
MATH. SCAND. 104 (2009), 5–32

QUATERNIONIC DISCRETE SERIES FOR Sp(1, 1)

HENRIK SEPPÄNEN

Abstract
In this paper we study the analytic realization of the discrete series representations for the group
G = Sp(1, 1) as a subspace of the space of square integrable sections in a homogeneous vector
bundle over the symmetric space G/K := Sp(1, 1)/(Sp(1) × Sp(1)). We use the Szegő map to
give expressions for the restrictions of the K-types occurring in the representation spaces to the
submanifold AK/K .

1. Introduction

In [1], Gross and Wallach considered representations of simple Lie groups G

with maximal compact subgroup K such that the associated symmetric space
G/K has a G-equivariant quaternionic structure (cf. [10]). This amounts to the
group K containing a normal subgroup isomorphic to SU(2). In fact, there is
an isomorphism K ∼= SU(2)×M for a subgroup M ⊆ K , and by setting L :=
U(1) × M , the associated homogeneous space G/L is fibred over G/K with
fibres diffeomorphic to P 1(C). The quaternionic discrete series representations
are then realised on the Dolbeault cohomology groups H 1(G/L, L), where
L → G/L is a holomorphic line bundle. In this model they are able to classify
all the K-types occurring in each of the obtained discrete series representations.
Moreover, they consider the continuation of the discrete series and characterise
the unitarizability of the underlying (�, K)-modules.

In this paper we consider another model of the quaternionic discrete series.
If π is a quaternionic discrete series representation realised on the cohomology
group H 1(G/L, L), and τ is its minimal K-type, then the Schmid D-operator
acts on the sections of the homogeneous vector bundle G ×K Vτ → G/K

where Vτ is some vector space on which the K-type is unitarily realized. The
Hilbert space ker D ∩ L2(G, τ) then furnishes another realization of the rep-
resentation π . We consider the special case when G = Sp(1, 1). In this case
the symmetric space G/K can be embedded into the bounded symmetric do-
main SU(2, 2)/S(U(2)×U(2)) consisting of complex 2×2-matrices of norm
less than one. The restriction of the Harish-Chandra embedding to G/K then
yields a global trivialization of the vector bundle G ×K Vτ . In this model we
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compute the restrictions to the submanifold A · 0 of the highest weight vectors
for the occurring K-types. (Here A is associated with a particular Iwasawa
decomposition G = NAK .) These functions turn out to be fibrewise highest
weight vectors with a hypergeometric function as a coefficient. Hypergeomet-
ric functions occur frequently in representation theory, not only for Lie groups.
For example, in [7], they play a role in the context of Hecke algebras.

We compute the K-types by using the Szegő map defined by Knapp and
Wallach in [5] which exhibits any discrete series representation as a quotient
of a nonunitary principal series representations. The K-types are determined
on the level of the principal series representation, and then the Szegő map is
applied to compute the above mentioned restrictions.

The paper is organized as follows. In Section 2 we explicitly state some
results from the structure theory of the Lie group Sp(1, 1) that will be needed.
In Section 3 we describe the models for the discrete series in the general con-
text of induced representations, and also give an explicit global trivialization.
Section 4 describes the Szegő map by Knapp and Wallach, and we also com-
pute K-types on the level of a nonunitary principal series representation. In
Section 5 we compute the images of the K-types under the Szegő map and
trivialize them to yield vector valued functions. The main theorem of this paper
is Theorem 8 of this section.

2. Preliminaries

2.1. The quaternion algebra

The quaternion algebra, H, is a four-dimensional associative algebra over R
with generators i, j, k satisfying the relations

i2 = j 2 = k2 = −1

ij = k, jk = i, ki = j, and

ji = −ij, ik = −ki, kj = −jk.

Moreover, H is equipped with an involution, ∗, given by

(a + bi + cj + dk)∗ = a − bi − cj − dk, a, b, c, d ∈ R.

The Euclidean norm on the vector space R4 � H can be expressed in terms of
this involution by

|(a, b, c, d)|2 = a2 + b2 + c2 + d2 = (a + bi + cj + dk)∗(a + bi + cj + dk).

It follows immediately that the quaternions of norm one, Sp(1), form a group.
The algebra H can be embedded as a subalgebra of the algebra, M2(C), of 2×2
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complex matrices by

(1) ι : H → M2(C),

where

(2) ι(a + bi + cj + dk) =
(

a + bi c + di

−(c − di) a − bi

)
.

In particular, the generators 1, i, j, k are embedded as

ι(1) =
(

1 0
0 1

)
, ι(i) =

(
i 0
0 −i

)
, ι(j) =

(
0 1

−1 0

)
, ι(k) =

(
0 i

i 0

)
.

The embedding ι also satisfies the relation

ι
(
(a + bi + cj + dk)∗

) =
(

a − bi −c − di

−(−c + di) a + bi

)

=
(

a + bi c + di

−(c − di) a − bi

)∗
,

so ι is a homomorphism of involutive algebras. We observe that, letting z =
a + bi, w = c + di,

ι(H) =
{(

z w

−w z

)
| z, w ∈ C

}

and moreover, we have the identity

a2 + b2 + c2 + d2 = |z|2 + |w|2 = det

(
z w

−w z

)
.

In particular,

Sp(1) �
{(

z w

−w z

)
| |z|2 + |w|2 = 1

}
= SU(2).

2.2. The group Sp(1, 1)

The real vector space H2 ∼= R8 is also equipped with the structure of an H-
module by

(3) (α, (h1, h2)) 	→ (αh1, αh2), α, h1, h2 ∈ H.
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If we identify H2 with the set of 2×1 matrices over H, there is a natural H-linear
action of the matrix group GL(2, H) on H2 given by

(4) ( h1 h2 ) 	→ ( h1 h2 )

(
a b

c d

)
.

Consider the real vector space H2 equipped with the nondegenerate indefinite
Hermitian form

(5) 〈·, ·〉1,1 : ((h1, h2), (h
′
1, h

′
2)) 	→ h1(h

′
1)

∗ − h2(h
′
2)

∗.

