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EXTENSIONS OF WEAKLY SUPPLEMENTED
MODULES

RAFAIL ALIZADE and ENGIN BUYUKASIK

Abstract

It is shown that weakly supplemented modules need not be closed under extension (i.e. if U and
M /U are weakly supplemented then M need not be weakly supplemented). We prove that, if
U has a weak supplement in M then M is weakly supplemented. For a commutative ring R,
we prove that R is semilocal if and only if every direct product of simple R-modules is weakly
supplemented.

1. Introduction

Throughout, R is a commutative ring with identity and M is a unital left R-
module. By N € M, we mean that N is a submodule of M. A submodule
L C M is said to be essential in M, denoted as L < M, if LN N # 0O for every
nonzero submodule N € M. A submodule S of M is called small (in M),
denoted as S <« M, if M # S 4 L for every proper submodule L of M. By
Rad M we denote the sum of all small submodules of M or, equivalently the
intersection of all maximal submodules of M. A ring R is said to be semilocal
if R/Rad R is semisimple. By ([7] Proposition 20.2) R is semilocal if and
only if R has only finitely many maximal ideals. A module M is supplemented
(see [12]), if every submodule N of M has a supplement, i.e. a submodule K
minimal with respectto N+ K = M. K is a supplement of N in M if and only
ifN+K=Mand NNK <€ K (see[12]). N+ K=Mand NNK <K M,
then K is called a weak supplement of N (see, [14] and [8]). M is a weakly
supplemented module if every submodule of M has a weak supplement. By €2
we denote the set of all maximal ideals of R. Let R be a domain and M be an
R-module. The submodule T(M) = {m € M | rm = 0 for some 0 % r € R}
is called the forsion submodule of M, and if M = T (M) then M is called a
torsion module.

Let R be a Dedekind domain and p € €2. The submodule 7,(M) = {m €
M | p"m = 0 forsome n > 0} is called the p-primary part of M, and
T(M) = @DGQ T,(M) (see Proposition 10.6.9 in [3]).
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A class ./ of modules is said to be closed under extension it U, M/ U € M
implies M € .. In this case we say that M is an extension of U by M/U.

Let R be a noetherian local ring. Rudlof proved that an R-module M is
weakly supplemented if and only if it is an extension of a supplemented module
by a supplemented module (see Theorem 3.1 in [10]). He also proved that over a
noetherian ring every extension of a supplemented module by a supplemented
module is weakly supplemented (see Proposition 3.6 in [10]). In general a
weakly supplemented modules need not be an extension of a supplemented
module by a supplemented module. For example the Z-module Q is weakly
supplemented and Q does not contain any supplemented submodule (see [13],
Theorem 3.1).

In this paper we show that the class of weakly supplemented modules need
not be closed under extensions, thatis if U and M/ U are weakly supplemented
for some submodule U of M then M need not be weakly supplemented. But
if U has a weak supplement in M we show that M is weakly supplemented.
We prove that a commutative ring R is semilocal if and only if every direct
product of simple R-modules is weakly supplemented. Let R be a Dedekind
domain. We obtain that an R-module M is weakly supplemented if and and
only if T(M) and M/ T (M) are weakly supplemented and 7 (M) has a weak
supplement in M. If M is a torsion R-module with Rad M <« M then every
submodule of M is weakly supplemented.

2. Extensions of weakly supplemented modules

A submodule N of a module M is called closed in M if N < K for some
K € M implies K = N. A submodule N of M is called coclosed in M if
N/K < M/K for some K € M implies K = N.

THEOREM 2.1. Let0 — L — M — N — 0 be a short exact sequence. If
L and N are weakly supplemented and L has a weak supplement in M then
M is weakly supplemented.

If L is coclosed in M then the converse holds, that is if M is weakly sup-
plemented then L and N are weakly supplemented.

