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ON ALGEBRAS ASSOCIATED TO PARTIALLY
ORDERED SETS

MORTEN BRUN and TIM RÖMER

Abstract

We continue the work [2] on sheaves of rings on finite posets. We present examples where the ring
of global sections coincide with toric faces rings, quotients of a polynomial ring by a monomial
ideal and algebras with straightening laws. We prove a rank-selection theorem which generalizes
the well-known rank-selection theorem of Stanley-Reisner rings. Finally, we determine an explicit
presentation of certain global rings of sections.

1. Introduction

In the present paper we continue the work [2] on sheaves of commutative rings
on finite partially ordered sets (posets for short).

A finite poset P can be considered as a topological space with the Alexan-
drov topology [1], that is, the topology where the open sets are the subsets U

of P such that y ∈ U and x ≤ y implies x ∈ U .
A presheaf T on P consists of an abelian group T (U) for every open subset

U of P and restriction maps TV U : T (U) → T (V ) for V ⊆ U open subsets
of P . The restriction maps are subject to the conditions that TUU is the identity
on T (U) and that TWV ◦ TV U = TWU for W ⊆ V ⊆ U open subsets of P .
The stalk Tx of T at x ∈ P is the set

∐
x∈U T (U)/ ∼ of equivalence classes

represented by elements t ∈ T (U) for U an open subset of P containing x

under the equivalence relation generated by requiring t ∼ TV U (t) whenever
V ⊆ U are open subsets of P containing x. The presheaf T is a sheaf if the
sequence

0 → T (U1 ∪ U2) → T (U1) × T (U2) → T (U1 ∩ U2)

is exact for every pair (U1, U2) of open subsets of P . Here the map T (U1 ∪
U2) → T (U1) × T (U2) is (TU1U1∪U2 , TU2U1∪U2), and the map T (U1) ×
T (U2) → T (U1 ∩ U2) is given by TU1∩U2U1 on the first factor and by
−TU2∩U2U1 on the second factor.
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A sheaf T on P is uniquely determined by its stalks (Tx)x∈P and the ho-
momorphisms Txy : Ty → Tx for x ≤ y in P induced by the restriction maps
of T . More precisely, the stalks of T form a ZP -algebra T , that is, a system
(Tx)x∈P of abelian groups and homomorphisms Txy : Ty → Tx for x ≤ y in P

with the property that Txx is the identity on Tx and that Txy ◦ Tyz = Txz for
every x ≤ y ≤ z in P . Conversely, there is a sheaf T , with T (U) equal to the
(inverse) limit limx∈U Tx , associated to every ZP -algebra T . Here limx∈U Tx

is the subgroup of the product
∏

x∈U Tx consisting of families (fx)x∈U with
Txy(fy) = fx for all x ≤ y in U . This defines a one to one correspondence
between sheaves on P and ZP -algebras, and thus the concepts of sheaves and
of ZP -algebras are equivalent.

Let R be a Zm-graded commutative Noetherian ring. By abuse of termino-
logy we say that T is a sheaf of Zm-graded R-algebras if T is a sheaf on P

and the restriction maps TUV are homomorphisms of Zm-graded R-algebras.
Similarly we say that T is an RP-algebra if the homomorphisms Txy are ho-
momorphisms of Zm-graded R-algebras. The above discussion also shows that
the concept of sheaves of Zm-graded R-algebras is equivalent to the concept
of RP-algebras. The RP-algebra T is called flasque if the associated sheaf T

is flasque, that is, if the restriction map TV U : T (U) → T (V ) is surjective for
every inclusion V ⊆ U of open subsets of P .

In this paper we study the ring H 0(P, T ) := T (P ) = limP T and call it
the ring of global sections of T . Under this name it was for example studied
by Yuzvinsky [22], [23] and Caijun [6]. We are particularly interested in RP-
algebras that appear in the literature on algebraic combinatoric and commutat-
ive algebra, including face rings for fans and simplicial complexes, monomial
ideals and algebras with straightening laws. Applying results from [2] on local
cohomology of H 0(P, T ) we obtain a rank selection theorem in the tradition
of Duval [8], Hibi [10], Munkres [13] and Stanley [15]. In order to state it we
need a little terminology. Firstly, in [10] Hibi calls a subset X of P excellent if
for every element z of P there exists at most one x ∈ X with x ≤ z. Secondly,
the rank of P is the supremum of the numbers |C| − 1 for C a chain in P ,
and the rank of x ∈ P is the rank of the poset (0P̂ , x] = {z ∈ P : z ≤ x}.
Thirdly, if there exists exactly one Zm-graded ideal � in R such that R/� is
a field, then we call R a Zm-graded local ring. Note that R/� is concentrated
in degree zero, and thus � contains every element of R of non-zero degree.
In particular, if K = R0 is a field, then � = ⊕

a∈Zm\{0} Ra . Finally, we denote
by Hi

�(N) the local cohomology modules of a finitely generated Zm-graded
R-module N with respect to � (see [5] for details). Since � is a maximal
ideal the definition of graded local cohomology modules and usual local co-
homology modules coincide. With the notation recollected in Definition 4.1,
the following generalizes Hibi’s result [10, Theorem 1.7].
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Theorem 1.1. Let (R, �) be a Zm-graded local ring with K = R0 a field
and let X be an excellent subset of a finite poset P . Let T be a flasque Zm-graded
RP-algebra with dim limP T = rank(P ), and such that the homomorphism
R → limP T is surjective. Assume that:

(i) Ty is Cohen-Macaulay of dimension rank(y) for every y ∈ P .

