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GENERALIZED WALLACE THEOREMS

PETER V. DANCHEV and PATRICK W. KEEF

Abstract

We present a number of generalizations of a classical result of Wallace regarding countable ex-
tensions of totally projective primary abelian groups.

1. Introduction

By the term “group” we will mean an abelian p-group, for some fixed prime
p. Our terminology and notations will generally follow [10] and [13]. For
instance, if α is an ordinal and G is a group, pαG denotes the subgroup
consisting of elements of height at least α. In particular, pωG will be the first
Ulm subgroup of G, i.e., the set of elements of infinite height. We will also use
without comment standard terminology on valuated groups and vector spaces
(see, for example, [24] and [12]).

In [25], K. D. Wallace proved the following interesting result:

Theorem 1.1. Suppose the reduced group A has a totally projective sub-
group G such that the quotient A/G is countable. Then A is totally projective.

In [3]–[8] this result was generalized to several classes of groups which
properly contain the totally projectives; the goal of the present effort is to
advance this investigation. In general, if G is a subgroup of A such that A/G

is countable and P is some property, one can ask whether G satisfies P implies
that A satisfies P , or visa versa. Similarly, one can consider the dual question,
i.e., if K is a countable subgroup of G and A = G/K , does assuming that G

satisfies P imply that A satisfies P , or visa versa.
Using some terminology of [17], these two questions can be combined as

follows: If G and A are groups, κ is an infinite cardinal and f : G → A is
a homomorphism, then f is said to be κ-injective if |K| < κ , where K is
the kernel of f ; f is said to be κ-surjective if |C| < κ , where C = A/f (G)

is the cokernel of f ; and f is said to be κ-bijective if it is both κ-injective
and κ-surjective. This terminology, then, leads us to investigate the following
type of question: If P is some property and f : G → A is an ω1-bijective
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homomorphism, does G satisfying P imply that A satisfies P , or visa versa.
For example, when P is the property “X is a separable pω+n-projective group”
or the property “X is a Q-group,” we show that if f : G → A is an ω1-bijective
homomorphism, then G has property P iff A has property P (see Theorem 4.2
and Corollary 5.2(b), respectively).

Note that if f : G → A is an ω1-bijective homomorphism and I is the
image of f , then G → I is an ω1-bijection which is actually surjective, and
I ⊆ A is an ω1-bijection which is actually injective. This observation often
allows us to split our arguments into two cases; one where A = G/K ∼= I is a
factor group with K countable and one where G = I ⊆ A is a subgroup such
that the cokernel C = A/G is countable.

Naturally, not every property considered will allow us to generalize Wal-
lace’s Theorem in this way; it is often necessary to restrict our attention some-
what. For example, when P is the property “X is simply presented”, or the
property “α < ω1 and X is a Cα-group”, and f : G → A is an ω1-bijective
homomorphism, then if G satisfies P , it follows that A satisfies P , but the
converse does not hold (Theorems 2.4 and 3.5 and Examples 2.2 and 2.3).
Sometimes the natural proofs of our results use additional properties of either
the kernel of f as a subgroup of G or the image of f as a subgroup of A, such
as requiring that it be pure, isotype or nice. We construct a number of examples
to verify that these statements can fail without these additional hypotheses.

2. Simply presented groups

We begin with the following strengthening of Wallace’s Theorem:

Proposition 2.1. Suppose G and A are reduced groups and f : G → A

is an ω1-bijective homomorphism. If G is totally projective, then A is totally
projective.

Proof. Let I be the image of f . Since I is a subgroup of A, it is also
reduced. If we can show that I is totally projective, then since A/I is countable,
it will follow from Wallace’s Theorem that A is totally projective, as well. It
therefore suffices to suppose that I = A, so that f is, in fact, surjective. Let
K be the kernel of f , so that K is countable, and in fact, assume A = G/K .
By Theorem 81.9(α) of [10], G has a nice system, i.e, a collection of nice
subgroups N which is closed under group unions (i.e., about �) and has the
property that if X ⊆ G is countable, then there is a countable N ∈ N such
that X ⊆ N .

Let N ′ = {N/K : N ∈ N and K ⊆ N}. By Lemma 79.3(i) of [10] every
element of N ′ is a nice subgroup of A = G/K . It is easy to see that since N

is closed under group unions, so is N ′. Finally, if X′ ⊆ A is countable, then
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X = K ∪{x ∈ G : x +K ∈ X′} ⊆ G is also countable; if N ∈ N is countable
and X ⊆ N , then it follows that N/K ∈ N ′ is countable and X′ ⊆ N/K .
Therefore, N ′ is a nice system for A, so that it is totally projective, as required.

It might be tempting to conjecture that the converse of this proposition
holds, i.e., if G and A are reduced groups, f : G → A is an ω1-bijection and
A is totally projective, then G is also totally projective. In fact, this fails for
at least two reasons. The following shows that it can fail when f is simply
injective:

Example 2.2. Suppose A is a totally projective group of length ω1 – so A

is a dsc group, i.e., a direct sum of countable groups – and suppose

0 → G → A → Zp∞ → 0

is pω1 -pure exact (i.e., it represents an element of pω1 Ext(Zp∞ , G)). Then
A/G is certainly countable, but G is not totally projective; in fact, it is an
elementary S-group (see [26]).

