3).

Central QB-rings enjoy specially good structural properties, due to the
particular form of their quasi-invertible elements. Before establishing them,
we note that this class of rings appears quite frequently. Indeed, to any QB-ring
we can associate a central QB-ring in a fairly “standard” way, as follows.

Let us recall first the definition of the symmetric ring of quotients of a
semi-prime ring R. An essentially defined double centralizer consists of a
triple (f, g, I ) where I is an essential ideal of R and f, g: I → R satisfy that
f is a left R-module homomorphism, g is a right R-module homomorphism,
and f (x)y = xg(y) for all x, y in I . Two sets of data (f, g, I ) and (f ′, g′, J )

are said to be equivalent if f and f ′ agree on I ∩ J . The set of all equivalence
classes [(f, g, I )] is denoted by Qs(R), which turns out to be (under natural
operations) a ring with identity [(id, id, R)]. This ring was first introduced by
Kharchenko and studied by other authors (see, e.g. [27], [3] and the references
therein). The extended centroid of a semi-prime ring R is by definition the
center of Qs(R), which is normally denoted by C(R) or C if the context is
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clear. The central closure of R is the subring RC of Qs(R). We say that R is
centrally closed provided R = RC.

Recall from [8, 6.7] that a subring S of a ring R is primely embedded in case
p ⊥ q in R whenever p ⊥ q in S, for idempotents p and q in S. In particular,
if S ⊆ R is a prime embedding, we have S−1

q ⊆ R−1
q .

Proposition 4.1. Let R be a unital semi-prime ring, and let S be the
subring of the central closure of R generated by R and the central idempotents
of Qs(R). If R is a QB-ring, then S is a central QB-ring.

Proof. We first check that S is a QB-ring. Observe that S is the dir-
ect limit of the collection of subrings {〈R, e1, . . . , en〉}, where e1, . . . , en

are central idempotents of Qs(R). Also, the inclusions 〈R, e1, . . . , en〉 ⊆
〈R, e1, . . . , en+1〉 are prime embeddings. Hence, it suffices to show (by [8,
Proposition 6.8]) that if e is any idempotent in S, then T := 〈R, e〉 (that is, the
subring of S generated by R and e) is a semi-prime QB-ring. Note that

T ∼= eR × (1 − e)R ∼= R/((1 − e)R ∩ R) × R/(eR ∩ R).

Since R is a QB-ring and a factor of a QB-ring is also a QB-ring (see [8,
Corollary 3.8]), we get that T is a QB-ring. It is obvious that T is a semi-prime
ring.

Now, since Qs(R) is centrally closed (see, e.g. [3, Proposition 2.1.5]), S

satisfies the following property: given orthogonal ideals I and J of S, there is
a central idempotent e in S such that eI = I and (1 − e)J = J . It follows that
S is a central QB-ring.

Let A be a unital C∗-algebra, and let Mloc(A) be the local multiplier algebra
of A, that is, the inductive limit of the multiplier algebras M(I), where I ranges
over the closed essential ideals of A (see [3] for details). Let cA be the bounded
central closure of A, which is the C∗-subalgebra of Mloc(A) generated by A

and the centre Z(Mloc(A)) of Mloc(A). Since Z(Mloc(A)) is an AW ∗-algebra
(see [3, Proposition 3.1.5]) it is generated by its projections (in fact, it satisfies
the much stronger condition of real rank zero, see [13]). Therefore cA is the C∗-
subalgebra of Mloc(A) generated by A and the central projections in Mloc(A).
The next proposition, together with Theorem 4.10 below, provide extensions
of the results established by Brown and Pedersen concerning the so-called
isometrically rich C∗-algebras (see [16]).

Proposition 4.2. Let A be an extremally rich C∗-algebra. Then cA is a
central extremally rich C∗-algebra.

Proof. First note that every projection in Z(Mloc(A)) is contained in
Qs(A), by [3, Lemma 3.1.2]. Given a projection e in Z(Mloc(A)) and a C∗-
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algebra B such that A ⊂ B ⊂ alglim
−→

M(I) we have that the algebra 〈B, e〉
generated by B and e inside alglim

−→
M(I) is in fact a C∗-algebra, because

〈B, e〉 ∼= B/((1 − e)B ∩ B) × B/(eB ∩ B).