Recall that the group Sp(1, 1) is defined as

(6) Sp(1, 1) := {g ∈ GL(2, H)|〈gh, gh′〉1,1 = 〈h, h′〉1,1},

where h := (h1, h2), h
′ := (h′

1, h
′
2). The condition that the form 〈, 〉1,1 be

preserved can be reformulated as

(7) g∗Jg = J,

where g∗ =
(

a b

c d

)∗
:=

(
a∗ c∗

b∗ d∗

)
, and J =

(
1 0
0 −1

)
.

The embedding (1) induces an embedding (which we also denote by the
same symbol)

(8) ι : M2(H) → M4(C)

by

(9)

(
a b

c d

)
	→

(
ι(a) ι(b)

ι(c) ι(d)

)
.

This embedding is a homomorphism of algebras with involution. Applying it
to the identity (7) reveals that the image of Sp(1, 1) is a subgroup of the group

SU(2, 2) = {
g ∈ M4(C) | g∗J̃ g = J̃ , det g = 1

}
,(10)

J̃ :=
(

I2 0
0 −I2

)
.
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2.3. The symmetric space B1(H) = Sp(1, 1)/(Sp(1) × Sp(1))

Let B1(H) denote the unit ball

(11) B1(H) := {h ∈ H | |h| < 1}
in H. The group G := Sp(1, 1) acts transitively on B1(H) by the fractional
linear action

(12) g(h) := (ah + b)(ch + d)−1, g =
(

a b

c d

)
∈ G, h ∈ B1(H).

The isotropic subgroup for the origin is

(13) K := G0 =
{(

a 0
0 d

)
∈ G

}
∼= Sp(1) × Sp(1),

and hence we have the description

(14) B1(H) ∼= G/K

of B1(H) as a homogeneous space. Moreover, from eq. (7) it follows immedi-
ately that the group G is invariant under the Cartan involution

(15) θ(g) := (g∗)−1

and hence the space G/K is equipped with the family of reflections
{σgK}gK∈G/K given by

(16) σgK(xK) := gθ(g−1x)K

which furnish G/K with the structure of a Riemannian symmetric space of the
noncompact type. In particular, for any h ∈ B1(H), there is a unique geodesic
joining 0 and h. We let ϕh denote the reflection in the midpoint, mh, of this
geodesic. The isometry ϕh ∈ G is uniquely characterized by the properties

ϕh(mh) = h,(17)

dϕh(mh) = − IdTmh
(B1(H)) .(18)

We let Sp(1)1 and Sp(1)2 denote the “upper” and “lower” subgroups of K

given by

Sp(1)1 =
{(

a 0
0 1

)
∈ K

}
,

Sp(1)2 =
{(

1 0
0 d

)
∈ K

}
.
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For k =
(

a 0
0 d

)
∈ K , we will write k = (a, d) := (k1, k2). The group Sp(1)1

∼=
SU(2) is then a normal subgroup of K . We will write

(19) π : K → K/Sp(1)1
∼= SU(2)

for the natural projection onto the quotient group.
The group K acts on the tangent space T0(B1(H)) by the differentials at 0 of

the actions on B1(H). By the restriction to the subgroup Sp(1)1 we have a rep-
resentation of SU(2) on T0(B1(H)). We can define an SU(2)-representation,
μh, on the tangent space Th(B1(H)) for any h by the formula

(20) μh(l)v := dϕh(0) ◦ dl(0) ◦ dϕ−1
h (h)v, v ∈ Th(B1(H)), l ∈ Sp(1)1.

The family {μh}h∈B1(H) of SU(2)-representations amounts to an action of
SU(2) as gauge transformations of the tangent bundle T (B1(H)). It is, how-
ever, not invariant under the action of G as automorphisms of the bundle.
Indeed, if we define, for h ∈ B1(H), g ∈ G,

(21) κg,h := ϕ−1
g(h)gϕh ∈ K,

then

(22) μg(h)(l)dg(h)v = dg(h)μh(κ
−1
g,hlκg,h)v,

where the element κ−1
g,hlκg,h belongs to the subgroup Sp(1)1 since it is normal-

ized by K . Hence the principal fibre bundle over B1(H) defined by the family
{μh}h∈B1(H) is G-equivariant, though not elementwise. This shows that the
symmetric space has a quaternionic structure and is a quaternionic symmetric
space in the sense defined by Wolf (cf. [10]).

2.4. Harish-Chandra realization

We consider again the embedding ι defined in eq. (8). If we set

G′ = SU(2, 2),

K ′ = S(U(2) × U(2))

:=
{(

A 0
0 D

)
∈ SU(2, 2) | A ∈ U(2), D ∈ U(2), det(A) det(D) = 1

}
,

ι induces an embedding of pairs (G, K) ↪→ (G′, K ′) and hence descends to
an embedding

(23) G/K ↪→ G′/K ′
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of the corresponding symmetric spaces. We will write SU(2)1 and SU(2)2 for
the images ι(Sp(1)1) and ι(Sp(1)2) respectively.

The Hermitian symmetric space G′/K ′ is by the Harish-Chandra realization
holomorphically, and G-equivariantly, equivalent to the bounded symmetric
domain of type I

(24) G′/K ′ ∼= D := {Z ∈ M2(C) | I2 − Z∗Z > 0}.
The action of G′ on D is given by

(25) g(Z) = (AZ + B)(CZ + D)−1,

if g =
(

A B

C D

)
is a block matrix with blocks of size 2×2. The symmetric space

G/K is thus embedded into D as the subset

D :=
{
Z ∈ M2(C) | I2 − Z∗Z > 0, Z =

(
z w

−w z

)
z, w ∈ C

}
,

and the action is given by

(26) ι(g)(ι(h)) = (ι(a)ι(h) + ι(b))(ι(c)ι(h) + ι(d))−1 = ι(g(h)),

where g(h) is the action defined in (12).
For any Z ∈ D , the tangent space TZ(D) is identified with the complex

vector space M2(C) and the differentials at 0 of the K ′ actions are given by

(27) dk(0)Z = AZD−1, Z ∈ M2(C), k =
(

A 0
0 D

)
∈ K ′.