Recall that if X is a subgroup of a group Y , then pω(Y/X) = ∩i<ω(piY +
X)/X = X/X, where X is the closure of X in the p-adic topology on Y . In
particular, X is closed iff Y/X is separable. The next example shows that the
converse of Proposition 2.1 can also fail when f is actually surjective:

Example 2.3. We show that there is a pure-exact (and hence isotype)
sequence:

0 → K → G → A → 0

where K is a countable direct sum of cyclics, A is a dsc group of length
ω + 1, and G is a separable group which is not a direct sum of cyclics. To
this end, suppose B is an unbounded countable direct sum of cyclics with
torsion completion B and L is some group such that there is a subgroup P ⊆
L[p] for which L/P is a direct sum of cyclics and there is an isometry φ :
B[p] → P (i.e., an isomorphism that also preserves heights computed in B

and L). Since L[p] is not free (as a valuated vector space), L is not a direct
sum of cyclics. Let G = (B ⊕ L)/X, where X = {(x, φ(x)) : x ∈ B[p]},
K = [(B ⊕ {0}) + X]/X. Because X is closed in B ⊕ L, we can conclude
G is separable. Since L embeds in G, it also follows that G is not a direct
sum of cyclics. It follows easily that K ∼= B is a pure, and hence isotype,
but not nice subgroup of G, and that G/K ∼= L/φ(B[p]); we denote this last
group by A. Note that P/φ(B[p]) = pω(L/φ(B[p])) = pωA is p-bounded
and A/pωA = (L/φ(B[p])/(P/φ(B[p]) ∼= L/P is a direct sum of cyclics.
Therefore, A ∼= G/K is a dsc group, and hence totally projective, as required.
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Following [10], a group is said to be simply presented if it is the direct sum
of a divisible and a (reduced) totally projective group. The following gives a
strengthening of Proposition 2.1 to this broader class:

Theorem 2.4. Suppose G and A are groups and f : G → A is an ω1-
bijective homomorphism. If G is simply presented, then A is simply presented.

We want to reduce Theorem 2.4 to Proposition 2.1. To that end, we introduce
the following terminology: If κ > ℵ0 is a cardinal and G is reduced, then we
say G is a reduced κ-∗-group if whenever C is an infinite subgroup of G with
|C| < κ , then |C ′| = |C|, where C ′ is the subgroup of G containing C such that
C ′/C is the maximal divisible subgroup of G/C. Note that a reduced group
G is an ω1-∗-group iff whenever C is a countably infinite subgroup of G, then
there is a countably infinite subgroup C ′′ of G containing C such that G/C ′′
is reduced; or equivalently, for all surjective homomorphisms, g : G → X,
with a countably infinite kernel, the maximal divisible subgroup of X is also
countable.

Proposition 2.5. If G is a totally projective group, then G is an ω1-∗-group.

Proof. Suppose N is a nice system for G and C is a countable subgroup
of G. Then there is a countable subgroup N ∈ N such that C ⊆ N . However,
since G is reduced and N is nice, it follows that G/N is reduced, as required.

An arbitrary (possibly non-reduced) group will be called a κ-∗-group if it
is the direct sum of a reduced κ-∗-group and a divisible group. The following
is the critical step in the reduction of Theorem 2.4 to Proposition 2.1.

Proposition 2.6. Suppose G is an ω1-∗-group and A is a group and f :
G → A is an ω1-bijective homomorphism. Then,

(a) A is an ω1-∗-group;

(b) If G = G0 ⊕ D and A = A0 ⊕ E where D and E are divisible and
G0 and A0 are reduced, then there is an ω1-bijective homomorphism
f0 : G0 → A0.

Before proving Proposition 2.6, observe how it gives the following:

Proof of Theorem 2.4. If G = G0 ⊕ E and A = A0 ⊕ E, where D and
E are divisible and G0 and A0 are reduced, then G0 is totally projective, and
by Proposition 2.6(b), there is an ω1-bijective homomorphism f0 : G0 → A0.
By Proposition 2.1, A0 is totally projective, so that A is simply presented.

Proof of Proposition 2.6. If K is the kernel of f and I is the image
of f , then the obvious maps, G → G/K and I ⊆ A, are ω1-bijections
with composition f . Therefore, if we can prove the result assuming A =
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G/K where K is countable, and G ⊆ A where A/G is countable, then (a)
will follow immediately and (b) will be a consequence of the fact that the
composition of ω1-bijective homomorphisms retains that property (see, for
example, Proposition 2.1(c) of [17]).

Assume first, therefore, that K is a countable subgroup of G and A =
G/K . Let D = D1 ⊕ D2, where D1 is countable and K ⊆ G0 ⊕ D1. Since
A = (G0 ⊕ D1 ⊕ D2)/K ∼= [(G0 ⊕ D1)/K] ⊕ D2, we may, without loss of
generality, assume that D = D1 is countable.