By [14, Theorem 3.5], 〈B, e〉 is extremally rich provided that B is. It fol-
lows that for every finite number of central idempotents e1, . . . , en in Mloc(A),
the C∗-subalgebra of Mloc(A) generated by A and {e1, . . . , en} is extremally
rich. Now, from the comments above, cA is the direct limit of the collec-
tion of C∗-subalgebras {〈A, e1, . . . , en〉}, where {e1, . . . , en} ranges over the
central projections of Mloc(A). Since this is a family of extremally rich C∗-
algebras, we get that cA is also extremally rich provided that we can prove that
〈A, e1, . . . , en〉 ⊂ cA is extreme point-preserving (see [14, Proposition 5.2]).
For this just note that if a, b ∈ Mloc(A), the relation aAb = 0 forces aMloc(A)b

= 0 ([3, Proposition 2.3.3]).

If p and q are idempotents in R, then the skew corner pRq is a central
QB-corner if pRq is a QB-corner and (pRq)−1

q consists of the elements of
the form eu + (1 − e)v, where e ∈ IdZ(R), u, v ∈ pRq, and there exist
elements u′, v′ in qRp such that euu′ = ep and (1 − e)v′v = (1 − e)q.

Lemma 4.3. Let R be a central QB-ring. Then, given two idempotents p

and q in R such that 1 − p ∼ 1 − q, we either have p ⊥ q or else pRq is a
central QB-corner.

Proof. By [8, Corollary 5.8], we either have p ⊥ q or else pRq is a QB-
corner. In the second case, write 1 − p = xy and 1 − q = yx, and let w be an
element in (pRq)−1

q . By [8, Theorem 5.5], x + w ∈ R−1
q . By hypothesis there

exist a central idempotent e in R and elements a, b, a′ and b′ in R such that

x + w = ea + (1 − e)b,

with eaa′ = e and (1 − e)b′b = 1 − e.
Now, after left multiplication by p we get w = epa + (1 − e)pb, whence

ea + (1 − e)b = x + w = x + epa + (1 − e)pb

and thus (1 − e)b = (1 − e)x + (1 − e)pb, so that

(1 − e)bq = (1 − e)pbq.

Similarly (and after right multiplication by q), we get

epa = epaq .
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Therefore, since eaa′ = e and (1 − e)b′b = 1 − e, we easily check that
e(paq)(qa′p) = ep, and that (1 − e)(qb′p)(pbq) = (1 − e)q. Finally,

w = p(x + w)q = e(paq) + (1 − e)(pbq),

as desired.

Corollary 4.4. If R is a central QB-ring and p is an idempotent in R,
then pRp is also a central QB-ring.

Lemma 4.5. Let R be a central QB-ring, and let u ∈ R−1
l , v ∈ R−1

r .
Assume that w ∈ ((1 − ux)R(1 − yv))−1

q , where xu = vy = 1. Then there
exist a central idempotent g in R and matrices β, γ in M2(R) such that(

u w

0 v

)
= diag(g, g)β + diag(1 − g, 1 − g)γ,

and diag(g, g)β ∈ M2(gR)−1
r , diag(1 − g, 1 − g)γ ∈ M2((1 − g)R)−1

l .

Proof. Observe that 1− (1−ux) = ux ∼ xu = 1 and that 1− (1−yv) =
yv ∼ vy = 1. Therefore, and since (1 − ux)R(1 − yv) �= 0, we may apply
Lemma 4.3 to conclude that (1 − ux)R(1 − yv) is a central QB-corner.

Hence, given w in ((1−ux)R(1−yv))−1
q , there exist a central idempotent g

inR and elementsw1, w2 ∈ (1−ux)R(1−yv), andw′
1, w′

2 ∈ (1−yv)R(1−ux)

such that w = gw1 + (1 − g)w2, and moreover gw1w
′
1 = g(1 − ux) and

(1 − g)w′
2w2 = (1 − g)(1 − yv). Let

β =
(

gu gw1

0 gv

)
, γ =

(
(1 − g)u (1 − g)w2

0 (1 − g)v

)
.

