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EXTENSIONS OF WEAKLY SUPPLEMENTED
MODULES

RAFAIL ALIZADE and ENGIN BÜYÜKAŞIK

Abstract

It is shown that weakly supplemented modules need not be closed under extension (i.e. if U and
M/U are weakly supplemented then M need not be weakly supplemented). We prove that, if
U has a weak supplement in M then M is weakly supplemented. For a commutative ring R,
we prove that R is semilocal if and only if every direct product of simple R-modules is weakly
supplemented.

1. Introduction

Throughout, R is a commutative ring with identity and M is a unital left R-
module. By N ⊆ M , we mean that N is a submodule of M . A submodule
L ⊆ M is said to be essential in M , denoted as L � M , if L∩N �= 0 for every
nonzero submodule N ⊆ M . A submodule S of M is called small (in M),
denoted as S � M , if M �= S + L for every proper submodule L of M . By
Rad M we denote the sum of all small submodules of M or, equivalently the
intersection of all maximal submodules of M . A ring R is said to be semilocal
if R/ Rad R is semisimple. By ([7] Proposition 20.2) R is semilocal if and
only if R has only finitely many maximal ideals. A module M is supplemented
(see [12]), if every submodule N of M has a supplement, i.e. a submodule K

minimal with respect to N +K = M . K is a supplement of N in M if and only
if N +K = M and N ∩K � K (see [12]). If N +K = M and N ∩K � M ,
then K is called a weak supplement of N (see, [14] and [8]). M is a weakly
supplemented module if every submodule of M has a weak supplement. By �

we denote the set of all maximal ideals of R. Let R be a domain and M be an
R-module. The submodule T (M) = {m ∈ M | rm = 0 for some 0 �= r ∈ R}
is called the torsion submodule of M , and if M = T (M) then M is called a
torsion module.

Let R be a Dedekind domain and � ∈ �. The submodule T�(M) = {m ∈
M | �nm = 0 for some n > 0} is called the �-primary part of M , and
T (M) = ⊕

�∈� T�(M) (see Proposition 10.6.9 in [3]).
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A class M of modules is said to be closed under extension if U, M/U ∈ M

implies M ∈ M. In this case we say that M is an extension of U by M/U .
Let R be a noetherian local ring. Rudlof proved that an R-module M is

weakly supplemented if and only if it is an extension of a supplemented module
by a supplemented module (see Theorem 3.1 in [10]). He also proved that over a
noetherian ring every extension of a supplemented module by a supplemented
module is weakly supplemented (see Proposition 3.6 in [10]). In general a
weakly supplemented modules need not be an extension of a supplemented
module by a supplemented module. For example the Z-module Q is weakly
supplemented and Q does not contain any supplemented submodule (see [13],
Theorem 3.1).

In this paper we show that the class of weakly supplemented modules need
not be closed under extensions, that is if U and M/U are weakly supplemented
for some submodule U of M then M need not be weakly supplemented. But
if U has a weak supplement in M we show that M is weakly supplemented.
We prove that a commutative ring R is semilocal if and only if every direct
product of simple R-modules is weakly supplemented. Let R be a Dedekind
domain. We obtain that an R-module M is weakly supplemented if and and
only if T (M) and M/T (M) are weakly supplemented and T (M) has a weak
supplement in M . If M is a torsion R-module with Rad M � M then every
submodule of M is weakly supplemented.

2. Extensions of weakly supplemented modules

A submodule N of a module M is called closed in M if N � K for some
K ⊆ M implies K = N . A submodule N of M is called coclosed in M if
N/K � M/K for some K ⊆ M implies K = N .

Theorem 2.1. Let 0 → L → M → N → 0 be a short exact sequence. If
L and N are weakly supplemented and L has a weak supplement in M then
M is weakly supplemented.

If L is coclosed in M then the converse holds, that is if M is weakly sup-
plemented then L and N are weakly supplemented.

Proof. Without restriction of generality we will assume that L ⊆ M . Let
S be a weak supplement of L in M i.e. L + S = M and L ∩ S � M . Then we
have,

M/(L ∩ S) = L/(L ∩ S) ⊕ S/(L ∩ S)

L/L ∩ S is weakly supplemented as a factor module of L. On the other hand,
S/(L ∩ S) ∼= M/L ∼= N is weakly supplemented. Then M/(L ∩ S) is weakly
supplemented as a sum of weakly supplemented modules (see [8] Proposi-
tion 2.5). Therefore M is weakly supplemented by ([8], Proposition 2.2 (4)).
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Suppose that L is coclosed. Then L ∩ S � L by ([5], Lemma 1.1) i.e.
L is a supplement of S in M . Therefore L is weakly supplemented by ([8],
Proposition 2.2 (5)).