(ii) For every x ∈ X we have that rank(star(x)) = rank(P ) and we have
that rank(star(x) ∩ PX) = rank(P ) − 1.

(iii) For every x ∈ X and y ∈ star(x) we have that H̃ i((y, 1 ̂star(x)); K) = 0
for i 
= rank(P ) − rank(y) − 1.

(iv) For every x ∈ X and y ∈ star(x)∩PX we have H̃ i((y, 1 ̂star(x)∩PX
); K) = 0

for i 
= rank(P ) − rank(y) − 2.

Then the natural homomorphism

Hi
�(lim

P
T ) → Hi

�(lim
PX

T )

is surjective for i = rank(P ), it is injective for i = rank(P )−1, and otherwise
it is an isomorphism.

Here the cohomology groups H̃ i(P ; K) are reduced singular cohomology
groups of the underlying topological space of the poset P , or equivalently the
cohomology groups of the associated order complex.

As an application of Theorem 1.1 we consider the following situation. We
define the ith skeleton of a finite poset P to be the sub-poset P (i) = {y ∈ P :
rank(y) ≤ i}. If for example P = P(�) is the face poset of a rational pointed
fan � in Rm and T = T (�) is the KP-algebra as constructed in Example 2.1,
then we obtain that

depth lim
P

T = max
{
i ∈ N : i ≤ rank(P ) and lim

P (i)
T is Cohen-Macaulay

}
.

If P is the face poset of a simplicial complex � and T is the Stanley-Reisner
KP-algebra associated to �, then this is a well-known result, because lim T ∼=
K[�] is the Stanley-Reisner ring associated to � and limP (i) T ∼= K[�(i)]
is the Stanley-Reisner ring associated to the ith skeleton �(i) of � in this
situation.

We end the paper by discussing presentations of RP-algebras. In The-
orem 5.6 we give a criterion, namely that T is sectioned and has a presentation
�, ensuring that the ring limP T of global sections of an RP-algebra T is of the
form K[F ]/I for a finite set F , where the ideal I is a sum I = IT + I��

of the
Stanley-Reisner ideal of a simplicial complex �� related to the order complex
of P and the sum IT of defining ideals for the stalks Tx of T . A presentation
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of T roughly consists of a subset Fx of F and a surjective homomorphism
K[Fx] → Tx for every x in P . Using the main result of [2] again we obtain the
following description of the depth and the dimension of certain KP-algebras.
(K is a field.)

Corollary 1.2. Let (�, p) be a presentation of a sectioned flasque KP-
algebra T consisting of Zm-graded Cohen-Macaulay rings such that dx < dy

and fx < fy for x < y in P , where dx = dim(Tx) and fx = |Fx |. We have
that

depth lim
P

T = min{i ∈ N : Hi+(fx−dx)
� (K[��]) 
= 0 for some x ∈ P },

dim lim
P

T = max{i ∈ N : Hi+(fx−dx)
� (K[��]) 
= 0 for some x ∈ P }.

In particular, if there exists an n ∈ Z such that dim(K[Fx]) = dim(Tx) + n

for every x ∈ P and such that dim(K[��]) = dim(limP T ) + n, then limP T

is Cohen-Macaulay if and only if �� is Cohen-Macaulay.

The paper is organized as follows: In Section 2 we present classes of KP-
algebras associated to toric face rings (as introduced in [3]), monomial ideals
and algebras with straightening laws (ASL’s for short). In Section 3 we give a
criterion on a KP-algebra with stalks given by ASL’s to have an ASL as ring
of global sections. As an application we generalize a construction of Stanley
[17] who defined the face ring of a simplicial poset. In Section 4 we prove
Theorem 1.1 and study some of its consequences. Finally, in Section 5 we
study presentations of KP-algebras.

2. Examples of RP-algebras

In this section we present RP-algebras appearing naturally in algebraic combin-
atoric and commutative algebra. Of course every K-algebra S equals limP T

for the poset P = {x} consisting of one element and the KP-algebra T with
Tx = S. However this gives no new information about S. Our goal is to choose
a finite poset P and a suitable KP-algebra T such that the stalks Tx are as nice
as possible (e.g. Cohen-Macaulay rings) and to characterize ring properties of
limP T in terms of combinatorial properties of P and ring properties of the
rings Tx for x ∈ P . Our first example goes back to a construction of Stanley
[16].