ProoF. Without restriction of generality we will assume that L € M. Let
S be a weak supplementof Lin Mie.L+S=Mand LNS <« M. Then we

have,
M/(LNS)=L/(LNS)dS/(LNS)

L/L N S is weakly supplemented as a factor module of L. On the other hand,
S/(LNS)= M/L = N is weakly supplemented. Then M /(L N S) is weakly
supplemented as a sum of weakly supplemented modules (see [8] Proposi-
tion 2.5). Therefore M is weakly supplemented by ([8], Proposition 2.2 (4)).
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Suppose that L is coclosed. Then L NS <« L by ([5], Lemma 1.1) i.e.
L is a supplement of S in M. Therefore L is weakly supplemented by ([8],
Proposition 2.2 (5)).

PROPOSITION 2.2. Let R be a semilocal ring (not necessarily commutative)
and M be an R-module. Suppose U € M such that M/ U is finitely generated.
If U is weakly supplemented then M is weakly supplemented.

PrOOF. Suppose M /U is generated by
m~+U, my+U,...,m,+U.

For the submodule K = Rm; + Rmy + ---+ Rm, wehave U + K = M.
Then M is weakly supplemented by ([8], Proposition 2.5).

The following well known lemma is given for completeness.

LeEmMMA 2.3. Let M be a module and U be a finitely generated submodule
of M contained in Rad M. Then U is small in M.

A module M is said to be locally noetherian if every finitely generated
submodule of M is noetherian.

PrROPOSITION 2.4. Let M be a locally noetherian module and X C Rad M.
Suppose M/ X is finitely generated. If X and M/ X are weakly supplemented
then M is weakly supplemented.

PrOOF. Since M/ X finitely generated, X + L = M for some finitely gen-
erated submodule L of M. Then X N L € X C Rad M is finitely generated,
because L is finitely generated and M is locally noetherian. So X N L << M.
Thus L is a weak supplement of X in M. Therefore M is weakly supplemented
by Theorem 2.1.

We shall give an example in order to prove that the class of weakly supple-
mented modules need be closed under extensions. The following lemmas will
be useful to present this example.

LeEmMaA 2.5 ([1], Lemma 4.4). Let R be a Dedekind domain. For an R-
module M the following are equivalent:
(1) M is injective,
(2) M is divisible,
(3) M = PM for every maximal ideal P of R,

(4) M does not contain any maximal submodule.
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Note that if M is divisible module over a Dedekind domain then Rad M =
M . Hence if N is a module with Rad N = 0 then N does not contain divisible
submodule.

LEMMA 2.6. Let R be a domain and p a maximal ideal of R. Then for every
p-primary R-module M, M /Rad M is semisimple.

PrOOF. Rad M = (). aM. We will show that qM = M for every q €
Q\ {p}. Letx € M, then p"x = 0 for some n € N. Since p” +q = R, we have
1=p+gqforsome p ep’andg € q. Sowe getx = px + gx = gx € qM,
hence M = qM. Therefore Rad M = ﬂqEQ qgM = pM. Then since R/p is a
field M/Rad M = M /pM is semisimple R/p-module, and so it is semisimple
as an R-module.

COROLLARY 2.7. Let R be a Dedekind domain and M a torsion R-module,
then M/ Rad M is semisimple.

ProOF. Since R is a Dedekind domain and M a torsion R-module, we have

M =P 1,(m).

peQ

Then
M/Rad M = [@peaTy(M)]/[@peq Rad T, (M)]

= @pealT(M)/Rad T, (M)
is semisimple by Lemma 2.6, and by Theorem 9.6 in [2].

LEMMA 2.8. Let R be a Dedekind domain and K be the field of quotients
of R. Then g K is weakly supplemented.

ProoF. Since R is a Dedekind domain and K /R is a torsion R-module, we
have K/R = @ .o Tr(K/R) so K/R is supplemented by Theorem 2.4 and
Theorem 3.1 in [13]. Since R is finitely generated and Rad K = K we have
R « K. Therefore K is weakly supplemented by Proposition 2.2 (4) in [8].