Note that there is an exact sequence:

0 → [D + K]/K → A → G/[D + K] → 0

whose left-hand group is divisible and hence a summand of E. If E = ([D +
K]/K)⊕E1, it follows that A0 ⊕E1

∼= G/[D +K]. Note that G/[D +K] =
(G0⊕D)/[D+K] ∼= G0/(G0∩[D+K]). SinceC = G0∩[K+D] is countable
and G0 is an ω1-∗-group, there is a countable subgroup C ′ of G0 containing
C such that C ′/C is the maximal divisible subgroup of G0/C. It follows
that G0/C ′ ∼= (G0/C)/(C ′/C) is isomorphic to A0, and the obvious map
G0 → G0/C ′ ∼= A0 is an ω1-∗-bijective homomorphism (which is actually
surjective), so that (b) follows. As for (a), we need to show that this A0 is an
ω1-∗-group. To that end, suppose X is a group and g : A0 → X is a surjective
homomorphism with countable kernel. Then the composition G0 → A0 → X

is also a surjective homomorphism with countable kernel, so, since G0 is an
ω1-∗-group, we can conclude that the divisible part of X is countable, so that
A0 is an ω1-∗-group, as required.

Suppose next that G ⊆ A with A/G countable. Note A = A1 ⊕ D, where
G0 ⊆ A1 and A1/G0 is countable. It suffices, therefore, to let A = A1 and
G = G0, so that G is reduced.

We next claim that the maximal divisible subgroup E of A must be countable
and that A0 is an ω1-∗-group; before establishing the claim, note it immedi-
ately gives (a), and in addition, since the homomorphism f0 : G0 = G ⊆
A → A/E ∼= A0 is a composition of ω1-bijective homomorphisms, as afore-
mentioned it is also ω1-bijective. This proves (b), and hence the entire result.

Turning, therefore, to the claim, suppose C0 is an arbitrary countable sub-
group of A0, and C1 is a countable subgroup of A such that A = G + C1. If
C = G∩ [C0 +C1], then C is countable, and if C ′/C is the maximal divisible
subgroup of G/C, then since G is an ω1-∗-group, C ′ is countable, as well.
Note that G ∩ [C ′ + C0 + C1] = C ′. It follows that

A/[C ′ + C0 + C1] = [G + C1]/[C ′ + C0 + C1] ∼= G/(G ∩ [C ′ + C0 + C1])

= G/C ′ ∼= (G/C)/(C ′/C)
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is reduced. This implies that E ⊆ C ′+C0+C1 is countable, giving the first part
of the claim. Next, since A0/(A0∩[C ′+C0+C1]) embeds in A/[C ′+C0+C1]
and the latter is reduced, so is the former. Letting C ′′ = A0 ∩ [C ′ + C0 + C1],
we conclude that C ′′ ⊆ A0 is countable, C0 ⊆ C ′′ and A0/C ′′ is reduced,
showing that A0 is an ω1-∗-group, establishing the claim, and hence the result.

3. n-�-groups and Cα-groups

If α is an ordinal, then a subgroup H of a group A is said to be pα-high
if it is maximal with respect to the property that H ∩ pαA = {0} (see, for
example, [20] and [1]). A pω-high subgroup is usually referred to simply as a
high subgroup. We summarize a few standard properties of this notion in the
following:

Lemma 3.1. If α is an ordinal and H is a pα-high subgroup of A, then:

(a) If α < ω is finite, then H is a summand of A;

(b) If α ≥ ω is infinite, then H is a pα+1-pure subgroup of A and A/H is
divisible. In particular, this means that H is an isotype subgroup of A;

(c) If H is a dsc group and H ′ is another pα-high subgroup of A, then H ′
is also a dsc group;

(d) There is a decomposition, A[p] = H [p] ⊕ (pαA)[p];

(e) If α = β + γ , then pβH is pγ -high in pβA.

Proof. (a) is Theorem 27.7 of [10]. (b) follows from (2◦) and Proposition 1
of [23]. (c) is Corollary 5 of [23]. (d) and (e) are simple consequences of the
maximality of H .

The following definition appeared in [16]: A group A is a �-group provided
that some high subgroup of A is a direct sum of cyclic groups. It follows from
Lemma 3.1(c) that all its high subgroups are direct sums of cyclic groups. The
following generalization of this terminology was given in [18]: If α < ω1, then
A is said to be a Cα-group iff for every β < α, some (and hence all) pβ-high
subgroup of A is a dsc group. If α is isolated, then we only need that some (and
hence all) pα−1-high subgroup of A is a dsc group (since if β < α − 1, then
a pβ-high subgroup will be an isotype subgroup of a pα−1-high subgroup,
and a classical result of Hill’s states an isotype subgroup of a dsc group of
countable length also has that form – see, for example, Theorem 104 of [13]).
The Cω+1-groups are precisely the �-groups.

Next, we review a concept from [7]. Imitating a criterion from [2], if 1 <

n < ω, we shall say that A is an n-�-group if A[pn] = ∪i<ωAi , where for
all i < ω, Ai ⊆ Ai+1 and Ai ∩ piA = (pωA)[pn]. With this terminology, the
1-�-groups are precisely the �-groups (this observation is generalized in our
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next result). Clearly, if m < n, then every n-�-group is an m-�-group. Thus
each n-�-group is a �-group, while the converse implication is false (in [6],
a �-group was constructed which is not a 2-�-group).

Proposition 3.2. If A is a group and 0 < n < ω, then A is an n-�-group
iff A is a Cω+n-group.