Example 2.1 (Toric face rings). We consider a rational fan � in Rm, that
is, � is a finite collection of rational cones in Rm such that for C ′ ⊆ C with
C ∈ � we have that C ′ is a face of C if and only if C ′ ∈ �, and if C, C ′ ∈ �,
then C ∩ C ′ is a common face of C and C ′. For each cone C ∈ � we choose
an affine monoid MC ⊆ Zm such that:
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(i) cone(MC) = C for C ∈ �;

(ii) If C, C ′ ∈ �, C ′ ⊆ C, then MC ′ = MC ∩ C ′.
Observe that we do not require that MC is normal. Let P(�) = (�, ⊆) be
the partially ordered set of faces of � ordered by inclusion and let K be a
field. For C ∈ P(�) we let TC denote the affine monoid ring K[MC]. For
C ′ ⊆ C in P(�) the homomorphisms TC ′C : TC → TC ′ are induced by the
natural face projections K[C ∩ Zm] → K[C ′ ∩ Zm]. This is a Zm-graded KP-
algebra, and with R = lim T it is an RP-algebra of Zm-graded R-algebras. We
write T = T (�) if MC = C ∩ Zm, for every C ∈ �. In this case the ring
lim T (�) is called the toric face ring of �, and it was studied by Stanley [16],
Bruns-Gubeladze [4] and Brun-Römer [3].

Stanley-Reisner rings of finite simplicial complexes are covered by the
above example: To a simplicial complex � we associate a fan � with the same
face poset as �, and we can choose MC isomorphic to Ndim(C) for every C ∈ �.
In this situation we write P(�) = P(�) and call T (�) = T (�) the Stanley-
Reisner KP-algebra. The ring lim T (�) is isomorphic to the Stanley-Reisner
ring K[�]. (See [2, Example 5.2].)

Our next example shows that rings defined by monomial ideals give rise to
KP-algebras.

Example 2.2 (Monomial ideals). Let S = K[x1, . . . , xn] be the poly-
nomial ring over a field K with the usual Zn-grading. Recall that irreducible
monomial ideals in S are of the form �b = (x

b1
1 , . . . , xbn

n ) for 0 
= b ∈ Nn. A
monomial ideal I has a unique irredundant irreducible decomposition of the
form

I = �b1 ∩ · · · ∩ �bt

for b1, . . . , bt ∈ Nn.

(See [11, Section 5.2] for details.) For each subset C of [t] = {1, . . . , t} there
exists a unique maximal subset C ⊆ [t] with the property that

∑
i∈C �bi =∑

i∈C �bi

. Let P(I) denote the poset of the subsets C of [t] for ∅ 
= C ⊆ [t]
ordered by reverse inclusion. For C ∈ P(I) let T (I)C = S/

∑
i∈C �bi

and for
C, D ∈ P(I) with C ⊆ D we define T (I)DC : TC → TD to be the natural
projection map. Now:

(i) T (I) is a Zn-graded SP (I)-algebra.

(ii) By using Example 3.3 of [2] we see that T (I) is flasque with lim T (I) ∼=
S/I .

(iii) T (I)C is a complete intersection and thus Cohen-Macaulay for C ∈
P(I).
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The result [2, Theorem 4.1] has the following corollary. (See [20, The-
orem 1] for a more general description of Hi

�(S/I).)

Corollary 2.3. Let I = �b1∩· · ·∩�bt ⊂ K[x1, . . . , xn] be an irredundant
irreducible decomposition of a monomial ideal and let dC = dim T (I)C .
If dC > dD for C, D ∈ P(I) with D ⊂ C then Hi

�(K[x1, . . . , xn]/I) is
isomorphic to⊕

F∈P(I)

H̃ i−dF −1
(
(F, 1P̂ (I )); K

) ⊗K HdF

�

(
K[x1, . . . , xn]/

∑
i∈F

mbi

)
as a Zn-graded K-vector space.

For the next example we recall the notion of an algebra with straightening
law (ASL for short). We call a function m: P → N (i.e. m ∈ NP ) a monomial
on P , and consider it as an element of the polynomial ring K[P ] on the
elements of P . The support of m is the set supp(m) = {x ∈ P : m(x) 
= 0}.
The monomial is called a standard monomial if supp(m) is a chain in P . Let
R be an algebra over a field K with an injection φ: P → R. We associate to
each monomial m the element φ(m) = ∏

x∈P φ(x)m(x) ∈ R and call φ(m) a
monomial in R. Following [7] we call R an algebra with straightening law
(ASL for short) on P op over K if

ASL1 The set of standard monomials is a K-basis of R, and

ASL2 if x and y are incomparable in P and if

(1) φ(x)φ(y) =
∑
m

rm,xyφ(m)

is the unique representation of φ(x)φ(y) as a linear combination of standard
monomials guaranteed by ASL1, then rm,xy 
= 0 implies that the maximal
element xm of supp(m) satisfies x < xm and y < xm.