Since g = gux + gw1w
′
1, w1y = 0, vw′

1 = 0 and vy = 1 we see that(
gu gw1

0 gv

) (
gx 0
gw′

1 gy

)
= diag(g, g).

Analogously,(
(1 − g)x 0
(1 − g)w′

2 (1 − g)y

) (
(1 − g)u (1 − g)w2

0 (1 − g)v

)
= diag(1 − g, 1 − g).

Theorem 4.6. Let R be a central QB-ring. Then Mn(R) is a central QB-
ring for all n.

Proof. By Corollary 4.4, it suffices to show that M2(R) is a central QB-
ring. Using [8, Theorem 6.4], we get that M2(R) is a QB-ring.
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Let α ∈ M2(R)−1
q . Since M2(R) is a QB-ring, and using Theorem 1.8, we

may perform elementary row and column operations on α so that with no loss
of generality we may assume that:

α =
(

u w12

w21 v

)
,

where u, v ∈ R−1
q , and if x, y are (any) quasi-inverses for u and v respectively,

then

w12 ∈ ((1 − ux)R(1 − yv))−1
q ∪ {0}, w21 ∈ ((1 − vy)R(1 − xu))−1

q ∪ {0}.
Since R is a central QB-ring, there exist central idempotents e and f in R,
and elements a, b, c, d, a′, b′, c′, d ′ in R such that

u = ea + (1 − e)b, eaa′ = e, (1 − e)b′b = 1 − e,

v = f c + (1 − f )d, f cc′ = f, (1 − f )d ′d = 1 − f.

An easy computation shows that if we define x := ea′ + (1 − e)b′ and y :=
f c′ + (1 − f )d ′, then x and y are quasi-inverses for u and v respectively.
Indeed,

1 − ux = (1 − e)(1 − bb′), 1 − xu = e(1 − a′a),

1 − vy = (1 − f )(1 − dd ′), 1 − yv = f (1 − c′c).

Now let

α′
r =

(
ef a 0

0 ef c

)
, α12 =

(
(1 − e)f b w12

0 (1 − e)f c

)
,

α21 =
(

e(1 − f )a 0
w21 e(1 − f )d

)
,

α′
l =

(
(1 − e)(1 − f )b 0

0 (1 − e)(1 − f )d

)
,

and notice that α = α′
r + α12 + α21 + α′

l . (In fact, this is the decomposition
of α along the central diagonal idempotents ef , e(1 − f ), (1 − e)f and
(1−e)(1−f ).) Observe that (1−e)f R is a central QB-ring, by Corollary 4.4
and that the element α12, viewed in M2((1 − e)f R), satisfies the hypotheses
of Lemma 4.5. Therefore there exist a central idempotent g in (1 − e)f R

and matrices β, γ ∈ M2((1 − e)f R) such that α12 = gβ + (1 − g)γ , and
gβ ∈ M2(g(1 − e)f R)−1

r , (1 − g)γ ∈ M2((1 − g)(1 − e)f R)−1
l .
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Analogously, applying the transposed version of Lemma 4.5 to α21, we find
a central idempotent h in e(1 − f )R and matrices β ′, γ ′ ∈ M2(e(1 − f )R)

such that α21 = hβ ′ + (1 − h)γ ′, and hβ ′ ∈ M2(he(1 − f )R)−1
r , (1 − h)γ ′ ∈

M2((1 − h)e(1 − f )R)−1
l .

Now, let
e1 = ef + e(1 − f )h + (1 − e)fg

and

e2 = e(1 − f )(1 − h) + (1 − e)f (1 − g) + (1 − e)(1 − f ).

Notice that e1 and e2 are central orthogonal idempotents of R whose sum
equals 1. Set αr = α′

r + gβ + hβ ′ and αl = (1 − g)γ + (1 − h)γ ′ + α′
l .

Then e1αr = αr , e2αl = αl and α = αr + αl . Moreover, αr ∈ M2(e1R)−1
r and

αl ∈ M2(e2R)−1
l , as wanted.

Let R be a unital ring. We say that an R-module C is a defect R-module if
there is a defect idempotent e in R such that C ∼= eR.

Lemma 4.7. Let R be a central QB-ring, and let e be an idempotent in R.
Then e is equivalent to a defect idempotent if and only if 1 ⊕ e ∼ 1.