LEMMA 2.9. Let R be a Dedekind domain and {p;}ic; be an infinite collec-
tion of distinct maximal ideals of R. Let M = [];., (R/b;) be the direct product
of the simple R-modules R/p; and T = T (M) be the torsion submodule of
M. Then the following hold,

(1) M/T is divisible, therefore M/ T = KY) for some index set J,
(2) Rad M = 0.

Proor. (1) Let p be a maximal ideal of R. Then p(M/T) = (¢0M +T)/T.

Now if p is not one of the ideals {p;};c; then pM +T7 = M andso p(M/T) =
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M/T. Sup_pose b € {bi}ier, say p = p; for some j € I, then pM = M())
where M (j) consists of those elements of M whose j th coordinate is zero.
Let M(j) be the submodule of M whose all coordinates except j th are zero.
Clearly M(j) € T.Then M = M)+ M(j) SpM +T,sopM +T =M
and hence p(M/T) = M/ T. Therefore by Lemma 2.5 M/ T is divisible, and
since it is torsion-free we have M/ T = K/,
(2)M/M(j) = R/p; is asimple module, so M () is_a maximal submodule

of M forevery j € I. Then we getRad M < (;.; M(j) = 0.

THEOREM 2.10. For a commutative ring R, the following are equivalent.
(1) R is semilocal,
(2) Every direct product of simple R-modules is semisimple,

(3) Every direct product of simple R-modules is weakly supplemented.

Proor. (1) = (2) Let py, by, ..., b, be the maximal ideals of R. Then
Rad R =p;NpyN---Np, = Pp1.p2...Pp,. Let M be a direct product of simple
R-modules. Since every simple R-module is isomorphic to one of the simple
modules R/p;, j = 1,...,n, we have p1.p2...p,M = 0. So that M is an
R/Rad R-module. By the hypothesis R/ Rad R is semisimple, and so M is a
semisimple R/ Rad R-module. Therefore M is a semisimple R-module.

(2) = (3) Obvious.

(3) = (1) Let M = [],q(R/p). From the proof of Lemma 2.9(2) we
have Rad(M) = 0. Since M is weakly supplemented, M is semisimple by
Corollary 2.3 in [8]. So that M = ]_[DEQ(R/p) = @neﬁ @,L’(R/p) for some
index sets /. In this case (1 +p)yeq € M can have only finitely many nonzero
components in the last decomposition. Therefore €2 is finite, i.e. R has only
finitely many maximal ideals. Hence R is semilocal.

EXAMPLE 2.11. Let R and M be as in Lemma 2.9 and T = @®;¢;(R/p;)
be the torsion submodule of M. Note that T is semisimple, so it is weakly
supplemented. Let N be a submodule of M such that N/T = K. Then N/T
is weakly supplemented by Lemma 2.8. Note that Rad N = 0 by Lemma 2.9
and N is not semisimple because N/T = K is not semisimple. Hence by
Corollary 2.3 in [8], N is not weakly supplemented.

REMARK 2.12. InTheorem 2.1 the hypothesis that L has a weak supplement
can not be omitted. Let 7 and N be as in Example 2.11. Then 7 has no weak
supplement in N. Otherwise we wouldhave T + A = M and T N A < N for
some submodule A of N. Since Rad N = 0 we have T N A = 0. So the sum
T+ A = Misadirect sumand N/T = A is divisible, a contradiction.

The proof of the following lemma is standard.
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LEmMA 2.13 (see [6], Exercise 6.34). Let R be a domain and M be an
R-module. Then the torsion submodule T (M) of M is closed in M.

Note that over a Dedekind domain a submodule is closed if and only if it is
coclosed (see [13], Satz 3.4).

PROPOSITION 2.14. Let R be a Dedekind domain and M be an R-module.
Then the following holds.

(1) If M is weakly supplemented then T (M) and M /T (M) are weakly sup-
plemented. If T(M) has a weak supplement in M then the converse
holds.