Note that for technical reasons we work with P op instead of P . By ASL1
every monomial φ(n) in R has a unique representation of the form φ(n) =∑

m∈NP rm,nφ(m), where rm,n 
= 0 implies that m is a standard monomial. We
write

r(n) =
∑

m∈NP

rm,nm

for the element in the polynomial ring K[P ] associated to this representation
of φ(m).

Example 2.4 (ASL). Let R be an ASL on P op. Then R = K[P ]/IP where
the ideal IP ⊆ K[P ] is generated by the straightening relations n − r(n). For
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Q′ ⊆ Q an inclusion of subsets of P we consider the projection map

pQ′Q: K[Q] → K[Q′], x �→
{

x if x ∈ Q′,

0 if x 
∈ Q′.

We let IQ = pQP (IP ) ⊆ K[Q], we define TQ = K[Q]/IQ and we let
TQ′Q: TQ → TQ′ denote the map induced by pQ′Q. For Q open in P the
ideal IQ is generated by the elements n − pQP (r(n)) for n ∈ NQ. By [7,
Proposition 1.2(b)] (with I = P \ Q) the K-algebra TQ is an ASL on Qop.

Now we let Tx = T(0P̂ ,x] for x ∈ P and Txy = T(0P̂ ,y](0P̂ ,x] for x, y ∈ P

with x ≤ y. It follows that T is an RP-algebra. Using that TQ is an ASL on
Qop if Q ⊆ P is open, we see by working with standard monomials that
limP T ∼= TP .

3. KP-algebras with an ASL-structure

We saw in Example 2.4 that an ASL R can be seen as the ring of global sections
of a suitable KP-algebra. Sometimes it is possible to reverse this construction
in the sense that giving locally ASL’s one can construct a KP-algebra such that
the global ring of sections is again an ASL with prescribed presentation.

Recall that K[P ] = K[x : x ∈ P ] denotes the polynomial algebra on the
elements x of P . At first we present a criterion which ensures that a given
KP-algebra has an ASL-structure.

Theorem 3.1. Let T be a KP-algebra on a finite poset P such that Tx is
an ASL on (0P̂ , x]op for every x ∈ P . Let φx : K[(0P̂ , x]] → Tx be the natural
projection induced by the ASL-structure on Tx for x ∈ P . If the diagram

K[(0P̂ , y]]
φy−−−−−−→ Ty

||↓p(0
P̂

,x](0
P̂

,y]
||↓Txy

K[(0P̂ , x]] φx−−−−−−→ Tx

commutes for every x, y ∈ P with x ≤ y, then limP T is an ASL on P op.
In particular, if S ⊆ NP denotes the set of standard monomials in K[P ]

then limP T ∼= K[P ]/IP , where the ideal IP is generated by relations of the
form

n −
∑
m∈S

rm,nm for n ∈ NP .

Proof. Let φ: K[P ] → limP T denote the homomorphism induced by the
natural projections K[P ] → K[(0P̂ , x]] for x ∈ P .
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We claim that φ is surjective and moreover limP T is generated as a K-
vector space by the elements φ(m) with m ∈ S .

Let s = (sx)x∈P ∈ limP T . Let x ∈ P and note that sx ∈ Tx = lim(0P̂ ,x] T .
Since Tx is an ASL on (0P̂ , x]op there exist unique scalars λx

m,s ∈ K such that

sx =
∑

m∈N(0
P̂

,x]∩S

λx
m,sφx(m).

For every chain m in P we set xm = max(supp(m)). Note that by the assump-
tions we have that λx

m,r = λ
y
m,r for all x, y ∈ P such that y ≥ x and xm ≤ x, y.

We define rm,s = λxm
m,s . Let

fs =
∑
m∈S

rm,sm ∈ K[P ].

Then by the choice of the coefficients rm,s

φ(fs) = s ∈ lim
P

T .

This shows the first claim. Observe that if x, y ∈ P are incomparable, then
xm > x, y for all m such that rm,φ(xy) 
= 0. Thus ASL2 follows ones we have
proved that the standard monomials are K-linearly independent in limP T .
Assume that

0 =
∑
m∈S

amφ(m) ∈ lim
P

T .

Choose n ∈ S and consider the projection π(T )xn
: limP T → Txn

. Hence

0 =
∑
m∈S

π(T )xn
(amφ(m)) =

∑
m∈N(0

P̂
,xn ]∩S

amφxn
(m) ∈ Txn

.

Since Txn
is an ASL (0P̂ , xn]op, we get that an = 0. This shows that the

standard monomials are indeed K-linearly independent in limP T and thus we
have proved that ASL1 holds. As noted above also ASL2 holds and this shows
that limP T is an ASL on P op.