2.5. Cartan subalgebra and root system

Recall the Cartan involution θ on G (15). Its differential at the identity determ-
ines a decomposition of � into the ±1-eigenspaces � and � respectively,

(28) � = � ⊕ �,

where

� =
{(

X 0
0 Y

)
| X, Y ∈ H, X∗ = −X, Y ∗ = −Y, tr X + tr Y = 0

}
,

� =
{(

0 X

X∗ 0

)
| X ∈ H

}
.
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Let � ⊂ � denote the subalgebra (realized as complex matrices)

(29) � =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

si 0 0 0
0 −si 0 0
0 0 t i 0
0 0 0 −t i

⎞
⎟⎠ | s, t ∈ R

⎫⎪⎬
⎪⎭ .

It has a basis {H1, H2}, where

H1 =
⎛
⎜⎝

i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ,(30)

H2 =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎠ .(31)

Let �C be the complexification of �, and �C and �C denote the complexifications
of � and � respectively. The Cartan decomposition induces the decomposition

(32) �C = �C ⊕ �C.

The complexification �C ⊂ �C is a compact Cartan subalgebra of �C. Let �

denote the set of roots, and for α ∈ �, we let �α denote the corresponding
root space. Then, for each α ∈ � either the inclusion �α ⊆ �C or the inclusion
�α ⊆ �C holds. In the first case, we call the root compact, and in the second
case we call it non-compact. Let ��, and �� denote the set of compact roots
and the set of non-compact roots respectively. We order the roots by letting the
ordered basis {−√−1H ∗

1 , −√−1H ∗
2 } for the real vector space

√−1�∗ define
a lexicographic ordering. We let �+

� denote the set of positive compact roots,
and we let �+

� denote the set of positive non-compact roots.
The roots are given by

�� = {±2
√−1H ∗

1 , ±2
√−1H ∗

2 },(33)

�� = {±√−1(H ∗
1 + H ∗

2 ), ±√−1(H ∗
1 − H ∗

2 )}.(34)

In terms of quaternionic matrices, the corresponding root spaces are

�±2
√−1H ∗

1
= C

(
j ∓ √−1k 0

0 0

)
,(35)

�±2
√−1H ∗

2
= C

(
0 0

0 j ∓ √−1k

)
,(36)
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and

�±√−1(H ∗
1 +H ∗

2 ) = C

((
0 j

−j 0

)
∓

(
0 k

−k 0

))
,(37)

�±√−1(H ∗
1 −H ∗

2 ) = C

((
0 1
1 0

)
∓

(
0 i

−i 0

))
(38)

respectively.
According to the lexicographic ordering on

√−1�∗ determined by the
ordered basis {−√−1H ∗

1 , −√−1H ∗
2 }, the positive noncompact roots are

α1 = −√−1H ∗
1 + √−1H ∗

2 ,(39)

α2 = −√−1H ∗
1 − √−1H ∗

2 ,(40)

and α1 < α2. Moreover, α1 + α2 = −2
√−1H ∗

1 , i.e., the sum is a root. Hence
{α1} is a maximal sequence of strongly orthogonal positive noncompact roots.
We let B(·, ·) denote the Killing form on �. We use it to identify �∗ with �
according to

(41) α(X) := B(X, Hα), α ∈ �∗, X ∈ �.

Via this identification, the Killing form induces a bilinear form on �∗ by

(42) 〈α, β〉 := B(Hα, Hβ).

For α ∈ �, we select a root vector Eα ∈ �α in such a way that

(43) B(Eα, E−α) = 2

〈α, α〉 .

2.6. Iwasawa decomposition

Consider the maximal abelian subspace

(44) � := R(Eα1 + E−α1) =
{(

0 tI2

tI2 0

)
| t ∈ R

}

of �. The Iwasawa decomposition of � with respect to � is given by

� = � ⊕ � ⊕ �.

The corresponding global decomposition is

G = NAK,
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where, written as quaternionic matrices

N =
{(

1 + q −q

q 1 − q

)
| q ∈ H, q∗ = −q

}
,

A =
{(

cosh t sinh t

sinh t cosh t

)
| t ∈ R

}
.

Remark 1. One can just as well use an Iwasawa decomposition G =
KAN , the correpondence between these two decompositions being (nak)−1 =
k−1a−1n−1. In the sequel will see that it is sometimes convenient use this other
decomposition as a means for finding the components in our decomposition.

In the sequel we will need the explicit formulas for the NAK-factorization

(45) g = n(g)a(g)κ(g)

of an element g ∈ Sp(1, 1).

Lemma 2. For g =
(

a b

c d

)
, and log a(g) = t (Eα1 + E−α1), et and κ(g) are

given by

et = (1 − |bd−1|2)1/2

|1 − bd−1| , κ(g) = et

(
a − c 0

0 d − b

)
.

Proof. The proof is by straightforward computation. We prove only the
second statement.

The identity(
a b

c d

)
=

(
1 + q −q

q 1 − q

) (
cosh t sinh t

sinh t cosh t

) (
u1 0
0 u2

)

is equivalent to(
a b

c d

)

=
(

(cosh t + q(cosh t − sinh t))u1 (sinh t + q(sinh t − cosh t))u2

(sinh t + q(cosh t − sinh t))u1 (cosh t + q(sinh t − cosh t))u2

)
.

Hence
a − c = e−t u1

d − b = e−t u2.
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3. Quaternionic discrete series representations

3.1. Generalities

The Cartan decomposition (28) decomposes � into two invariant subspaces for
the adjoint action of K . Moreover, we have the isomorphism of K-representa-
tions

(46) Ad�/�
∼= Ad� .

We extend Ad� to a complex linear representation of K on the space (�/�)C ∼=
�C.

Consider now the surjective mapping

(47) p : G → G/K, p(g) = gK.

The differential at the origin

(48) dp(e) : � → TeK(G/K)

intertwines the adjoint action of K on � with the differential action on the
tangent space TeK(G/K). The kernel of dp(e) is �, and as K-representations
we thus have the isomorphism

(49) Ad∗
�

∼= (dK(o)C)∗,

where the right hand side denotes the complex linear dual to the representation
given by the complexified actions of the tangent maps at the origin. Using the
quotient mapping induced by (48) and the realization of the differential action
of K at the tangent space T0(D), we obtain the formula

(50) Ad∗
�(k)Z = (A−1)tZDt .