Proposition 2.2. Let R be a semilocal ring (not necessarily commutative)
and M be an R-module. Suppose U ⊆ M such that M/U is finitely generated.
If U is weakly supplemented then M is weakly supplemented.

Proof. Suppose M/U is generated by

m1 + U, m2 + U, . . . , mn + U.

For the submodule K = Rm1 + Rm2 + · · · + Rmn we have U + K = M .
Then M is weakly supplemented by ([8], Proposition 2.5).

The following well known lemma is given for completeness.

Lemma 2.3. Let M be a module and U be a finitely generated submodule
of M contained in Rad M . Then U is small in M .

A module M is said to be locally noetherian if every finitely generated
submodule of M is noetherian.

Proposition 2.4. Let M be a locally noetherian module and X ⊆ Rad M .
Suppose M/X is finitely generated. If X and M/X are weakly supplemented
then M is weakly supplemented.

Proof. Since M/X finitely generated, X + L = M for some finitely gen-
erated submodule L of M . Then X ∩ L ⊆ X ⊆ Rad M is finitely generated,
because L is finitely generated and M is locally noetherian. So X ∩ L � M .
Thus L is a weak supplement of X in M . Therefore M is weakly supplemented
by Theorem 2.1.

We shall give an example in order to prove that the class of weakly supple-
mented modules need be closed under extensions. The following lemmas will
be useful to present this example.

Lemma 2.5 ([1], Lemma 4.4). Let R be a Dedekind domain. For an R-
module M the following are equivalent:

(1) M is injective,

(2) M is divisible,

(3) M = PM for every maximal ideal P of R,

(4) M does not contain any maximal submodule.
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Note that if M is divisible module over a Dedekind domain then Rad M =
M . Hence if N is a module with Rad N = 0 then N does not contain divisible
submodule.

Lemma 2.6. Let R be a domain and � a maximal ideal of R. Then for every
�-primary R-module M , M/ Rad M is semisimple.

Proof. Rad M = ⋂
�∈� �M . We will show that �M = M for every � ∈

�\ {�}. Let x ∈ M , then �nx = 0 for some n ∈ N. Since �n +� = R, we have
1 = p + q for some p ∈ �n and q ∈ �. So we get x = px + qx = qx ∈ �M ,
hence M = �M . Therefore Rad M = ⋂

�∈� �M = �M . Then since R/� is a
field M/ Rad M = M/�M is semisimple R/�-module, and so it is semisimple
as an R-module.

Corollary 2.7. Let R be a Dedekind domain and M a torsion R-module,
then M/ Rad M is semisimple.

Proof. Since R is a Dedekind domain and M a torsion R-module, we have

M =
⊕

�∈�

T�(M).

Then
M/ Rad M = [⊕�∈�T�(M)]/[⊕�∈� Rad T�(M)]

∼= ⊕�∈�[T�(M)/ Rad T�(M)]

is semisimple by Lemma 2.6, and by Theorem 9.6 in [2].

Lemma 2.8. Let R be a Dedekind domain and K be the field of quotients
of R. Then RK is weakly supplemented.

Proof. Since R is a Dedekind domain and K/R is a torsion R-module, we
have K/R ∼= ⊕

P∈� TP (K/R) so K/R is supplemented by Theorem 2.4 and
Theorem 3.1 in [13]. Since R is finitely generated and Rad K = K we have
R � K . Therefore K is weakly supplemented by Proposition 2.2 (4) in [8].

Lemma 2.9. Let R be a Dedekind domain and {�i}i∈I be an infinite collec-
tion of distinct maximal ideals of R. Let M = ∏

i∈I (R/�i ) be the direct product
of the simple R-modules R/�i and T = T (M) be the torsion submodule of
M . Then the following hold,

(1) M/T is divisible, therefore M/T ∼= K(J) for some index set J ,

(2) Rad M = 0.

Proof. (1) Let � be a maximal ideal of R. Then �(M/T ) = (�M + T )/T .
Now if � is not one of the ideals {�i}i∈I then �M + T = M and so �(M/T ) =
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M/T . Suppose � ∈ {�i}i∈I , say � = �j for some j ∈ I , then �M = M(j)

where M(j) consists of those elements of M whose j th coordinate is zero.
Let M(j) be the submodule of M whose all coordinates except j th are zero.
Clearly M(j) ⊆ T . Then M = M(j) + M(j) ⊆ �M + T , so �M + T = M

and hence �(M/T ) = M/T . Therefore by Lemma 2.5 M/T is divisible, and
since it is torsion-free we have M/T ∼= K(J).

