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RINGS WHOSE MODULES ARE WEAKLY
SUPPLEMENTED ARE PERFECT.
APPLICATIONS TO CERTAIN
RING EXTENSIONS

ENGIN BUYUKASIK and CHRISTIAN LOMP*

Abstract

In this note we show that a ring R is left perfect if and only if every left R-module is weakly
supplemented if and only if R is semilocal and the radical of the countably infinite free left
R-module has a weak supplement.

H. Bass characterized in [1] those ring R whose left R-modules have pro-
jective covers and termed them left perfect rings. He characterized them as
those semilocal rings which have a left z-nilpotent Jacobson radical Jac(R).
Bass’ semiperfect rings are those whose finitely generated left (or right) R-
modules have projective covers and can be characterized as those semilocal
rings which have the property that idempotents lift modulo Jac(R). Kasch and
Mares transferred in [5] the notions of perfect and semiperfect rings to mod-
ules and characterized semiperfect modules by a lattice-theoretical condition
as follows: a module M is called supplemented if for any submodule N of M
there exists a submodule L of M minimal with respectto M = N + L. The left
perfect rings are then shown to be exactly those rings whose left R-modules
are supplemented while the semiperfect rings are those whose finitely gener-
ated left R-modules are supplemented. Equivalently it is enough for a ring R
to be semiperfect if the left (or right) R-module R is supplemented. Recall
that a submodule N of a module M is called small, denoted by N <« M, if
N+L # M forall proper submodules L of M. Weakening the “supplemented”
condition, one calls a module weakly supplemented if for every submodule N
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of M there exists a submodule L of M with N + L = Mand NNL < M.
In this case L is called a weak supplement of N in M. The semilocal rings R
are precisely those rings whose finitely generated left (or right) R-modules are
weakly supplemented. Again it is enough that R is weakly supplemented as left
(or right) R-module. Semilocal rings which are not semiperfect are examples
of weakly supplemented modules which are not supplemented. In this note we
prove that if R is semilocal and the radical of the countably infinite free left
R-module has a weak supplement, then R has to be left perfect, i.e. every left
R-module is supplemented.

Throughout this note all rings are associative with unit and modules are
considered to be unital. An ideal I of a ring R is called left t-nilpotent if for
any family {a;};cn of elements of [ there existsn > Osuchthataja;...a, = 0.
Aring R is left perfect if and only if it is semilocal and Jac(R) is left z-nilpotent.
Recall that an infinite family {A, | A € A} of left ideals of R is called left
vanishing if given any sequence ay, as, ..., with a; € A,, and A; # A; for
all i # j, there exists a number n > 1 for which ajaxas...a, = 0. It
follows from Ware and Zelmanowitz [9, Theorem 1] that, if F is a free left
R-module with F = R™ := P, _, R, and f € Jac(End(F)), then the family
{mdm(f))}rea of left ideals of R is left vanishing. (Here, for each A in the
index set A, R, = Randm, : F — R, is the natural projection, while End(F)
is the endomorphism ring of F.) Using this result we can prove our main result:

THEOREM 1. The following statements are equivalent for a ring R:
(a) Every left R-module is weakly supplemented;
(b) RMN is weakly supplemented as left R-module;
(c) R is semilocal and Rad(zx R™)) has a weak supplement in gR™;
(d) R is left perfect.

ProOOF. (d) = (a) = (b) = (c) is clear and we just need to show (c) = (d).
Set F = R™ and denote J = Jac(R). Suppose that R is semilocal, then
J F = Rad(F) by [6, Proposition 2.24]. Let L be a weak supplement of J F in
F,ie.JF+L = Fand JFNL <« F.Then,foranyi € N, takingn; : F — R
to be the projection map, we have R = m;(JF + L) = J + m;(L) = m;(L)
and so there exists x; € L such that w;(x;) = 1. Let {a;};en be any family
of elements of J. Then a;x; € JL C JF NL « F and m;(a;x;) = a; for
any i € N. Define f € End(F) by f(z) = ),y ziaix; for all z = (z)ien.
Since Im(f) « F, it follows from Ware and Zelmanowitz [9, Lemma 1]
that f € Jac(End(F)) and so, by [9, Theorem 1], that {wr; Im(f))};en is left
vanishing. Thus there exists n > 0 such that

aray . ..a, = m(a1x1)m(arxy) ... m,(a,x,) = 0.

This shows that Jac(R) is left #-nilpotent and hence R is left perfect.
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Let o[M] denote the Wisbauer category of a module M, i.e. the full sub-
category of R-Mod consisting of submodules of quotients of direct sums of
copies of M. A module M is called a self-generator if any of its submodules
is an image of a direct sum of copies of M.

COROLLARY 2. Let M be a finitely generated, self-projective, self-generator.
Then every module in o [M] is weakly supplemented if and only if End(M) is

left perfect.

Proor. By [10, 18.3] M is projective in o [M] and by [10, 18.5] M is a
generator in o [M]. Hence by [10, 46.2] the functor Hom(M, —) is a Morita
equivalence between o [M] and End(M)-Mod. Thus every module in o [M] is
weakly supplemented if and only if every left End(M)-module is weakly sup-
plemented, which holds if and only if End(M) is left perfect by the Theorem.

Recall that a left R-module M is called semi-projective if for any endo-
morphism f € § = End(M) we have Sf = Hom(M, Im(f)). The module
M is called m-projective if for any submodules N, L of M with M = N + L
we have S = Hom(M, N) + Hom(M, L) (see, [2]).