Here Z ∈ M2(C) ∼= T ∗
0 (D) ∼= (T0(D)C)∗, and k =

(
A 0
0 D

)
∈ K ∼= SU(2) ×

SU(2). The restriction, Ad∗
� |SU(2)1 , to the subgroup SU(2)1 is then given by

(51) Ad∗
� |SU(2)1(k)Z = (A−1)tZ.

If we let {Eij }, i, j = 1, 2 denote the standard basis for the complex vector
space (i.e., Eij has 1 at the position on the ith row and j th column and zeros
elsewhere), then clearly the subspace

(52) V := CE11 ⊕ CE21
∼= C2

spanned by the basis elements in the first column is SU(2)1-invariant. Like-
wise, the subspace spanned by the basis elements of the second column is



16 henrik seppänen

invariant. We now let τ denote the representation given by restricting the K-
representation Ad∗

� |SU(2)1 to the subspace V , and let τk denote the kth symmet-
ric tensor power of the representation τ . Then clearly, the natural identification
of τk with a representation of SU(2) is equivalent to the standard representa-
tion of SU(2) on the space of homogeneous polynomial functions p(z, w) on
C2 of degree k, i.e., we have

(53) τk(l1, l2)p(z, w) := p(l−1
1 (z, w)) := p(az + bw, −bz + aw),

where l−1
1 =

(
a b

−b a

)
∈ SU(2). We let Vτk

denote the representation space

for τk . The (smoothly) induced representation IndG
K(τk) is then defined on the

space

C∞(G, τk) := {
f ∈ C∞(G, Vτk

) | f (gl−1) = τk(l)f (g) ∀g ∈ G ∀l ∈ K
}
,

i.e., on the space of smooth sections on the G-homogeneous vector bundle

(54) Vk → G/K := G ×K Vτk
→ G/K.

We fix the K-invariant inner product on 〈 , 〉k on Vτk
given by

(55) 〈p, q〉k := p(∂)(q∗)(0),

where p(∂) is the differential operator defined by substituting ∂
∂z

for z, and ∂
∂w

for w in the polynomial function p(z, w), and( k∑
j=1

ajz
jwk−j

)∗
:=

k∑
j=1

ajz
jwk−j .

We use this inner product to define an Hermitian metric on Vk by

(56) hZ(u, v) := 〈(g−1)Zu, (g−1)Zv〉k, u, v ∈ Vk
Z,

where Z = gK and (g−1)Z denotes the fibre map Vk
Z → Vk

0
∼= Vk associated

with g−1. For a fixed choice, ι, of G-invariant measure on G/K we define
L2(IndG

K(τk)) as the Hilbert space completion of the space

(57)

{
s ∈ �(G/K, Vk) |

∫
G/K

hZ(s, s) dι(Z) < ∞
}

.

The tensor product representation τk ⊗ Ad(K)|�C decomposes into K-types
according to

(58) τk ⊗ Ad(K)|�C =
∑
β∈��

mβπβ−k
√−1H ∗

1
,
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where mβ ∈ {0, 1}, and πβ−k
√−1H ∗

1
is the irreducible representation of K with

highest weight β − k
√−1H ∗

1 . Let τ−
k be the subrepresentation of the tensor

product given by

(59) τ−
k =

∑
β∈�−

�

mβπβ−k
√−1H ∗

1
,

and letV −
k be the subspace ofVτk

⊗�C on which τ−
k operates. LetP : Vτk

⊗�C →
V −

k be the orthogonal projection. Define the space C∞(G, τ−
k ) in analogy with

(3.1). We recall that the Schmid D operator is a differential operator mapping
the space C∞(G, τk) into C∞(G, τ−

k ) and is defined as

(60) Df (g) =
∑

i

P (Xif (g) ⊗ Xi),

where {Xi} is any orthonormal basis for �C, and Xif denotes left invariant
differentiation, i.e.,

Xf (g) := d

dt
f (g exp(tX))|t=0, X ∈ �,

Zf (g) := Xf (g) + iY (g), Z = X + iY ∈ �C.

The subspace ker D ∩L2(IndG
K(τk)) is then invariant under the left action of G

and defines an irreducible representation of G belonging to the quaternionic
discrete series. We let Hk denote this representation space. By [1], it belongs
to the discrete series for k ≥ 1.

Remark 3. The model we use to describe the Hilbert space Hk can be used
to realize any discrete series representation by induction from K to G of the
minimal K-type for any pair (G, K) where G is semisimple and K is maximal
compact (cf. [4]). By [1], for k ≥ 1, τk occurs as a minimal K-type for some
discrete series representation of G = Sp(1, 1).

3.2. Global trivialization

Let us for a while view the representation space Hk as a space of sections of the
vector bundle Vk → G/K . We recall the diffeomorphism G/K ∼= D given by
gK 	→ g · 0. This lifts to a global trivialization, �, of the bundle Vk → G/K

given by

(61) � : G ×K V τk → D × Vτk
, �([(g, v)]) := (g · 0, τk(J (g, 0))v),

where J (g, Z) denotes the KC-component of g exp Z – the automorphic factor
of g at Z (cf. [8]).
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If F : G → V τk is a function in C∞(G, τk), its trivialized counterpart is
the function f : D → Vτk

given by

(62) f (g · 0) := τk(J (g, 0))F (g).

In the trivialized picture, the group G acts on functions on D by

(63) gf (Z) := τk(J (g−1, Z))−1f (g−1Z).

More explicitly, if g−1 =
(

A B

C D

)
(considered as a matrix in SU(2, 2)), then

J (g−1Z) =
(

A − (AZ + B)(CZ + D)−1C 0

0 D

)
∈ SL(4, C),

and

gf (Z) = k� (A − (AZ + B)(CZ + D)−1C)f ((AZ + B)(CZ + D)−1).

The action of SU(2) on the vector space Vτk
is here naturally extended to an

action of SL(2, C) by the formula (53).
In the trivialized picture, the norm (57) can also be described explicitly.

Proposition 4. Let k ≥ 1. In the realization of the Hilbert space Hk as a
space of Vτk

-valued functions on D, the norm (57) is given by

(64) ‖f ‖k :=
∫

B1(H)

(1 − |q|2)k〈f (q), f (q)〉k(1 − |q|2)−4 dm(q).

Proof. For Z = gK , a fibre map (g−1)Z : Vτk
→ Vτk

is given by

(65) (g−1)Zv = τk(J (g, 0))−1v.