Proof. Suppose H is a pω+n−1-high subgroup of A. Then H is isotype
in A, so that heights computed in H and A agree. By Lemma 3.1(e) and
(a), pωH = H ∩ pωA is a pn−1-high subgroup of pωA, and so there is a
subgroup X ⊆ pωA such that pωA = pωH ⊕ X. By Lemma 3.1(d), we have
A[p] = H [p] ⊕ (pω+n−1A)[p] = H [p] ⊕ X[p]. Now, X[pn] is isomorphic
to the direct sum of a collection of copies of Zpn , and since H is pure in A,
H [pn] is a summand of A[pn]. It follows that there is a decomposition:

A[pn] = H [pn] ⊕ X[pn].

In fact, we claim that the above decomposition is valuated, i.e., if z ∈ H [pn]
and x ∈ X[pn], then ht(z + x) = min{ht(z), ht(x)} (where all heights are
computed in A): Note that if z has infinite height in A (and H ), then this
follows because pωA = pωH ⊕ X, and if z has finite height in A (and H ),
then this follow from ht(z) < ω < ht(x).

Suppose first that H is some pω+n−1-high subgroup that is a dsc group.
Then H/pωH is a direct sum of cyclics, and so H/pωH ∼= ⊕j<ωCj , where
each Cj is a direct sum of copies of Zpj+1 . Considering the composition:

φ : A[pn] ∼= H [pn] ⊕ X[pn] → H [pn]

→ H [pn]/pωH ⊆ H/pωH ∼= ⊕j<ωCj ,

we let Ai = φ−1(⊕j<iCj ). Clearly Ai ⊆ Ai+1 ⊆ A[pn], and since

⊕j<ωCj = ∪i<ω(⊕j<iCj ),

it follows that A[pn] = ∪i<ωAi . Next, note that all of the maps used to con-
structφ preserve the heights of elements whenever they are finite, and therefore,
the kernel of φ is (pωA)[pn]. It follows that for every i < ω we have

φ(piA ∩ Ai) ⊆ pi(⊕j<iCj ) = {0}.
From this we can conclude that piA ∩ Ai = (pωA)[pn], which means that A

is an n-�-group.
Conversely, suppose A is an n-�-group and H is any pω+n−1-high subgroup

of A. To show that A is a Cω+n-group, we need to show that H is a dsc group,
or, since pωH is bounded, that the Ulm factor H/pωH is a direct sum of
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cyclics. Let the Ai ⊆ A[pn] be as in the definition of an n-�-group. Note that
pωH ⊆ H [pn−1], so that (H/pωH)[p] ⊆ H [pn]/pωH . In addition, for any
i < ω, pωH ⊆ (pωA)[pn] ⊆ Ai , so we let

Si = (H/pωH)[p] ∩ ((Ai ∩ H)/pωH).

Note that if x + pωH ∈ Si , where x ∈ Ai ∩ H , then x ∈ piA implies that
x ∈ piA ∩ Ai ∩ H = (pωA)[pn] ∩ H = pωH . Therefore, the heights (in
H/pωH ) of the non-zero elements of Si are bounded by i. Since

(H/pωH)[p] ⊆ H [pn]/pωH = (A[pn] ∩ H)/pωH

= ∪i<ω[(Ai ∩ H)/pωH ],

we can conclude that
(H/pωH)[p] = ∪i<ωSi.

However, this implies that H/pωH is a direct sum of cyclic groups, which
implies that H is a dsc group, as required.

Note that the above provides a non-homological proof of the fact that if one
pω+n−1-high subgroup of A is a dsc group, then all pω+n−1-high subgroups of
A are dsc groups.

Corollary 3.3. If 0 < n < ω and A is a group of length at most ω+n−1,
then A is an n-�-group iff it is a dsc group.

Proof. In this case, A is a pω+n−1-high subgroup of itself.

A homological approach to these definitions can be given as follows: We
let A � B denote the torsion product of the groups A and B. This admittedly
non-standard notation better reflects the multiplicative nature of the operation.
If α ≤ ω1 is an ordinal, let Hα denote the generalized Prüfer group of length
α. It follows from Theorem 2 of [18] that A is a Cα-group iff A � Hα is a dsc
group (this latter characterization may be, in fact, a more natural definition of
the term). The following, therefore, follows directly from Proposition 3.2:

Corollary 3.4. If 0 < n < ω, then A is an n-�-group iff A � Hω+n is a
dsc group.

These considerations lead to the following result:

Theorem 3.5. Suppose α < ω1 is an ordinal, G and A are groups and
f : G → A is an ω1-bijective homomorphism. If G is a Cα-group, then A is
also a Cα-group.
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Proof. Suppose first that α < ω1 is countable, so that Hα is countable,
as well. Let K and I be the kernel and image of f , respectively. There is a
long-exact sequence:

0 → K � Hα → G � Hα → I � Hα → K ⊗ Hα,

and since the outer two groups are countable, it follows that G�Hα → I �Hα

is an ω1-bijection. Since these both have length at most α, they are reduced
(in fact, by Lemma 64.2 of [10], pα(G � Hα) = (pαG) � (pαHα) = {0}). In
addition, since G is a Cα-group, G�Hα is necessarily a dsc group, and hence
I � Hα is also a dsc group by Proposition 2.1, so that I is a Cα-group. Now,
if C = A/I , then C is countable and there is a left-exact sequence:

0 → I � Hα → A � Hα → C � Hα,

Since I � Hα is a dsc group, A � Hα is reduced and C � Hα is countable, it
once again follows via Proposition 2.1 that A � Hα is a dsc group, showing
that A is a Cα-group, as required.