(2) M/M(j) ∼= R/�j is a simple module, so M(j) is a maximal submodule
of M for every j ∈ I . Then we get Rad M ⊆ ⋂

j∈I M(j) = 0.

Theorem 2.10. For a commutative ring R, the following are equivalent.

(1) R is semilocal,

(2) Every direct product of simple R-modules is semisimple,

(3) Every direct product of simple R-modules is weakly supplemented.

Proof. (1) ⇒ (2) Let �1, �2, . . . , �n be the maximal ideals of R. Then
Rad R = �1 ∩�2 ∩· · ·∩�n = �1.�2 . . . �n. Let M be a direct product of simple
R-modules. Since every simple R-module is isomorphic to one of the simple
modules R/�j , j = 1, . . . , n, we have �1.�2 . . . �nM = 0. So that M is an
R/ Rad R-module. By the hypothesis R/ Rad R is semisimple, and so M is a
semisimple R/ Rad R-module. Therefore M is a semisimple R-module.

(2) ⇒ (3) Obvious.
(3) ⇒ (1) Let M = ∏

�∈�(R/�). From the proof of Lemma 2.9(2) we
have Rad(M) = 0. Since M is weakly supplemented, M is semisimple by
Corollary 2.3 in [8]. So that M = ∏

�∈�(R/�) ∼= ⊕
�∈�

⊕
I�
(R/�) for some

index sets I�. In this case (1+�)�∈� ∈ M can have only finitely many nonzero
components in the last decomposition. Therefore � is finite, i.e. R has only
finitely many maximal ideals. Hence R is semilocal.

Example 2.11. Let R and M be as in Lemma 2.9 and T = ⊕i∈I (R/�i )

be the torsion submodule of M . Note that T is semisimple, so it is weakly
supplemented. Let N be a submodule of M such that N/T ∼= K . Then N/T

is weakly supplemented by Lemma 2.8. Note that Rad N = 0 by Lemma 2.9
and N is not semisimple because N/T ∼= K is not semisimple. Hence by
Corollary 2.3 in [8], N is not weakly supplemented.

Remark 2.12. In Theorem 2.1 the hypothesis that L has a weak supplement
can not be omitted. Let T and N be as in Example 2.11. Then T has no weak
supplement in N . Otherwise we would have T + A = M and T ∩ A � N for
some submodule A of N . Since Rad N = 0 we have T ∩ A = 0. So the sum
T + A = M is a direct sum and N/T ∼= A is divisible, a contradiction.

The proof of the following lemma is standard.
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Lemma 2.13 (see [6], Exercise 6.34). Let R be a domain and M be an
R-module. Then the torsion submodule T (M) of M is closed in M .

Note that over a Dedekind domain a submodule is closed if and only if it is
coclosed (see [13], Satz 3.4).

Proposition 2.14. Let R be a Dedekind domain and M be an R-module.
Then the following holds.

(1) If M is weakly supplemented then T (M) and M/T (M) are weakly sup-
plemented. If T (M) has a weak supplement in M then the converse
holds.

(2) If Rad T (M) � M then M is weakly supplemented if and only if T (M)

has a weak supplement in M and M/T (M) is weakly supplemented.

(3) Suppose M is torsion. Then M is weakly supplemented if Rad M is
weakly supplemented and has a weak supplement in M .

(4) Suppose M/ Rad M is finitely generated and Rad M � M . Then M is
weakly supplemented if Rad M is weakly supplemented.

Proof. (1) Suppose M is weakly supplemented. Then T (M) is a weak
supplement in M . Since T (M) is also coclosed it is a supplement in M by
([5], Lemma 1.1). Then T (M) and M/T (M) are weakly supplemented by
Proposition 2.2(5) in [8].

If T (M) has a weak supplement then M is weakly supplemented by The-
orem 2.1.

(2) T (M)/ Rad T (M) is semisimple by Lemma 2.7 so it is weakly sup-
plemented. Then T (M) is weakly supplemented by Proposition 2.2(4) in [8].
Then the proof is clear by (1).

(3) By Lemma 2.7 M/ Rad M is semisimple. Then the proof is clear by
Theorem 2.1.

(4) Suppose M/ Rad M is generated by

m1 + Rad M, m2 + Rad M, . . . , mn + Rad M

Then for the finitely generated submodule K = Rm1 + Rm2 + · · · + Rmn we
have Rad M + K = M and K ∩ Rad M is finitely generated as K is finitely
generated, so K ∩ Rad M � M by Lemma 2.3 i.e. K is a weak supplement
of Rad M in M .