If g =
(

cosh tI2 sinh tI2

sinh tI2 cosh tI2

)
, the automorphic factor J (g, 0) is given by (cf. [4])

(66)

J (g, 0) =
(

cosh t−1I2 0

0 cosh tI2

)
=

(
(1 − tanh2 t)1/2I2 0

0 cosh tI2

)
.

A general point Z ∈ D can be described as Z = kgK for g as above. The
cocycle condition

(67) J (kg, 0) = J (k, g0)J (g, 0)
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then implies that

(68) J (kg, 0) =
(

k1(1 − tanh2 t)1/2I2 0

0 k2 cosh tI2

)
,

if k = (k1, k2) ∈ SU(2) × SU(2). Hence, for k = 1

hZ(u, v) = tr
(
(k1(1 − tanh2 t)1/2I2)

tu((k1(1 − tanh2 t)1/2I2)
tv)∗

)
= tr

(
(I2 − ZZ∗)tuv∗) .

For arbitrary k, we have

(69) hZ(u, v) = tr
( k� (I2 − ZZ∗)tuv∗).

By analogous considerations, it follows that the invariant measure is given by

dι(Z) = det(I2 − Z∗Z)−2dm(Z),

where dm(Z) denotes the Lebesgue measure. Hence, we obtain the formula

(70)

∫
D
〈 k� (I2 − ZZ∗)tf (Z), f (Z)〉k det(I2 − Z∗Z)−2 dm(Z)

for the norm (57). In quaternionic notation, this translates into the statement
of the proposition.

4. Principal series representations and the Szegő map

In this section we will consider a realization of the discrete series representation
ker D ∩ L2(Ind KG(τk)) as a quotient of a certain nonunitary principal series
representation. We first state the theorem, and then we investigate how the
given principal series representation decomposes into K-types. From now on
we fix the number k and simply write τ for τk .

Recall the maximal abelian subspace � of � and consider the parabolic
subgroup

P = MAN

of G, where

M = ZK(A) =
{(

u 0
0 u

)
| u ∈ SU(2)

}
,

and A and N are the ones that occur in the Iwasawa decomposition. Let σ

be the restriction of the representation τ to the subgroup M . Then, clearly,
the subspace defined by the M-span of the τ -highest weight-vector equals
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Vτ and the representation σ is also irreducible. We will hereafter denote this
representation space by Vσ . Recall the identification of Vσ with a space of
homogeneous polynomials. We thus adopt a somewhat abusive notation and
write zσ for the highest weight-vector. Let ν ∈ �∗ be a real-valued linear
functional and consider the representation

(71) σ ⊗ exp(ν) ⊗ 1

of P . The induced representation IndG
P (σ ⊗ exp(ν) ⊗ 1) is defined on the set

of continuous functions f : G → Vσ having the P -equivariant property

(72) f (gman) = e−ν(log a)σ (m)−1f (g).

The action of G on this space is given by left translation,

IndG
P (σ ⊗ exp(ν) ⊗ 1)(f )(x) := Lg−1f (x) = f (g−1x).

Consider now the smoothly induced representation IndK
M(σ) which operates

on the space, C∞(K, σ), of all smooth functions f : K → Vσ having the
M-equivariance property

(73) f (km) = σ(m)−1f (k)

with K-action given by left translation. The Iwasawa decomposition G = KAN
shows that, a fortiori, G = KMAN (although this factorization is not unique).
Given a linear functional ν ∈ �∗, we can therefore extend any such function
on K to a function on G by setting

f (kman) = e−ν(log a)σ (m)−1f (k), for g = kman.

The equivariance property (73) of f guarantees that this is indeed well-defined
even though the factorization of g is not. The extended function f has the P -
equivariance property (72). In fact, this extension procedure defines a bijec-
tion between the representation spaces of the representations IndK

M(σ) and
IndG

P (σ ⊗ exp(ν) ⊗ 1). There is a natural pre-Hilbert space structure on this
representation space given by

‖f ‖2 =
∫

K

‖f (k)‖2
σ dk,

where ‖ ·‖σ denotes the inner product on Vσ and dk is the Haar measure on K .
The completion of the space of M-equivariant smooth functions K → Vσ with
respect to this sesquilinear form can be identified with the space of all square-
integrable Vσ -valued functions having the property (73). We will denote the
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K-representation on this space by L2(IndK
M(σ)). By the extension procedure

using ν described above, this completion can be extended to the space of
all P -equivariant Vσ -valued functions on G such that the restriction to K is
square-integrable.

We now state the theorem by Knapp and Wallach.

Theorem 5 ([5], Thm. 6.1). The Szegő mapping with parameters τ and ν

given by

(74) S(f )(x) :=
∫

K

eν log a(lx)τ (κ(lx)−1)f (l−1) dl

carries the space C∞(K, σ) into C∞(G, τ) ∩ ker D, provided that ν and τ

are related by the formula

(75) ν(Eα1 + E−α1) = 2〈−k
√−1H ∗

1 + n1α1, α1〉
〈α1, α1〉 ,

where
n1 = |{γ ∈ �+

� | α(γ ) = α1 and α1 + γ ∈ �}|.

In this case n1 = 1, since the root α2 is the only one satisfying the above
condition. Moreover, an easy calculation gives that

(76) Eα1 = 1

2

((
0 1
1 0

)
+

(
0 i

−i 0

))
.

Hence, the condition (75) takes the form

(77) ν

((
0 1
1 0

))
= k + 2.

Hereafter, we will make the identification

(78) ν = k + 2

of the functional with a natural number. We now proceed with a more detailed
study of the representation L2(IndK

M(σ)).

Lemma 6. The representation L2(IndK
M(σ)) is K-equivalent to L2(K/M)⊗

Vσ .

Proof. Let f be a continuous function from K to Vσ (= Vτ ) having the
property of M-equivariance

f (km) = σ(m)−1f (k), k ∈ K, m ∈ M.
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Then the function
f̃ (k) := τ(k)f (k)

is clearly right M-invariant and hence we can define the function F : K/M →
Vσ by

F(kM) = f̃ (k).