Finally, if α = ω1, then Hα = ⊕β<αHβ , so if G is a Cα-group, then
G�Hα = G�(⊕β<αHβ) ∼= ⊕β<α(G�Hβ) is a dsc group, which implies that
G�Hβ is a dsc group for all β < α, which implies that A�Hβ is a dsc group
for all β < α, which implies that A�Hα = A� (⊕β<αHβ) ∼= ⊕β<α(A�Hβ)

is a dsc group, which implies that A is a Cα-group.

Corollary 3.6. Suppose n < ω, G and A are groups and f : G → A is
an ω1-bijective homomorphism. If G is an n-�-group, then A is an n-�-group.

Notice that in Example 2.3, A is a 1-�-group (in fact, it is a dsc group of
length ω + 1), but G is not a 1-�-group (since any separable 1-�-group is, in
fact, a direct sum of cyclics). This shows that the implications in the last two
results cannot be reversed, even in the case where n = 1.

4. pω+n-projective groups

The following elementary consequence of Wallace’s Theorem has frequently
been found useful (see, e.g., [1] and [15]). In fact, we include a separate proof
since the result can be approached directly:

Corollary 4.1. Suppose A is a separable group with a subgroup G such
that A/G is countable. Then G is a direct sum of cyclic groups iff A is a direct
sum of cyclic groups.

Proof. Note that if A is a direct sum of cyclics, it immediately follows
that G is, as well, so assume G is a direct sum of cyclics. We may write
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A = G + C for some countable subgroup C of A. There is, therefore, a
decomposition G = G1 ⊕ G2, where G2 is countable and C ∩ G ⊆ G2.
Thus, C + G2 is a countable group with no elements of infinite height, being
a subgroup of A, and hence C + G2 is a direct sum of cyclics. We claim that
A = G1 ⊕ (C +G2): Clearly G1 +C +G2 = G+C = A, and if g1 = c +g2

(where each symbol represents an element of the corresponding subgroup),
then c = g1 − g2 ∈ C ∩ G ⊆ G2 implies that g1 = 0, proving the claim.
Therefore, since G1 and C + G2 are direct sums of cyclics, the same will be
true of A.

If n < ω, then a group A is pω+n-projective iff for all groups X we have
pω+n Ext(A, X) = {0} or, equivalently, pn Pext(A, X) = {0}. A more con-
crete characterization of this notion is given by Corollary 6.5 of [22], which
states that A is pω+n-projective iff there is a subgroup P of A[pn] such that
A/P is a direct sum of cyclics. One easy consequence of this is that an arbit-
rary subgroup of a pω+n-projective is also pω+n-projective. By Theorem 5 of
[11], if A and A′ are pω+n-projectives, then A ∼= A′ iff there is an isometry
A[pn] ∼= A′[pn]. These groups have been studied extensively (e.g., [15]).

In [9], Dieudonné gave an example showing that in the last corollary, the
hypothesis of countability is necessary (see, for example, [10], v. II, p. 16,
Exercise 11). In fact, if A is any pω+n-projective group, then A has a subgroup
P ⊆ A[pn] (which must be a direct sum of cyclics) such that A/P is also
a direct sum of cyclics. On the other hand, there are many separable pω+n-
projective groups which are not direct sums of cyclics. This connection is
developed in the following generalization of Corollary 4.1 (see also [3], [4],
[8]):

Theorem 4.2. Suppose n < ω, G and A are separable groups and f :
G → A is an ω1-bijective homomorphism. Then G is pω+n-projective iff A is
pω+n-projective.

Proof. Before beginning, note that if A is a separable group, then A[pn]
will be a closed subgroup of A, so if P is a subgroup of A[pn], then the p-adic
closure, P , will be contained in A[pn], i.e., pω(A/P ) ⊆ A[pn]/P , which
implies that A/P has length at most ω + n.

As usual, if I is the image of f , then by considering the natural factoriz-
ation G → I → A, we may break the argument into two cases, where f is
actually injective (and ω1-surjective), and where f is actually surjective (and
ω1-injective).

Suppose first that f is injective; in fact, assume G is a subgroup of A and
A/G is countable. If A is pω+n-projective, it immediately follows that G is, as
well. Conversely, suppose G is pω+n-projective. Let P be a subgroup of G[pn]
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such that G/P is a direct sum of cyclics. Then L = A/P must be reduced, and
in fact, of length at most ω + n. Since (A/P )/(G/P ) ∼= A/G is countable, it
follows from Wallace’s Theorem that L = A/P is a dsc group, and hence that
L/pωL is a direct sum of cyclics. However, if P is the p-adic closure of P in
A, then P ⊆ A[pn] and A/P ∼= (A/P )/(P /P ) ∼= L/pωL is a direct sum of
cyclics, showing that A is pω+n-projective.