Proof. Let u be a quasi-invertible element. Then there is a central idem-
potent p in R such that u = pu + (1 − p)u, and pu is right invertible in
pR, while (1 − p)u is left invertible in (1 − p)R. Denote by v and w the
right and left inverses of pu and (1 − p)u, respectively. As in the proof of
Theorem 4.6, the element x = pv + (1 − p)w is a quasi-inverse for u, and
1 − ux = (1 − p)(1 − uw). Writing e = 1 − ux, we have that

1 = e ⊕ (1 − e) = e ⊕ ux = e ⊕ p ⊕ (1 − p)uw ∼ e ⊕ p ⊕ (1 − p) = e ⊕ 1.

Conversely, suppose that 1 ⊕ e ∼ 1. Then 1 = p + q, where p and q are
orthogonal idempotents in R such that p ∼ e and q ∼ 1. Write q = ux and
xu = 1. Then u ∈ R−1

l and 1 − ux = p ∼ e.

Observe that the previous Lemma states that if R is a central QB-ring, then
a right R-module C is a defect module if and only if R ⊕ C ∼= R.

Lemma 4.8. Let R be a central QB-ring. Then every defect idempotent p

in Mn(R) is equivalent to an idempotent of the form diag(p1, 0, . . . , 0), where
p1 is a defect idempotent in R. In particular p(Rn) is a defect R-module.

Proof. By the usual reduction process it suffices to deal with the case n =
2. Let α be a quasi-invertible element in M2(R). By using Lemma 4.5 and the
proof of Theorem 4.6, we can reduce ourselves to the consideration of six cases.
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By symmetry it is enough to consider only the cases where α = diag(a, b)

with a and b left invertible elements in R or

α =
(

a w

0 b

)
,

where a ∈ R−1
l and b ∈ R−1

r and w ∈ ((1 − aa′)R(1 − b′b))−1
q . (We denote

by a′, b′, w′ the quasi-inverses of a, b, w, respectively.) The former case
is easy, because the defect idempotent is diag(1 − aa′, 1 − bb′) and since
aa′ ∼ a′a = 1, we have aa′ = q1 + q2 where q2 ∼ 1 − bb′ and q1 ∼ 1. So
the defect idempotent of α is equivalent to diag(q2 + (1 − aa′), 0), which is
clearly a defect idempotent in R.

Now we consider the latter case. The defect idempotent of α is(
0 0
0 (1 − (b′b + w′w))

)
,

so we have to see that 1 − (b′b + w′w) is equivalent to a defect idempotent in
R. Since ww′ = 1−aa′ we have 1⊕ww′ = 1⊕1−aa′ ∼ aa′ ⊕1−aa′ ∼ 1.
Hence, we get

1 ⊕ (1 − b′b − w′w) ∼ 1 ⊕ ww′ ⊕ (1 − b′b − w′w)

∼ 1 ⊕ w′w ⊕ (1 − b′b − w′w)

∼ 1 ⊕ (1 − b′b)

∼ b′b ⊕ (1 − b′b)

∼ 1.

By Lemma 4.7, 1 − b′b − w′w is equivalent to a defect idempotent.

Proposition 4.9. Let R be a central QB-ring and let A be a progenerator
in Mod-R. If C is a defect R-module then A ⊕ C ∼= A.

Proof. By definition of defect R-module there is a quasi-invertible element
u in R with quasi-inverse x such that C ∼= pR, where p = 1 − ux. Let A be a
progenerator in Mod−R and set T = End A, which is a central QB-ring, by
Corollary 4.4 and Theorem 4.6. There exists n ≥ 1 such that An = U ⊕ V ,
where U ∼= RR . Let ρ1: An → U and ρ2: An → V denote the projections
and τ1: U → An and τ2: V → An denote the corresponding injections. Fix an
isomorphism ι: U → RR and put π = ιρ1 and σ = τ1ι

−1. Note that πσ = 1R .
Now, if z ∈ R denote by ẑ the element in Mn(T ) ∼= End(An) corresponding to
the endomorphism (ι−1◦Lz◦ι)⊕1V of An, where Lz denotes left multiplication
by z on RR . The map :̂ R → Mn(T ) defined by z �→ ẑ is a unital injective ring
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homomorphism, and the element û is quasi-invertible in Mn(T ) with quasi-
inverse x̂. Note that