This is obviously well-defined. By choosing a basis {ej } for Vσ , we can write

F(kM) =
∑

j

Fj (kM)ej

for some complex-valued functions Fj . We now define a mapping

T : L2(IndK
M(σ)) → L2(K/M) ⊗ Vσ

by
Tf :=

∑
j

Fj ⊗ ej .

To see that this mapping is a bijection, note that any vector in the Hilbert space
L2(K/M) ⊗ Vσ can be uniquely expressed in the form

∑
j Gj ⊗ ej . We can

thus define a mapping

S : L2(K/M) ⊗ Vσ → L2(IndK
M(σ))

by

S

(∑
j

Gj ⊗ ej

)
(k) := τ(k)−1

∑
j

Gj (kM)ej

and it is easy to see that S is the inverse of T .
It remains now only to prove the K-equivariance. Pick therefore any element∑
j Gj ⊗ ej from the Hilbert space on the right hand side. We have

k

(∑
j

Gj ⊗ ej

)
=

∑
j

Gj ◦ Lk−1 ⊗ τ(k)ej .

If we denote the matrix coefficients of τ(k) with respect to the basis {ej } by
τ(k)ij , we have

τ(k)ej =
∑

i

τ (k)ij ei

and hence ∑
j

Gj ◦ Lk−1 ⊗ τ(k)ej =
∑
i,j

Gj ◦ Lk−1 ⊗ τ(k)ij ei .
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Applying S to the above expression yields

S

(∑
i,j

Gj ◦ Lk−1 ⊗ τ(k)ij ei

)
(k′) = σ(k′)−1

∑
i,j

Gj (k
−1k′M)τ(k)ij ei

= τ(k′)−1τ(k)
∑

j

Gj (k
−1k′M)ej

= S

(∑
j

Gj ⊗ ej

)
◦ Lk−1(k′).

We shall now examine the left action of K on the L2(K/M)-factor in the
tensor product more closely. In particular, we are interested in a certain K-
invariant subspace defined by a subclass of the K-types occurring in L2(K/M).
We recall the identification of the K-representation τj with a standard repres-
entation of SU(2). We therefore let τj also denote the corresponding SU(2)-
representation, and we let Vj denote the associated vector space of polynomi-
als. Any irreducible representation of K = SU(2) × SU(2) is isomorphic to
a tensor product of irreducible SU(2)-representations, i.e., it is realized on a
space

(79) V ∗
j ⊗ Vi,

for some i, j ∈ N. With the fixed ordering of the roots, the polynomial function
(z, w) 	→ zj is a highest weight vector in Vj , and the polynomial function
(z, w) 	→ wj is a lowest weight vector. We will use the abusive notation
where they are denoted by zj and wj respectively.

Proposition 7. The algebraic sum

(80) W :=
⊕
j∈N

V ∗
j ⊗ Vk+j

(where k ∈ N corresponds to the representation σ ) of K-types is a subspace
of L2(IndK

M(σ). The highest weight vector for the K-type V ∗
j ⊗ Vk+j is given

by the function

(81) fj (k) := 〈τj ◦ π(k)zj , wj 〉j τ (k)−1zσ ,

where π denotes the projection onto the first factor in SU(2) × SU(2).

Proof. For

k =
(

u1 0
0 u2

)
, k′ =

(
u′

1 0
0 u′

2

)
∈ K,
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we have

k′kM =
(

u′
1u1 0

0 u′
2u2

)
M =

(
u′

1u1u
−1
2 (u′

2)
−1 0

0 I

) (
u′

2u2 0

0 u′
2u2

)
M

=
(

u′
1u1u

−1
2 (u′

2)
−1 0

0 I

)
M

and this shows that the left action of K = SU(2) × SU(2) on L2(K/M)-
functions is equivalent to the action Lg−1 ⊗ Rh on L2(SU(2)):

(Lg−1 ⊗ Rh)f (l) := f (g−1lh).

Then, by the Peter-Weyl Theorem, L2(K/M) decomposes into K-types ac-
cording to

(82) L2(K/M) �
⊕

j∈ ̂SU(2)

(Vj ⊗ V ∗
j ).

Tensoring with Vk gives the sequence of K-isomorphisms

L2(K/M) ⊗ Vk �
⊕

j∈ ̂SU(2)

(Vj ⊗ V ∗
j ) ⊗ Vk �

⊕
j∈ ̂SU(2)

(V ∗
j ⊗ Vj ) ⊗ Vk

�
⊕

j∈ ̂SU(2)

V ∗
j ⊗ (Vj ⊗ Vk).

Moreover, each term (Vj ⊗ Vk) has a Clebsch-Gordan decomposition

(Vj ⊗ Vk) � (Vk+j ⊕ · · ·)
and therefore each term Vj ⊗ Vk+j will constitute a K-type in L2(K/M) ⊗
Vk . Such a K-type has a highest weight-vector (wj )∗ ⊗ zk+j . Using first the
embedding into V ∗

j ⊗ (Vj ⊗Vk) and then the K-isomorphism given by Lemma
6, we see that highest weight-vector corresponds to the M-equivariant function

(83) fj (k) := 〈τj ◦ π(k)zj , wj 〉j σ (k)−1zσ .

5. Realization of K-types

By [1], the only K-types occurring in the quaternionic discrete series for
Sp(1, 1) are the ones that form the subspace W in Proposition 7. In this section
we compute their realizations as Vτ -valued functions on B1(H) when restricted
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to the submanifold

(84) A · 0 = {t ∈ H | −1 < t < 1}
of B1(H). For s ∈ R, we let

(85) as =
(

cosh s sinh s

sinh s cosh s

)
∈ Sp(1, 1).

Then as · 0 = tanh s ∈ A · 0. We start by computing the Szegő images of the
fj when restricted to points as .

Each of the standard SU(2)-representations, VN , can be naturally extended
to a representation of GL(2, C) by

(86) p 	→ p ◦ g−1, p ∈ VN, g ∈ GL(2, C).

This action of GL(2, C) will occur frequently in the sequel.

Lemma 8. The Szegő transform of the highest weight-vector fj is given by

Sfj (as) = (cosh s)−ν

×
∫

SU(2)

(det(1 − l tanh s))−(ν+σ)/2〈τj (l−1)zj , wj 〉j σ (1 − l tanh s)zσ dl

when restricted to the A-component in the decomposition G = NAK .