Suppose next that f is surjective; in fact, assume K is a countable subgroup
of G with A = G/K . Suppose first that G is pω+n-projective. Let P be a
subgroup of G[pn] such that G/P is a direct sum of cyclics. Let G/P =
C1 ⊕ C2, where C2 is a countable subgroup containing K ′ = (K + P)/P . If
P ′ = (K + P)/K , then P ′ is a subgroup of A[pn], and

A/P ′ = (G/K)/([K + P ]/K)

∼= G/[K + P ]
∼= (G/P )/([K + P ]/P )

∼= C1 ⊕ (C2/K
′)

is a dsc group. Therefore, if P
′

is the p-adic closure of P ′ in A, then P
′ ⊆

A[pn], and

A/P
′ ∼= (A/P ′)/(P ′

/P ′) ∼= (A/P ′)/pω(A/P ′)

is a direct sum of cyclics, so that A is pω+n-projective.
Finally, suppose A = G/K and A is pω+n-projective. Let P be a subgroup

of A[pn] such that A/P = ⊕i∈ICi where each Ci is cyclic. Let P1 ≤ G be
the subgroup containing K such that P = P1/K; note pnP1 ⊆ K ≤ P1 and
G/P1

∼= A/P = ⊕i∈ICi . By a standard “back-and-forth” argument, there is a
countable pure subgroup L of G containing K and a countable subset J ⊆ I

such that [L + P1]/P1
∼= ⊕i∈J Ci . Note that since L is a countable separable

group, it is, in fact, a direct sum of cyclics. If A′ = G/L and P ′ = [L+P1]/L,
then

A′/P ′ = (G/L)/([L + P1]/L)

∼= G/[L + P1]
∼= (G/P1)/([L + P1]/P1)

∼= ⊕i∈ICi/ ⊕i∈J Ci

∼= ⊕i∈I−J Ci

is a direct sum of cyclics. Since pnP1 ⊆ L, and hence pnP ′ = 0, we can
conclude that A′ is pω+n-projective. Now, for any group X, by Theorem 53.7
of [10], the pure-exact sequence

0 → L → G → A′ → 0
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determines a corresponding right-exact sequence:

Pext(A′, X) → Pext(G, X) → Pext(L, X) → 0.

Since L is a direct sum of cyclics, we have Pext(L, X) = 0, and since A′ is
pω+n-projective we have pn Pext(A′, X) = 0. Therefore, pn Pext(G, X) = 0
for all X, which means that G is pω+n-projective, as required.

5. κ-Q-groups and weakly ω1-separable groups

If κ is an uncountable cardinal, then by a slight extension of the terminology of
[21], we say G is a κ-Q-group if for every infinite subgroup C ⊆ G, |C| < κ

implies |C| = |C|, where C denotes the closure of C in the p-adic topology
on G (so C/C = pω(G/C)). Following [21], a separable ω1-Q-group is said
to be weakly ω1-separable. Finally, a separable group is a Q-group iff it is a
κ-Q-group for all uncountable κ .

Theorem 5.1. Suppose κ is an uncountable cardinal, G and A are separable
groups and f : G → A is an ω1-bijective homomorphism. Then G is a κ-Q-
group iff A is a κ-Q-group.

Proof. As usual, we break this into two arguments corresponding to when
f is assumed to be injective and surjective. Suppose first that f is injective,
and in fact, assume G is a subgroup of A with A/G being countable. If A is a
κ-Q-group, and C is an infinite subgroup of G with |C| < κ , then the closure
of C in G is contained in the closure of C in A. Since the latter has the same
cardinality as C, so must the former, and hence G is also a κ-Q-group.

On the other hand, assume that it is G that is a κ-Q-group, and that C is
an infinite subgroup of A with |C| < κ . We can certainly expand C without
altering its cardinality so that A = G + C and C ∩ G are infinite, so we
assume that these two conditions hold. Note that these assumptions guarantee
that G/(C ∩ G) ∼= (G + C)/C = A/C. Therefore, if C ∩ G is the closure of
C ∩ G in G and C is the closure of C in A, we have,

C ∩ G/(C ∩ G) = pω(G/(C ∩ G)) ∼= pω(A/C) = C/C.

Now, since G is a κ-Q-group, we can conclude,

|C/C| = |C ∩ G/(C ∩ G)| < |C ∩ G| = |C ∩ G| < |C|.
This, in turn, implies that |C| = |C|, showing that A is, in fact, a κ-Q-group.

Assume now that f is surjective, and in fact, assume A = G/K , where K

is countable. Suppose first that G is a κ-Q-group. If C is an infinite subgroup
of A with |C| < κ , then let C0 be the subgroup of G containing K defined
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by the equation C = C0/K . If C is the closure of C in A and C0 is the
closure of C0 in G, then C0/C0 = pω(G/C0) ∼= pω(A/C) = C/C so
|C/C| = |C0/C0| < |C0| = |C|, so that |C| = |C|, as required.

Conversely, suppose that A is a κ-Q-group and C0 is an infinite subgroup
of G with |C0| < κ . Replacing C0 by C0 + K does not alter its cardinality, so
we may assume K ⊆ C0. Again, by possibly expanding C0 without altering
its cardinality, we may assume C = C0/K is infinite. Therefore, the argument
of the last paragraph shows that |C0| = |C| = |C| = |C0|, as required.

Corollary 5.2. Suppose G and A are separable groups and f : G → A

is an ω1-bijective homomorphism. Then

(a) G is weakly ω1-separable iff A is weakly ω1-separable;

(b) G is a Q-group iff A is a Q-group.