1 − ûx̂ = τ1(ι
−1L1−uxι)ρ1,

so (1−ûx̂)(An) ∼= pR ∼= C. By Lemma 4.8 there exists a defect idempotent p1

in T such that 1 − ûx̂ is equivalent to diag(p1, 0, . . . , 0) in Mn(T ). Therefore
C ∼= (1−ûx̂)(An) ∼= p1(A). Since T ⊕p1T ∼= T we get A⊕C ∼= A⊕p1(A) ∼=
A, as desired.

If R is a ring and M is a right R-module, we denote by add(MR) the
category of R-modules which are direct summands of Mn for some n ≥ 1. If
T = End(MR), then it is well-known that there is a categorical equivalence
between the category FP(T ) of finitely generated projective right T -modules
and the category add(MR). This equivalence is provided by the functors G =
− ⊗T M , from FP(T ) to add(M) and F = Hom(M, −), from add(M) to
FP(T ) (see e.g. [20, Theorem 4.7], and also [1, Lemma 29.4]).

Theorem 4.10. Let R be a central QB-ring. Then R is separative.

Proof. First note that being a central QB-ring is a Morita invariant prop-
erty. Assume that X ⊕ Z ∼= Y ⊕ Z for some finitely generated projective
R-modules X, Y, Z, such that Z is isomorphic to a direct summand of Xn

and Ym respectively, for some positive integers n and m. By substituting Z by
Z ⊕ X we can assume without loss of generality that X, Y and Z generate
the same finitely generated projective modules. In other words, we can and
will assume that add(X) = add(Y ) = add(Z). Consider the central QB-ring
T = End ZR . Applying the “Morita functor” F = Hom(ZR, −) to the relation
X ⊕ Z ∼= Y ⊕ Z we get

F(X) ⊕ TT
∼= F(Y ) ⊕ TT

in FP(T ), and F(X) and F(Y ) are progenerators of Mod−T . In order to
conclude that X ∼= Y , it is therefore enough to prove that F(X) ∼= F(Y ).

Henceforth we change notation and start with an internal decomposition of
R-modules M = A1 ⊕H = A2 ⊕K , where A1

∼= A2
∼= RR and H and K are

progenerators in Mod−R. We have to prove that H ∼= K . By [8, Lemma 8.5]
and its proof, there is a decomposition M = E ⊕B ⊕H = E ⊕C ⊕K , where
B ∼= (1 − p)R and C ∼= (1 − q)R for left and right defect idempotents 1 − p

and 1 − q of u ∈ R−1
q . Since B and C are defect modules and H and K are

progenerators of Mod−R we get from Proposition 4.9 that H ∼= H ⊕ B and
K ∼= K ⊕ C. Therefore we conclude that

H ∼= H ⊕ B ∼= K ⊕ C ∼= K,

as desired.



non-stable K-theory for QB-rings 299

REFERENCES

1. Anderson, F. W., Fuller, K. R., Rings and Categories of Modules, Grad. Texts in Math. 13
(Second Edition) (1992).

2. Ara, P., Facchini, A., Direct sum decompositions of modules, almost trace ideals, and pull-
backs of monoids, Forum Math. 18 (2006), 365–389.

3. Ara, P., Mathieu, M., Local Multipliers of C∗-algebras, Springer Monogr. Math., 2003.
4. Ara, P., Goodearl, K. R., Pardo, E., K0 of purely infinite simple regular rings, K-Theory 26

(2002), 69–100.
5. Ara, P., Goodearl, K. R., O’Meara, K. C., Pardo, E., Separative cancellation for projective

modules over exchange rings, Israel J. Math. 105 (1998), 105–137.
6. Ara, P., Goodearl, K. R., O’Meara, K. C., Pardo, E., Diagonalization of matrices over regular

rings, Linear Algebra Appl. 265 (1997), 147–163.
7. Ara, P., Goodearl, K. R., O’Meara, K. C., Raphael, R., K1 of separative exchange rings and

C∗-algebras with real rank zero, Pacific J. Math. 195 (2000), 261–275.
8. Ara, P., Pedersen, G. K., Perera, F., An infinite analogue of rings with stable rank one,

J. Algebra 230 (2000), 608–655.
9. Ara, P., Pedersen, G. K., Perera, F., A closure operation in rings, Internat. J. Math. 12 (2001),

791–812.
10. Ara, P., Pedersen, G. K., Perera, F., Extensions and Pullbacks in QB-rings, Algebr. Represent.