Proof. Take

k =
(

u1 0
0 u2

)
and x =

(
cosh s sinh s

sinh s cosh s

)
.

Then
kx =

(
u1 cosh s u1 sinh s

u2 sinh s u2 cosh s

)
,

and Lemma 2 gives that

eν(log H(kx)) =
(

1 − |u1u
−1
2 tanh s|2

|1 − u1u
−1
2 tanh s|2

)ν/2

,

κ(kx) =
(

1 − |u1u
−1
2 tanh s|2

|1 − u1u
−1
2 tanh s|2

)1/2

×
(

u1 cosh s − u2 sinh s 0

0 u2 cosh s − u1 sinh s

)
.
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Hence

τ(κ(lx))−1 =
(

1 − |u1u
−1
2 tanh s|2

|1 − u1u
−1
2 tanh s|2

)−σ

σ (u1 cosh s − u2 sinh s)−1

and we get

Sfj (as) =
∫

K

(
1 − |u1u

−1
2 tanh s|2

|1 − u1u
−1
2 tanh s|2

)(ν−σ)/2

〈τj ◦ π(k−1)zj , wj 〉j

× σ(u1 cosh s − u2 sinh s)−1σ(u1)z
σ dk

=
∫

K

(
1 − | tanh s|2

|1 − u1u
−1
2 tanh s|2

)(ν−σ)/2

〈τj ◦ π(k−1)zj , wj 〉j

× σ(cosh s − u−1
1 u2 sinh s)−1zσ dk

= (cosh s)−ν

∫
K

|1 − u1u
−1
2 tanh s|σ−ν〈τj ◦ π(k−1)zj , wj 〉j

× σ(1 − u−1
1 u2 tanh s)−1zσ dk.

Using the identities

(1 − u−1
1 u2 tanh s)−1 = 1 − u−1

2 u1 tanh s

|1 − u−1
2 u1 tanh s|2

and

|1 − u1u
−1
2 tanh s| = |u−1

1 (1 − u1u
−1
2 tanh s)u1| = |1 − u−1

2 u1 tanh s|
in the above equality yields

Sfj (as) = (cosh s)−ν

×
∫

K

|1−u−1
2 u1 tanh s|−(σ+ν)〈τj ◦π(k−1)zj , wj 〉j ×σ(1−u−1

2 u1 tanh s)zσ dk.

We observe that the integrand is right M-invariant. In fact,

(cosh s)−ν

∫
K

|1 − u1u
−1
2 tanh s|−(σ+ν)〈τj ◦ π(k−1)zj , wj 〉j

× σ(1 − u−1
2 u1 tanh s)zσ dk

= (cosh s)−ν

∫
K

|1 − π(k−1)−1 tanh s|−(σ+ν)〈τj ◦ π(k−1)zj , wj 〉j
× σ(1 − π(k−1)−1 tanh s)zσ dk.
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Therefore, it can be written as an integral over the coset space K/M � SU(2),
i.e.,

Sfj (as) = (cosh s)−ν

×
∫

SU(2)

|1 − l−1 tanh s|−(σ+ν)〈τj (l)zj , wj 〉j σ (1 − l−1 tanh s)zσ dl.

Making the change of variables l 	→ l−1, and using the invariance of the Haar
measure on SU(2) under this map, yields

Sfj (as) = (cosh s)−ν

×
∫

SU(2)

|1 − l tanh s|−(σ+ν)〈τj (l−1)zj , wj 〉j σ (1 − l tanh s)zσ dl,

and this finishes the proof.

5.1. Highest weight-vectors for K-types

The polynomial functions pl1,l2 defined by

pl1,l2(z, w) := zl1wl2 ,

for which l1 + l2 = N form a basis for VN . Occasionally we will however use
the somewhat ambiguous notation zl1wl2 when there is no risk for misinter-
pretation.

We write ζ = tanh s and consider the action of (1 − ζ l) on the basis vector
pl1,l2 . We have

(87) (1 − ζ l)pl1,l2(z, w) =
(

(1 − ζ l)−1

(
z

w

))l1

1

(
(1 − ζ l)−1

(
z

w

))l2

2

,

where the subscripts denote the projection functions

(z, w)1 = z, (z, w)2 = w

onto the first and second coordinate respectively.
The binomial theorem gives the following expression for the first factor
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above: (
(1 − ζ l)−1

(
z

w

))l1

1

= det(1 − ζ l)−l1

l1∑
j1=0

(
l1

j1

)
zj1(−ζ )l1−j1

(
l−1

(
z

w

))l1−j1

1

= det(1 − ζ l)−l1

l1∑
j1=0

zj1

(
l1

j1

)
(−ζ )l1−j1 lpl1−j1,0(z, w),

and the second factor has a similar expression. Substituting these into (87)
yields the double sum

(88) (1 − ζ l)pl1,l2(z, w) = det(1 − ζ l)−σ

×
l1∑

j1=0

l2∑
j2=0

(
l1

j1

)(
l2

j2

)
(−ζ )(l1+l2−j1−j2)zj1wj2 lpl1−j1,l2−j2(z, w).

Denote the normalization of the basis vector pr,s by er,s . Then

pr,s = (r!s!)1/2er,s

and the term lpl1−j1,l2−j2 in (88) can be written as the sum

(89) lpl1−j1,l2−j2 = (r!s!)1/2
∑

r+s=l1+l2−j1−j2

M(l; l1 − j1, l2 − j2; r, s)er,s .

In what follows, we will use an expression for the first factor in the integrand
in Lemma 8 as a series of SU(2)-characters. The following result can be found
in [3].

Lemma 9. The function l 	→ (det(1 − l tanh s)−λ has the character expan-
sion

(det(1 − l tanh s)−λ

=
∞∑

j=0

∞∑
i=0

(λ − 1)i+j+1

(i + j + 1)!

(λ − 1)i

i!
(j + 1)(tanh s)2i+jχj

=
∞∑

j=0

(λ − 1)j+1

j !
(tanh s)j 2F1(λ + j, λ − 1; j + 2; tanh2 s)χj .
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Proposition 10. The function Sfj has the following expression when re-
stricted to A.