Example 3.2 (Locally distributive lattices). We refer to [19] for the notion
of distributive lattice. A finite poset P is called a locally distributive lattice, if
P has a terminal element 0P and for all elements z ∈ P the interval [0P , z] is a
distributive lattice. For example the simplicial posets as considered in [8], [12]
and [18], i.e. P has 0P and for all z ∈ P the interval [0P , z] is a boolean algebra,
are locally distributive lattices. Let z ∈ P . Since [0P , z] is a distributive lattice
it follows from a result of Hibi (see [9]) that

Tz = K[[0P , z]]/(xy − (x ∧ y)(x ∨ y))
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is a graded ASL on P op with straightening relation rz(x, y) = (x ∧ y)(x ∨ y)

(which is an integral domain). Here ∧ and ∨ are the meet and join in the
distributive lattice [0P , z]. Note that x ∧y is the meet of x and y in P and x ∨y

is a minimal upper bound of x, y in P depending on z.
Let R = K[P ]. The restriction homomorphisms Tz′z : Tz → Tz′ for z, z′ ∈

P with z′ ≤ z, define a Z-graded KP-algebra. We call lim T the generalized
Hibi ring associated to P . By Theorem 3.1 limP T is an ASL on P op and it is
easy to see that for incomparable x, y ∈ P the straightening relations are

r(x, y) = (x ∧ y)
∑

z

z

where z ranges over all minimal upper bounds for x, y. The sum is defined to
be zero if there are no such elements.

Note that if R is a graded ASL, i.e. R is a graded K-algebra and all elements
of P are homogeneous and have positive degree, then it is known that the
straightening relation (1) gives a presentation of R (see Proposition 1.1 in [7]).
This is not true in the general case (see [14] and [21] for counterexamples).

Together with this observation we proved in Example 3.2 in fact the fol-
lowing corollary:

Corollary 3.3. Let P be a locally distributive lattice and let T be the
KP-algebra constructed in 3.2. Then limP T is a Z-graded ASL on P op and
for limP T = K[P ]/IT we have that the ideal IT is generated by

xy − (x ∧ y)
∑

z

z

where z ranges over all minimal upper bounds for x, y. The sum is defined to
be zero if there are no such elements.

Hence we obtain exactly the poset ring ÃP constructed by Stanley in [17]
for simplicial posets with the same ASL structure. One immediately gets the
following result:

Corollary 3.4. Let P and T be as in Corollary 3.3. If P is a Cohen-
Macaulay poset, i.e. �(P ) is Cohen-Macaulay simplicial complex, then limP T

is a Cohen-Macaulay ring.

Proof. Since limP T is Z-graded and the elements of P have positive de-
gree, it follows from [7, Cor. 7.2] that limP T is a Cohen-Macaulay ring.
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4. Quotients of rings of global sections

Let P be a finite poset and T be a flasque RP-algebra. Given an open subset
Q of P , the restriction of T to Q induces a surjective homomorphism

lim
P

T → lim
Q

T .

Thus limQ T is a quotient of limP T . We are interested in the relationship
between ring properties of these two rings. In general there is no close con-
nection, but in special situations there is more hope.

The goal of this section is to generalize so-called rank-selection theorems
in the tradition of Duval [8], Hibi [10], Munkres [13] and Stanley [15] to our
situation. We follow the ideas of Hibi [10] and at first we define:

Definition 4.1.
(i) LetX be a subset ofP . We denote byPX the sub-posetP \(⋃x∈X[x,1P̂ )

)
.

(ii) For x ∈ P the star of x in P is the sub-poset starP (x) consisting of the
elements y ∈ P such that there exists z ∈ P with x, y ≤ z.

(iii) A non-empty subset X ⊆ P is called excellent if for every element z of
P there exists at most one x ∈ X with x ≤ z.

Given an element x ∈ P we let Ix denote the kernel of the homomorphism

lim
P

T → lim
P \[x,̂1)

T .

Lemma 4.2. Let R be a Zm-graded ring, X be an excellent subset of a finite
poset P and T be a flasque Zm-graded RP-algebra. Then there exists a short
exact sequence

0 →
⊕
x∈X

Ix → lim
P

T → lim
PX

T → 0

of Zm-graded R-modules.

Proof. The homomorphism⊕
x∈X

Ix → lim
P

T

is the sum of the inclusions Ix → limP T . This homomorphism is injective
because X is excellent. It follows from the definition of PX that the sequence
in question is a zero-sequence. It is right-exact, since T is flasque. We leave it
as an exercise to the reader to check middle-exactness.

We can now apply the main result in [2].
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Lemma 4.3. Let (R, �) be a Zm-graded local ring with K = R0 a field and
let P be a finite poset. Let T be a flasque Zm-graded RP-algebra such that the
homomorphism R → limP T is surjective. Assume that:

(i) Ty is Cohen-Macaulay of dimension rank(y) for every y ∈ P .

(ii) For every y ∈ P we have that

H̃ i((y, 1P̂ ); K) = 0 for i 
= rank(P ) − rank(y) − 1.

Then limP T is Cohen-Macaulay with dim limP T = rank(P ). In particular,
if P is a Cohen-Macaulay poset then the assumption (ii) is satisfied.