Again following [21], a separable group is ω1-separable if every countable
subset is contained in a countable summand. One might ask if the analogue to
Corollary 5.2(a) holds for ω1-separable groups. The difficulty of this question
is illustrated by two facts from [21]: Assuming Martin’s Axiom (MA) and the
denial of the Continuum Hypothesis (¬ CH), if A is an ω1-separable group of
cardinality ℵ1 and G is a pure and dense subgroup of A with A/G countable,
then G is ω1-separable, and in fact, A ∼= G (Theorem 2.6). (In fact, under (MA
+ ¬ CH) the classes of weakly ω1-separable groups and ω1-separable groups
both of cardinality ℵ1, coincide, so a result analogous to Corollary 5.2(a)
holds for this class.) Moreover, in [21] was also showed that if G is a pure and
closed subgroup of the separable group A, then A is weakly ω1-separable iff
G and A/G are weakly ω1-separable (Theorem 1.5). On the other hand, in the
constructible universe (V=L), if A is an ω1-separable group of cardinality ℵ1

and A is not a direct sum of cyclic groups, then there is a pure subgroup G of
A with A/G ∼= Zp∞ and G is not ω1-separable (Theorem 3.2).

6. σ -summable and n-Honda groups

If H is a group containing a subgroup K , then the height spectrum (of K in
H ) is defined to be the collection of ordinals {htH (x) : x ∈ K}. We say K

is height-finite if it has finite height spectrum. We begin with the following
technical, but useful, lemma.

Lemma 6.1. Suppose S is the height spectrum of a subgroup K of a group
H and F is a finite subgroup of H , and S ′ is the height spectrum of F + K .
Then the set S ′ \ S is finite.

Proof. If we assume, by way of contradiction, that S ′ \ S is infinite, then
there is an infinite set {fi + ki : i < ω} of elements of F + K such that
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{ht(fi + ki) : i < ω} is an infinite set of elements of S ′ \ S. Since F is finite,
there are distinct i, j < ω such that fi = fj and ht(fi +ki) < ht(fj +kj ). This
implies that ht(ki −kj ) = ht((fi +ki)− (fj +kj )) = min{ht(fi +ki), ht(fj +
kj )} = ht(fi + ki) ∈ S ′ \S. However, this contradicts that ki − kj ∈ K , so that
ht(ki − kj ) ∈ S.

The last result has the following immediate consequences:

Corollary 6.2. Suppose H is a reduced group of length λ, F and K are
subgroups of H , and F is finite.

(a) If λ is a limit ordinal and there is an ordinal α < λ such that K ∩pαH =
{0}, then there is an ordinal β < λ such that (K + F) ∩ pβH = {0}.

(b) If K is height-finite, then the same holds for F + K .

A group A of length λ is called σ -summable if A[p] = ∪i<ωAi , where for
all i < ω, Ai ⊆ Ai+1 and Ai ∩ pαi A = 0 for some αi < λ (see [19]). Note
the similarity of this property to the classical Kulikov’s criterion describing
when a group is a direct sums of cyclics; it follows that a separable group
is σ -summable iff it is a direct sum of cyclics. It is well-known (see, for
example, [19]) that all totally projective groups whose length is a limit ordinal
of countable cofinality are σ -summable. More generally, if λ is a limit ordinal
of countable cofinality and A is a direct sum of groups of length less than λ,
then A is σ -summable.

Although we can prove our next result using the original definition (cf., [3]),
the following criterion, due to Hill ([14]), is slightly more convenient.

Hill’s Criterion 6.3 ([14]). A group A of length λ is σ -summable iff
A = ∪i<ω�i , where for all i < ω, �i ⊆ �i+1 and there is an ordinal αi < λ

such that �i ∩ pαi A = {0}.
Our next result was first established in [3]; nevertheless, we include a dif-

ferent, more conceptual, proof.

Proposition 6.4. Suppose A is a reduced group of limit length λ and G is
a σ -summable isotype subgroup of A such that A/G is countable. Then A is
σ -summable.

Proof. Let C be a countable subgroup of A such that A = C + G. Write
C = ∪i<ωCi , where each Ci is a finite subgroup and Ci ⊆ Ci+1. Referring to
Hill’s criterion, if μ is the length of G, we can write G = ∪i<ω�i , where for
every i < ω, �i ⊆ �i+1 and there is an ordinal αi < μ so that �i ∩pαi G = {0}.
Hence, �i ∩ pαi A = {0} and αi < λ since μ < λ. Therefore, if �′

i = �i + Ci ,
then A = ∪i<ω�′

i where for each i < ω, �′
i ⊆ �′

i+1, and Corollary 6.2(a)
implies that there is an ordinal βi < λ with �′

i ∩pβi A = {0}. Finally, a second
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application of Hill’s criterion allows us to conclude that A is σ -summable, as
required.

We now construct an example which shows that the hypothesis that G be
isotype cannot be removed. To this end, we pause for the following simple
observation:

Proposition 6.5. If A is group of length λ and α < λ, then A is σ -summable
iff pαA is σ -summable.

Proof. Suppose λ = α + γ . Assuming first that A is σ -summmable, then
using Hill’s criterion, suppose A is the union of �i’s, where for every i < ω,
there is an ordinal βi < λ such that pβi A∩�i = 0. Then pαA has length γ , and
by setting �′

i = pαA∩�i , we have pαA = ∪i<ω�′
i . If β ′

i = βi−α when βi ≥ α

and β ′
i = 0 when βi < α, then β ′

i < γ and pβ ′
i (pαA) ∩ �′

i ⊆ pβi A ∩ �i = 0,
as required.