By ([2] Proposition 9.15) Rad(M/ Rad M) = 0, and since Rad M � M ,
M/ Rad M is torsion. Therefore M/ Rad M is semisimple by Lemma 2.7.
Hence M is weakly supplemented by Theorem 2.1.

A module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M . Over a commutative noetherian ring every
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submodule of a coatomic module is coatomic (see Lemma 1.1 in [15]). Note
that coatomic modules have small radicals.

Proposition 2.15. Let R be a Dedekind domain and M be a torsion R-
module. If Rad M � M then every submodule of M is weakly supplemented.

Proof. The module M/ Rad M is semisimple by Lemma 2.7. Since
Rad M � M , every submodule of M is contained in a maximal submod-
ule i.e. M is coatomic. Let N be a submodule of M . Then N is coatomic so
Rad N � N , and since N is torsion, N/ Rad N is semisimple. Hence N is
weakly supplemented by Proposition 2.2(4) in [8].

A domain R is said to be one-dimensional if R/I is artinian for every
nonzero ideal I of R. One-dimensional domains are proper generalizations of
Dedekind domains.

Lemma 2.16. Let R be a ring, I � R and M be an R-module. If IM has
a weak supplement K in M , then K is a weak supplement of I nM in M for
every n � 1.

Proof. By hypothesis IM + K = M . Then we have I 2M + IK = IM ,
so I 2M + IK + K = IM + K which gives I 2M + K = M . Continuing in
this way we get:

I nM + K = M and I nM ∩ K ⊆ IM ∩ K � M .

This means that K is a weak supplement of I nM in M .

Proposition 2.17. Let R be a one-dimensional domain and M be an R-
module. Suppose that I is a nonzero ideal of R. If I nM is weakly supplemented
and I kM has a weak supplement in M for some k � n, then M is weakly
supplemented.

Proof. Since R is a domain I n �= 0. So R/In is an artinian ring be-
cause R is one-dimensional. Then M/InM is a supplemented R/In-module
by Theorem 24.25 in [7] and Theorem 4.41 in [9]. Hence M/InM is a weakly
supplemented R-module. By Lemma 2.16, I nM has a weak supplement in M .
Therefore by Theorem 2.1, M is weakly supplemented.

Corollary 2.18. Let R be a one-dimensional domain and M be an R-
module. If rM is weakly supplemented for some 0 �= r ∈ R and has a weak
supplement in M then M is weakly supplemented.

Acknowledgements. The authors would like to thank the referee for the
valuable suggestions and comments.



168 rafail alizade and engin büyükaşik

REFERENCES

1. Alizade, R., Bilhan, G., and Smith, P. F., Modules whose maximal submodules have supple-
ments, Comm. Algebra 29:6 (2001), 2389–2405.

2. Anderson, F. W., and Fuller, K. R., Rings and Categories of Modules, Springer, New York,
1992.

3. Cohn, P. M., Basic Algebra: Groups, Rings and Fields, Springer, London, 2002.
4. Kaplansky, I., Infinite Abelian Groups, Ann Arbor, Michigan: Michigan University Press,

1965.
5. Keskin, D., On lifting modules, Comm. Algebra 28:7 (2000), 3427–3440.
6. Lam, T. Y., Lectures on Modules and Rings, Springer, New York, 1999.
7. Lam, T. Y., A first course in Noncommutative Rings, Springer, New York, 1999.
8. Lomp, C., On semilocal modules and rings, Comm. Algebra 27:4 (1999), 1921–1935.
9. Mohamed, S. H., and Müller, B. J., Continuous and Discrete Modules, Cambridge University

Press 1990.
10. Rudlof, P., On the structure of couniform and complemented modules, J. Pure Appl. Alg. 74

(1991), 281–305.
11. Santa-Clara, C., and Smith, P. F., Direct product of simple modules over Dedekind domains,

Arch. Math. (Basel) 82 (2004), 8–12.
12. Wisbauer, R., Foundations of Modules and Rings, Gordon and Breach, 1991.
13. Zöschinger, H., Komplementierte Moduln über Dedekindringen, J.Algebra. 29 (1974), 42–56.
14. Zöschinger, H., Invarianten wesentlicher Überdeckungen, Math. Ann. 237 (1978), 193–202.
15. Zöschinger, H., Koatomare Moduln, Math. Z. 170 (1980), 221–232.

DEPARTMENT OF MATHEMATICS
IZMIR INSTITUTE OF TECHNOLOGY
GÜLBAHÇEKÖYÜ
35430 URLA IZMIR
TURKEY
E-mail: rafailalizade@iyte.edu.tr, enginbuyukasik@iyte.edu.tr