Theory 8 (2005), 75–97.
11. Blackadar, B., Handelman, D., Dimension functions and traces on C∗-algebras, J. Funct.

Anal. 45 (1982), 297–340.
12. Brown, L. G., Homotopy of projections in C∗-algebras of stable rank one, in Recent advances

in operator algebras (Orléans, 1992), Astérisque 232 (1995), 115–120.
13. Brown, L. G., Pedersen, G. K., C∗-algebras of real rank zero, J. Funct. Anal. 99 (1991),

131–149.
14. Brown, L. G., Pedersen, G. K., On the geometry of the unit ball of a C∗-algebra, J. Reine

Angew. Math. 469 (1995), 113–147.
15. Brown, L. G., Pedersen, G. K., Extremal K-Theory and index for C∗-algebras, K-Theory 20

(2000), 201–241.
16. Brown, L. G., Pedersen, G. K., Ideal structure and C∗-algebras of low rank, preprint 2006.
17. Brown, L. G., Pedersen, G. K., Non-stable K-Theory and extremally rich C∗-algebras, pre-

liminary version.
18. Chen, H., Exchange rings, related comparability and power-substitution, Comm. Algebra 26

(10) (1998), 3383–3401.
19. Clifford, A. H., Preston, G. B., The Algebraic Theory of Semigroups, Vol. 1, Math. Surveys 7,

Amer. Math. Soc., Providence, 1956.
20. Facchini, A., Module Theory: Endomorphism Rings and Direct Sum Decompositions in Some

Classes of Modules, Progr. Math. 167 (1998).
21. Hewitt, E., Zuckerman, H. S., The �1-algebra of a commutative semigroup, Trans. Amer.

Math. Soc. 83 (1956), 70–97.
22. Lam, T. Y., A First Course in Noncommutative Rings, Grad. Texts in Math. 131 (2001).
23. Larsen, N. S., Osaka, H., Extremal richness of multiplier algebras of corona algebras of

simple C∗-algebras, J. Operator Theory 38 (1997), 131–149.
24. Magurn, B. A., An Algebraic Introduction to K-Theory, Encyclopedia Math. Appl. 87 (2002).
25. Menal, P., Moncasi, J., K1 of von Neumann regular rings, J. Pure Appl. Algebra 33 (1984),

295–312.
26. Menal, P., Moncasi, J., Lifting units in self-injective rings and an index theory for Rickart

C∗-algebras, Pacific J. Math. 126 (1987), 295–329.
27. Passman, D. S., Computing the symmetric ring of quotients, J. Algebra 105 (1987), 207–235.



300 pere ara and francesc perera

28. Pedersen, G. K., Perera, F., Inverse limits of rings and multiplier rings, Math. Proc. Cambridge
Philos. Soc. 139 (2005), 207–228.

29. Perera, F., Lifting units modulo exchange ideals and C∗-algebras with real rank zero, J. Reine
Angew. Math. 522 (2000), 51–62.

30. Perera, F., Extremal richness of multiplier and corona algebras of simple C∗-algebras with
real rank zero, J. Operator Theory 44 (2000), 413–431.

31. Rieffel, M. A., Dimensions and stable rank in the K-Theory of C∗-algebras, Proc. London
Math. Soc. 46 (1983), 301–333.

32. Rosenberg, J., Algebraic K-Theory and its Applications, Grad. Texts in Math. 147 (1994).
33. Vaserstein, L. N., On the Whitehead determinant for semi-local rings, J. Algebra 283 (2005),

690–699.

DEPARTAMENT DE MATEMÀTIQUES
UNIVERSITAT AUTÒNOMA DE BARCELONA
08193 BELLATERRA (BARCELONA)
SPAIN
E-mail: para@mat.uab.cat, perera@mat.uab.cat