Proof. By [2, Theorem 4.1] we have that

Hi
�(lim

P
T ) ∼=

⊕
y∈P

H̃ i−rank(y)−1((y, 1P̂ ); K) ⊗K H rank(y)
� (Ty)

as Zm-graded K-vector spaces. By assumption (ii) we have that

H̃ i−rank(y)−1((y, 1P̂ ); K) = 0

for i − rank(y) − 1 
= rank(P ) − rank(y) − 1.

The latter condition is equivalent to i 
= rank(P ). Hence

Hi
�(lim

P
T ) = 0 for i 
= rank(P )

and thus limP T is Cohen-Macaulay of dimension rank(P ).

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every x ∈ X the sets star(x) and star(x)∩PX

are open subsets of P and thus the ranks of elements in these poset coincide
with the ones in P . Let Jx be the kernel of the surjective homomorphism
limstar(x) T → limstar(x)∩PX

T . Since star(x) ∩ PX = star(x) \ [x, 1P̂ ) we get a
commutative diagram of R-modules of the form

0 −−−−→ Ix −−−−→ limP T −−−−→ limP \[x,1P̂ ) T −−−−→ 0

||↓
||↓

||↓
||↓

||↓
0 −−−−→ Jx −−−−→ limstar(x) T −−−−→ limstar(x)∩PX

T −−−−→ 0

Note that limP T → limstar(x) T and limP \[x,1P̂ ) T → limstar(x)∩PX
T are sur-

jective and that Ix → Jx is an isomorphism.
By Lemma 4.3 the rings limstar(x) T and limstar(x)∩PX

T are Cohen-Macaulay
of dimension rank(star(x)) = rank(P ) and rank(star(x) ∩ PX) = rank(P ) −
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1 respectively. The long exact local cohomology sequence induced by the
second row above shows that Jx and thus Ix are Cohen-Macaulay of dimension
rank(P ).

Next we consider the short exact sequence

0 →
⊕
x∈X

Ix → lim
P

T → lim
PX

T → 0

and read the statement of the theorem off from the associated long exact local
cohomology sequence.

If X is an excellent subset of a finite poset P , then PX is called hereditary if
the assumptions (ii)–(iv) of Theorem 1.1 are satisfied. In view of the above res-
ult and a theorem of Hochster implying that the normal monoid ring K[D∩Zd ]
is Cohen-Macaulay of dimension d for every d-dimensional rational pointed
cone D in Rd , we obtain the following

Corollary 4.4. Let P(�) be the face poset of a rational pointed d-
dimensional fan � in Rm, let R = limP T and let T (�) be the associated
KP(�)-algebra of Example 2.1. If X is a hereditary subset of P(�) then the
homomorphism

Hi
�

(
lim
P(�)

T
) → Hi

�

(
lim

P(�)X
T

)
is surjective for i = d, it is injective for i = d − 1, and otherwise it is an
isomorphism.

A sub-poset Q of P is called n-hereditary (or hereditary for short) if there
exists a sequence X1, X2, . . . , Xn of subsets of P and a sequence Q = P1 ⊆
P2 ⊆ · · · ⊆ Pn+1 = P of sub-posets of P such that Xi is an excellent subset
of Pi+1 and Pi = (Pi+1)Xi

hereditary in Pi+1 for i = 1, . . . , n.

Corollary 4.5. Let Q be an n-hereditary sub-poset of a finite poset P .
Let (R, �) be a Zm-graded local ring with R0 = K a field and let T be a
flasque Zm-graded RP-algebra such that the homomorphism R → limP T is
surjective and such that Ty is Cohen-Macaulay of dimension rank(y) for every
y ∈ P . Then

Hi
�

(
lim
P

T
) ∼= Hi

�

(
lim
Q

T
)

for i = 0, . . . , rank(P ) − 1 − n

as Zm-graded limP T -modules. In particular, if limP T is Cohen-Macaulay
and rank(Q) = rank(P ) − n, then limQ T is Cohen-Macaulay.

The ith skeleton of a poset P is the sub-poset

P (i) = {y ∈ P : rank(y) ≤ i}.
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Example 4.6. Let P = P(�) be the face poset of a rational pointed fan
� in Rm and let T = T (�) be the KP(�)-algebra of Example 2.1. We claim
that P (i) is a hereditary sub-poset of P (i+1) with respect to the excellent subset

X(i) = {C ∈ P (i+1) : rank(C) = i + 1}.
For C ∈ X(i) we have that star(C) ∩ P (i+1) contains its supremum, and thus
it is contractible. For every C ∈ P the poset star(C) \ {C} is the face poset of
the boundary of a cone and thus Cohen-Macaulay. This shows the claim.

We obtain immediately from Corollary 4.5 that

depth lim
P

T = max
{
i ∈ N : i ≤ rank(P ) and lim

P (i)
T is Cohen-Macaulay

}
.