PROPOSITION 3. Suppose M is a semi-projective and i -projective R-module.
Then S/ Jac(S) is regular if and only if Im(f) has a weak supplement in M
foreach f € S.

PrOOF. (=) Let f € S. By hypothesis there is a g € S such that f —
fef € J(S). We have Im(f) + Im(1 — fg) = M. It is easy to see that
Im(f)NIm(1l — fg) € Im(f — fgf),butsince f — fgf € Jac(S) we have
Im(f — fgf) < M by [2,4.28(3)]. Hence Im(1 — fg) is a weak supplement
of Im(f) in M.

(<) Let f € S and K be a weak supplement of Im(f) in M. Since
M is semi-projective and m-projective we have S = Hom(M, Im(f)) +
Hom(M, K) = Sf + Hom(M, K). Since Sf N Hom(M, K) = Hom(M,
Im(f) N K) and Im(f) N K « M, we get Sf N Hom(M, K) C Jac(S).
Thus Sf has a weak supplement for all f, which implies that S/ Jac(S) is von
Neumann regular by [7, 3.18].

The last proposition generalizes [7, 3.18]. Also as a consequence we con-
clude that the endomorphism ring of a semi-projective, m-projective weakly
supplemented module is regular modulo its Jacobson radical.



28 ENGIN BUYUKASIK AND CHRISTIAN LOMP

1. Applications to certain ring extensions

We exploit the existence of a Morita equivalence in the context of various
algebraic structures to apply our theorem.

1.1. Azumaya Algebras

Let k be a commutative ring and A be a central k-algebra, i.e. Z(A) = k, and
A = A ®; A% be its enveloping algebra. Recall that A is called an Azumaya
algebra if the multiplication map A° — A splits as A-bimodule map.

COROLLARY 4. Let A be an Azumaya algebra. Then any A-bimodule is
weakly supplemented (as A-bimodule) if and only if k is a perfect ring. In this
case A is a left and right perfect ring.

Proor. By [11, 28.1] A is a projective generator in the category of A-
bimodules, which is the module category over A°. A is also finitely generated
and projective over k and Hom( A)(A, —) gives an equivalence between A°-
Mod and k-Mod. Hence by Corollary 2 every A-bimodule is weakly supple-
mented if and only if End4.(A) >~ Z(A) = k is perfect. Note that the radical
Rad(4cA) of A as A-bimodule is the intersection of maximal ideals of A, its
Brown-McCoy radical. Since any Azumaya algebra is a PI-algebra any primit-
iveideal is also maximal, i.e. Jac(A) = Rad(4A). If furthermore A is a weakly
supplemented A-bimodule, then A/ Rad(4cA) = A/Jac(A) is a semisimple
artinian A-bimodule and hence semisimple artinian since A is PI. Thus A is
a semilocal ring. On the other hand, since A is a projective A°-module, it is
a direct summand of A¢ as A-bimodule. Thus Rad(4cA) C Jac(A®). Since k
and A° are Morita equivalent, A¢ is left and right perfect and hence Jac(A¢)
and therefore also Rad(4c A) = Jac(A) is left and right t-nilpotent. Hence A is
left and right t-nilpotent, i.e. left and right perfect.

1.2. Graded modules

Let k be a commutative ring and G a group. A G-graded k-algebra A is an
algebra over k with decomposition A = P ¢ Ag into additive subgroups
such that A;A;, C Ay, for all g,h € G. Note that A,, with e the neutral
element of G, is a subring of A. A left A-module M is called G-graded, if
M= eec Mg and AgM; © My, Since the partially ordered set of graded
submodules of a graded module is a modular lattice, it makes sense to talk
about weakly supplemented graded modules.
A G-graded algebra A is called strongly graded if A;A) = Agp:

COROLLARY 5. Let G be a finite group and A a strongly G-graded algebra.
Then every G-graded left A-module is weakly supplemented if and only if A,
is a left perfect ring.
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Proor. If A is strongly graded, then the category of G-graded left A-
modules is Morita equivalent to the category of right A,-modules by [3, 2.12
and 2.2]. Hence all graded A-modules are weakly supplemented iff all right
A,.-modules are weakly supplemented iff A, is right perfect by Corollary 2.

1.3. Hopf-Galois extensions

The reader is referred to S. Montgomery’s book [8] for all Hopf-theoretical
notions. Let H be a k-Hopf algebra and A a right H-comodule algebra, i.e. an
algebra in the category of right H-comodules. Let p : A — A ® H denote
the coaction of H on A. The subring of coinvariants is B = A“? ={a € A |
p(a) = a ® 1}. The extension B C A is called an H-Hopf-Galois extension
if the following map is an isomorphism:

B:A®QpA—> AR H with Ba®a’) = ap(a’)

A theorem of Ulbrich says that a G-graded k-algebra A is strongly graded if
and only if A, € A is a k[G]-Hopf Galois extension (see [8, Chapter 8]).
If k is a field and H finite dimensional then [8, 8.3.3] says that B C A is
H-Galois if and only if the category of (A, H)-bimodules, i.e. the category of
left A-modules which are also right H-comodules, is Morita equivalent to the
category of right B-modules. Under these conditions, A is a progenerator in
the category of (A, H)-bimodules whose endomorphism ring is isomorphic to
B. Applying again Corollary 2 we have:

COROLLARY 6. Let B € A be an H-Hopf-Galois extension with H a finite
dimensional Hopf algebra over a field k. Then any (A, H)-bimodule is weakly
supplemented if and only if B is right perfect.
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