(2) IfRad T (M) < M then M is weakly supplemented if and only if T (M)
has a weak supplement in M and M| T (M) is weakly supplemented.

(3) Suppose M is torsion. Then M is weakly supplemented if Rad M is
weakly supplemented and has a weak supplement in M.

(4) Suppose M /Rad M is finitely generated and Rad M < M. Then M is
weakly supplemented if Rad M is weakly supplemented.

ProOF. (1) Suppose M is weakly supplemented. Then 7 (M) is a weak
supplement in M. Since T (M) is also coclosed it is a supplement in M by
([5], Lemma 1.1). Then T (M) and M /T (M) are weakly supplemented by
Proposition 2.2(5) in [8].

If T(M) has a weak supplement then M is weakly supplemented by The-
orem 2.1.

(2) T(M)/Rad T (M) is semisimple by Lemma 2.7 so it is weakly sup-
plemented. Then 7' (M) is weakly supplemented by Proposition 2.2(4) in [8].
Then the proof is clear by (1).

(3) By Lemma 2.7 M /Rad M is semisimple. Then the proof is clear by
Theorem 2.1.

(4) Suppose M/ Rad M is generated by

my+RadM, m, +RadM,...,m, + Rad M

Then for the finitely generated submodule K = Rm| 4+ Rmy + - - - + Rm, we
have Rad M + K = M and K N Rad M is finitely generated as K is finitely
generated, so K NRad M <« M by Lemma 2.3 i.e. K is a weak supplement
of Rad M in M.

By ([2] Proposition 9.15) Rad(M/Rad M) = 0, and since Rad M < M,
M /Rad M is torsion. Therefore M/Rad M is semisimple by Lemma 2.7.
Hence M is weakly supplemented by Theorem 2.1.

A module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M. Over a commutative noetherian ring every
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submodule of a coatomic module is coatomic (see Lemma 1.1 in [15]). Note
that coatomic modules have small radicals.

PROPOSITION 2.15. Let R be a Dedekind domain and M be a torsion R-
module. I[f Rad M < M then every submodule of M is weakly supplemented.

ProoF. The module M/Rad M is semisimple by Lemma 2.7. Since
Rad M « M, every submodule of M is contained in a maximal submod-
ule i.e. M is coatomic. Let N be a submodule of M. Then N is coatomic so
Rad N « N, and since N is torsion, N/Rad N is semisimple. Hence N is
weakly supplemented by Proposition 2.2(4) in [8].

A domain R is said to be one-dimensional if R/I is artinian for every
nonzero ideal I of R. One-dimensional domains are proper generalizations of
Dedekind domains.

LEMMA 2.16. Let R be a ring, I < R and M be an R-module. If IM has
a weak supplement K in M, then K is a weak supplement of "M in M for
everyn 2 1.

PrOOF. By hypothesis IM 4+ K = M. Then we have I’M + IK = IM,
so I’M + IK + K = IM + K which gives I’M + K = M. Continuing in
this way we get:

I'M+K=MandI"MNKCIMNK <M.

This means that K is a weak supplement of /"M in M.

PROPOSITION 2.17. Let R be a one-dimensional domain and M be an R-
module. Suppose that I is a nonzero ideal of R. If I M is weakly supplemented
and I*M has a weak supplement in M for some k < n, then M is weakly
supplemented.

PrOOF. Since R is a domain /" # 0. So R/I" is an artinian ring be-
cause R is one-dimensional. Then M/I"M is a supplemented R/I"-module
by Theorem 24.25 in [7] and Theorem 4.41 in [9]. Hence M /1" M is a weakly
supplemented R-module. By Lemma 2.16, " M has a weak supplement in M.
Therefore by Theorem 2.1, M is weakly supplemented.

COROLLARY 2.18. Let R be a one-dimensional domain and M be an R-
module. If r M is weakly supplemented for some O # r € R and has a weak
supplement in M then M is weakly supplemented.
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