Conversely, if pαA is σ -summable, then (pαA)[p] = ∪i<ωAi , where for
all i < ω, Ai ⊆ Ai+1 and Ai ∩ pαi (pαA) = 0 for some αi < γ . If A[p] is the
valuated direct sum V ⊕ (pαA)[p], and A′

i = V ⊕ Ai , then A[p] = ∪i<ωA′
i ,

where for all i < ω, A′
i ⊆ A′

i+1 and if α′
i = α + αi < α + γ = λ, then

A′
i ∩ pα′

i A = 0.

Example 6.6. Let B be an unbounded torsion-complete group with B a
countable direct sum of cyclic groups. One easily constructs a group L such
that pωL = B and L/pωL is countable. (For example, if C is a countable
group with pωC = B, then we can let L be the torsion subgroup of the
completion of C in the ω ·2 topology, i.e., the topology using {pω+iC : i < ω}
as a neighborhood base of 0. Alternatively, this follows from Theorem 76.1 of
[10].) Suppose now that M is any group such that pωM is an unbounded direct
sum of cyclics. If we let A = M ⊕ L and G = M ⊕ pωL = M ⊕ B, then it is
easy to see that the following properties hold:

(1) Both A and G have length ω · 2 = ω + ω.

(2) G is a (non-isotype) subgroup of A and A/G ∼= L/B = L/pωL is
countable.

(3) G is σ -summable (this follows from Proposition 6.5, since pωG = pωM

is a direct sum of cyclics and hence σ -summable).

(4) A is not σ -summable (this also follows from Proposition 6.5, since
pωA = pωM ⊕ B is not a direct sum of cyclics and hence not σ -
summable).

If 0 < n < ω, then a reduced group A will be called n-Honda if A[pn] =
∪i<ωAi , where for every i < ω, Ai ⊆ Ai+1 and Ai is height-finite in A.
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Clearly, an n-Honda group is m-Honda for all m < n. Since an n-Honda
group clearly has countable length, by Honda’s criterion (see, for instance, [10],
Theorem 84.1), being 1-Honda is equivalent to the usual notion of summability,
and therefore, for any n ≥ 1, an n-Honda group must be summable. There
exists a summable group of length less than ω · 2 which is not 2-Honda (see
[5] and [6]). Notice also that summable groups of countable limit length are
themselves σ -summable.

Proposition 6.7. Suppose A is a reduced group such that G is an isotype
subgroup of A and A/G is countable. Then G is n-Honda iff A is n-Honda.

Proof. Note that if A is n-Honda and G is an arbitrary isotype subgroup
of A, it easily follows that G is n-Honda (if Ai satisfies the definition for A,
then one easily checks Gi = Ai ∩ G satisfies the definition for G). So assume
it is G that is n-Honda (and of course, A/G is countable).

Observe that A[pn]/G[pn] ∼= (A/G)[pn] is at most countable. Hence
A[pn] = G[pn] + C, where C ≤ A[pn] is countable. Let G[pn] = ∪i<ωGi ,
where for each i < ω, Gi ⊆ Gi+1 and Gi are height-finite in G, whence in A.
In addition, let C = ∪i<ωCi , where for each i < ω, Ci ⊆ Ci+1 and Ci is finite.
Then A[pn] = ∪i<ωAi , where Ai = Gi + Ci . Certainly, Ai ⊆ Ai+1 and by
Corollary 6.2(b) we have that all Ai are height-finite in A. So, A is n-Honda,
finishing the proof.

Our final example shows that in Proposition 6.7, the requirement that G be
isotype in A cannot be omitted.

Example 6.8. As in Example 6.6, let L be a group such that pωL = B

where B is an unbounded torsion-complete group with B a countable direct
sum of cyclic groups, and such that L/pωL is countable. Next, let G be a
group so that B ⊆ G, pωG = B[p] and G/B is a direct sum of cyclic groups.
(To construct such a G, let H be a dsc group of length ω + 1 such that there is
a group isomorphism φ : pωH → B[p], and let G = [H ⊕ B]/{(x, φ(x)) :
x ∈ pωH }, so G is the sum of H and B along φ.) Finally, let A be the result of
identifying B in L and G, that is, A = L + G with L ∩ G = B. We therefore
have the following:

(1) A/G ∼= L/B = L/pωL is countable.

(2) G is summable (= 1-Honda): Indeed, since G/B is a direct sum of
cyclics, we may write G = ∪i<ωGi , where for each i < ω we have
B ⊆ Gi ⊆ Gi+1 and Gi ∩piG ⊆ B. It follows that G[p] = ∪i<ωGi[p]
with Gi[p] ∩ piG ⊆ B[p] = (pωG)[p]. But pω+1G = 0 and therefore
all Gi[p] are height-finite in G. So, by Honda’s criterion, G is summable.

(3) A is not summable (= 1-Honda): Observe that B = pωL ⊆ pωA and
A/B = (G/B) ⊕ (L/B) is a direct sum of cyclics, so that pωA = B.
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Since pωA = B is not summable, it follows that A is not summable, as
claimed. Since G ∩ pωA = B �= B[p] = pωG, G is not isotype in A.
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