If P is the face poset of a simplicial complex � and T is the Stanley-Reisner
KP-algebra associated to �, then this is a well-known result.

5. Presentations of sectioned KP-algebras

Recall that for a set F we denote by K[F ] the polynomial ring on the variables
a ∈ F and that the support of a monomial m ∈ K[F ] is the set supp(m) =
{a ∈ F : m(a) > 0}. Given an inclusion Fx ⊆ F of finite sets we denote
by πx : K[F ] → K[Fx] the natural projection with πx(a) = a if a ∈ Fx

and πx(a) = 0 otherwise. There is a KP-algebra T � associated to every
system � = (Fx)x∈P of subsets of a finite set F with Fx ∩ Fy = ∪z≤x,yFz

for every x, y ∈ P defined by (T �)x = K[Fx] and (T �)xy(f ) = πx(f )

for x ≤ y in P and f ∈ K[Fy] ⊆ K[F ]. The projections πx : K[F ] →
K[Fx] induce a surjective homomorphism π : K[F ] → limP T � with kernel
Ker(π) = ⋂

x∈P Ker(πx) equal to the ideal generated by the set of monomials
m in K[F ] such that supp(m) is not contained in any of the sets Fx . Thus
the ring limP T � is isomorphic to the Stanley-Reisner ring of the simplicial
complex �� consisting of the subsets G of F contained in Fx for some x ∈ P .

Definition 5.1. Let T be a KP-algebra. We call a pair (�, p) of a system
� = (Fx)x∈P of subsets of a finite set F with Fx ∩ Fy = ∪z≤x,yFz for every
x, y ∈ P and a surjection p: T � → T of KP-algebras a presentation of T .
The homomorphisms induced by p are denoted pQ: limQ T � → limQ T for
Q open in P and px : (T �)x → Tx for x ∈ P .

Given a KP-algebra T and x ∈ P , the structure-homomorphism from
limP T to Tx is denoted π(T )x : limP T → Tx .

Definition 5.2. A sectioned KP-algebra (T , ι(T )) consists of a KP-alge-
bra T and K-linear homomorphisms ι(T )x : Tx → limP T with π(T )x ◦
ι(T )x = idTx

for x ∈ P .
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Example 5.3 (Monomial ideals). Let I be a monomial ideal in the poly-
nomial ring S = K[x1, . . . , xn] with irredundant irreducible decomposition
I = �b1 ∩ · · · ∩ �bt

. We consider the KP-algebra T = T (I) on the poset
P = P(I) of Example 2.2. For D ⊆ C ⊆ [t], there is a preferred section
S/

∑
i∈D �bi → S/

∑
i∈C �bi

of the projection TDC induced by a K-linear
homomorphism S → S acting either as the identity or as zero on a monomial
of S. The KP-algebra T is sectioned with ι(T )C such that the composition
π(T )D ◦ ι(T )C is given by the composition

TC = S/
∑
i∈C

�bi → S/
∑

i∈C∩D

�bi → S/
∑
i∈D

�bi

,

where the first homomorphism is the section described above and the second
homomorphism is the natural projection.

The KP-algebras of the form T � considered above are sectioned KP-
algebras with K-linear sections ι(T �)x : T �

x → limP T � defined by
ι(T �)x(f ) = (py(ιx(f )))y∈P , where ιx : K[Fx] → K[F ] denotes the natural
inclusion.

Definition 5.4. We call (�, p) a presentation of the sectioned KP-algebra
T if it is a presentation of T considered as a KP-algebra and the identity
pP ◦ ι(T �)x = ι(T )x ◦ px holds for every x ∈ P .

The notation of the above definition can be summarized in the following
commutative diagram:

K[F ] ������ K[F ] ������ K[F ]
↑||ιx

||↓π
||↓πx

K[Fx] ι(T �)x−−−−−−→ limP T � π(T �)x−−−−−−→ K[Fx]
||↓px

||↓pP
||↓px

Tx
ι(T )x−−−−−−→ limP T

π(T )x−−−−−−→ Tx.

Let us record some facts.

Lemma 5.5. If (�, p) is a presentation of a sectioned KP-algebra T , then

(i) 0 = ⋂
x∈P Ker(π(T )x) ⊂ lim T .

(ii) Ker(pP ) = ⋂
x∈P Ker(π(T )x ◦ pP ).

(iii) Ker(π(T )x ◦ pP ◦ π) = Ker(px ◦ πx) = ιx(Ker(px)) + (F \ Fx).

(iv) ιx(Ker(px)) = Ker(px ◦ πx) ∩ ιx(K[Fx]) = Ker(π(T )x ◦ pP ◦ π) ∩
ιx(K[Fx]).
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The following theorem is our main result in this section.

Theorem 5.6. Let (�, p) be a presentation of a sectioned KP-algebra T .
We have that

(i) Ker(π) = ⋂
x∈P Ker(πx) = I��

is the Stanley-Reisner ideal of �� in
K[F ].