Sfj (as) = (1 − tanh2 s)
σ+2

2

σ∑
i=0

(
σ

i

)
(−1)j+i (2σ)j+i+1 j !

(j + i + 1)!
(tanh s)j+2i

×2 F1(2σ + 1 + j + i, 2σ ; j + i + 2; tanh2 s)zσ .

Proof. In the defining integral

Sfj (as) = (cosh s)−ν

∫
SU(2)

(det(1−ζ l))−(σ+1)〈τj (l−1)zj , wj 〉j σ (1−ζ l)zσ dl

we already have a character expansion for the factor (det(1−ζ l))−λ. Therefore,
it suffices to determine the expansion of

〈τj (l−1)zj , wj 〉j σ (1 − ζ l)zσ

into matrix coefficients. As a special case of (88) we have

σ(1 − ζ l)pσ,0 = det(1 − ζ l)−σ

σ∑
i=0

(
σ

i

)
(−ζ )σ−izi lpσ−i,0,

and the special case of (89) is

lpσ−i,0 = ((σ − i)!)1/2
σ−i∑
r=0

〈τσ−i (l)eσ−i,0, er,σ−i−r〉σ−ier,σ−i−r .

To sum up, we have

σ(1 − ζ l)pσ,0(z, w) = det(1 − ζ l)−σ

×
σ∑

i=0

(
σ

i

)
(−ζ )σ−izi((σ − i)!)1/2

σ−i∑
r=0

〈τσ−i (l)eσ−i,0, er,σ−i−r〉σ−i

× er,σ−i−r (z, w).

The integrand is thus a linear combination of terms of the form

(90) 〈τj (l−1)zj , wj 〉j 〈τσ−i (l)eσ−i,0, er,σ−i−r〉σ−i .

It is easy to see (using the formula (53)) that the identity

(91) 〈τj (l−1)zj , wj 〉j = (−1)j 〈τj (l)zj , wj 〉j
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holds, and using this identity in (90), the resulting terms are matrix coefficients
for the tensor product representation τj ⊗ τσ−i . In fact,

(92) 〈τj (l)zj , wj 〉j 〈τσ−i (l)eσ−i,0, er,σ−i−r〉σ−i

=
(

1

(σ−i)!r!(σ−i−r)!

)1/2

〈(τj⊗τσ−i )(l)(z
j⊗zσ−i ), wj⊗zrwσ−i−r〉j ⊗ (σ−i).

We recall the Clebsch-Gordan decomposition for the tensor product Vj ⊗Vσ−i .
There is an isometric diag(SU(2) × SU(2))-intertwining operator

φ : Vj ⊗ Vσ−i → Vj+σ−i ⊕ · · ·
which is of the form

φ = φj+σ−i ⊕ · · · ⊕ φ(±(j−(σ−i))

where each term is an intertwining partial isometry and the sum is orthogonal,
i.e., the terms have mutually orthogonal kernels. The vector zj ⊗ zσ−i is a
weight vector of weight −(j + σ − i)

√−1H ∗
1 and hence it maps to a highest

weight vector in the summand Vj+σ−i . Therefore only the term correspond-
ing to this summand in the orthogonal expansion of the inner product (92)
is nonzero. To be more precise, we use the isometry φ to write the matrix
coefficient (92) as the sum

(93) 〈φ(τj ⊗ τσ−i )(l)(z
j ⊗ zσ−i ), φ(wj ⊗ zrwσ−i−r )〉

=
∑

s

〈φj+σ−i−2s(τj⊗τσ−i )(l)(z
j⊗zσ−i ), φj+σ−i−2s(w

j⊗zrwσ−i−r )〉j+σ−i−2s .

Since

φj+σ−i ((τj ⊗ τσ−i )(l)(z
j ⊗ zσ−i )) =

(
j !(σ − i)!

(j + σ − i)!

)1/2

τj+σ−i (l)z
j+σ−i ,

the sum (93) is equal to its first term

j !(σ − i)!

(j + σ − i)!
〈τj+σ−i (l)z

j+σ−i , zrwj+σ−i−r〉j+σ−i .

Moreover, since we are integrating against characters, only the term corres-
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ponding to r = j + σ − i will contribute. Hence we have the equality

(94) Sfj (as) = (1 − tanh2 s)
σ+2

2

σ∑
i=0

(
σ

i

)
(−ζ )σ−i (−1)j

j !(σ − i)!

(j + σ − i)!
zσ

×
∫

SU(2)

(det(1 − ζ l))−(2σ+1)〈τj+σ−i (l)z
j+σ−i , zj+σ−i〉j+σ−i dl.

So, by using the character expansion in Lemma 9 and the Schur orthogonality
relations for matrix coefficients, we get the following expression for the above
integral with the index i fixed.∫

SU(2)

(det(1 − ζ l))−(2σ+1)〈τj+σ−i (l)z
j+σ−i , zj+σ−i〉j+σ−i dl

= (2σ)j+σ−i+1

(j + σ − i)!
(tanh s)j+σ−i

×2 F1(2σ + 1 + j + σ − i, 2σ ; j + σ − i + 2; tanh2 s)

× (j + σ − i)!

j + σ − i + 1
.

So, substitution of this into the sum (94) and reversing the order of summation
yields

Sfj (as) = (1 − tanh2 s)
σ+2

2

σ∑
i=0

(
σ

i

)
(−1)j+i (2σ)j+i+1 j !

(j + i + 1)!
(tanh s)j+2i

×2 F1(2σ + 1 + j + i, 2σ ; j + i + 2; tanh2 s)zσ .

We now return to the language of Section 3, so that σ corresponds to the
natural number k. We can now state the main theorem on the K-types.

Theorem 11. For k ≥ 1, the highest weight vector for the K-type V ∗
j ⊗Vk+j

is the function Fj : D → Vτ , whose restriction to A · 0 is given by

Fj (t) = (1 − t2)

k∑
i=0

(
σ

i

)
(−1)j+i (2k)j+i+1 j !

(j + i + 1)!
t j+2i

×2 F1(2k + 1 + j + i, 2k; j + i + 2; t2)zk.

Proof. Letting t = tanh s =
(

cosh s sinh s

sinh s cosh s

)
· 0, and applying the trivializa-

tion mapping (61), together with (66), to the functions Sfj in Proposition 10
immediately gives the result.
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