(ii) Ker(pP ◦ π) = ∑
x∈P (ιx(Ker(px))) + ⋂

x∈P Ker(πx).

In particular,
lim
P

T ∼= K[F ]/
∑
x∈P

Ix + I��
,

where Ix = (Ker(px ◦ πx) ∩ ιx(K[Fx])) for x ∈ P .

Proof. Since we have explained (i) above we only need to prove (ii).
Clearly the right hand side is contained in Ker(pP ◦π). Given f ∈ Ker(pP ◦π)

we consider the set P(f ) consisting of the elements x ∈ P such that f con-
tains a monomial m with supp(m) ⊆ Fx . We prove the opposite inclusion
by induction on the cardinality of the set P(f ). First note that P(f ) = ∅
implies f ∈ ⋂

x∈P Ker(πx). If P(f ) 
= ∅ we choose an element x ∈ P(f ).
Since ιxπx(f ) ∈ ιx(Ker(px)) the element f ′ = f − ιxπx(f ) is an element
of Ker(pP ◦ π) with P(f ′) a proper subset of P(f ). This takes care of the
induction step.

In some cases there is a relation between the simplicial complex �� and
the K-algebra limP T . In fact, we have:

Corollary 5.7. Let (�, p) be a presentation of a sectioned flasque KP-
algebra T consisting of Zm-graded Cohen-Macaulay rings such that dx < dy

and fx < fy for x < y in P , where dx = dim(Tx) and fx = |Fx |. We have
that

depth lim
P

T = min
{
i ∈ N : Hi+(fx−dx)

� (K[��]) 
= 0 for some x ∈ P
}
,

dim lim
P

T = max
{
i ∈ N : Hi+(fx−dx)

� (K[��]) 
= 0 for some x ∈ P
}
.

In particular, if there exists an n ∈ Z such that dim(K[Fx]) = dim(Tx) + n

for every x ∈ P and such that dim(K[��]) = dim(limP T ) + n, then limP T

is Cohen-Macaulay if and only if �� is Cohen-Macaulay.

Proof. The K-algebra limP T � is isomorphic to the Stanley-Reisner ring
of ��. The statements are a direct consequence of [2, Corollary 4.2].

Example 5.8 (Toric face rings). Let � be a rational pointed fan in Rm

and choose affine monoids MC for C ∈ � as in Example 2.1. The KP-
algebra T of Example 2.1 with TC = K[MC] is a sectioned KP-algebra with
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ι(T )C : TC → limP T determined by requiring the composition π(T )D ◦ ι(T )C
to be the composition of the inclusion K[MC] ⊆ K[ME] and the face pro-
jection K[ME] → K[MD] if C and D are faces of a common cone E in �,
and requiring π(T )D ◦ ι(T )C to be zero otherwise. Denoting the Hilbert basis
of MC by FC , the surjections pC : K[FC] → K[MC] define a presentation
(�, p) of the sectioned KP-algebra T with � = (FC)C∈� . In the particular
case where MC = Zm∩C for every C ∈ �, the KP-algebra T is denoted T (�),
and T (�)C is Cohen-Macaulay of dimension dim(C) since it is the monoid
ring of a normal affine monoid. Note that Corollary 5.7 applies to T (�).

Finally, we want to compute the initial ideals of the presentation ideal of
limP T with respect to weight orders inω on K[F ] induced by a map ω: F → R.

Theorem 5.9. Let (�, p) be a presentation of a sectioned KP-algebra T .
For a map ω: F → R we have that

K[F ]/inω(Ker(pP ◦ π)) ∼= lim
P

K[Fx]/ inω(Ker(px)).

Proof. The KP-algebra inω T with inω Tx = K[Fx]/ inω(Ker(px)) is pre-
sented by (�, q), where qx is the projection K[Fx] → K[Fx]/ inω(Ker(px)).
Hence by Theorem 5.6

Ker(qP ◦ π) =
(∑

x∈P

ιx(Ker(qx))

)
+

⋂
x∈P

Ker(πx).

Clearly ιx(Ker(qx)) = ιx(inω(Ker(px))) is contained in inω(Ker(pP ◦ π)),
and thus the identity on K[F ] induces a homomorphism K[F ]/ Ker(qP ◦
π) → K[F ]/ inω(Ker(pP ◦ π)). On the other hand, πx(inω(Ker(pP ◦ π))) ⊆
inω(Ker(px)), and thus the projection K[F ] → K[Fx]/ inω(Ker(px)) induces
a homomorphism

K[F ]/ inω(Ker(pP ◦ π)) → K[Fx]/ inω(Ker(px)).

These homomorphisms in turn assemble to a homomorphism

K[F ]/inω(Ker(pP ◦ π)) → lim
P

K[Fx]/ inω(Ker(px)) ∼= K[F ]/ Ker(qP ◦π).

We leave it as an exercise to the reader that this is an inverse isomorphisms to
K[F ]/ Ker(qP ◦ π) → K[F ]/ inω(Ker(pP ◦ π)).
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