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DISTRIBUTIONS THAT ARE CONVOLVABLE WITH
GENERALIZED POISSON KERNEL OF SOLVABLE
EXTENSIONS OF HOMOGENEOUS LIE GROUPS
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and SALVADOR PEREZ-ESTEVA*

Abstract

In this paper, we characterize the class of distributions on a homogeneous Lie group 9t that
can be extended via Poisson integration to a solvable one-dimensional extension & of Jt. To
do so, we introduce the &’-convolution on 9 and show that the set of distributions that are
F’-convolvable with Poisson kernels is precisely the set of suitably weighted derivatives of L'-
functions. Moreover, we show that the .#’-convolution of such a distribution with the Poisson
kernel is harmonic and has the expected boundary behavior. Finally, we show that such distributions
satisfy some global weak-L! estimates.

1. Introduction

The aim of this paper is to contribute to the understanding of the boundary be-
havior of harmonic functions on one dimensional extensions of homogeneous
Lie groups. More precisely, we here address the question of which distributions
on the homogeneous Lie group can be extended via Poisson-like integration to
the whole domain and in which sense this distribution may be recovered as a
limit on the boundary of its extension. This question has been recently settled
in the case of Euclidean harmonic functions on RTI in [1], [2]. For sake of
simplicity, let us detail the kind of results we are looking for in this context.
Letus endow RTI :={(x,1) : x € R", t > 0} with the Euclidean laplacian.
The associated Poisson kernel is then given by P,(x) = W and a
compactly supported distribution 7' can be extended into an harmonic function
via convolution u(x,t) = P, %« T. As P, is not in the Schwartz class, this
operation is not valid for arbitrary distributions in #”. The question thus arises
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of which distributions in &’ can be extended via convolution with the Poisson
kernel. The first task is to properly define convolution and it turns out that
the best results are obtained by using the %’-convolution which agrees with
the usual convolution of distributions when this makes sense. The space of
distributions that can be #’-convolved with the Poisson kernel is then the space
of derivatives of properly-weighted L!'-functions. Moreover, the distribution
obtained this way is a harmonic function which has the expected boundary
behavior.

In this paper, we generalize these results to one dimensional extensions
of homogeneous Lie groups, that is homogeneous Lie groups with a one-
dimensional family of dilatations acting on it. This is a natural habitat for
generalizing results on R'fl and these spaces occur in various situations. The
most important to our sense is that homogeneous Lie groups occur in the
Iwasawa decomposition of semi-simple Lie groups and hence as boundaries
of the associated rank one symmetric space or more generally, as boundaries
of homogeneous spaces of negative curvature [6]. Both symmetric spaces and
homogeneous spaces of negative curvature are semi-direct products © = JtR%.
of a homogeneous group 9t and R acting by dilatations in the first case, or
“dilation like” automorphisms in the second. For a large class of left-invariant
operators on & bounded harmonic functions can be reproduced from their
boundary values on 9t via so called Poisson integrals. They involve Poisson
kernels whose behavior at infinity is very similar to the one of P,. While for
rank one symmetric spaces and the Laplace-Beltrami operator this is immediate
form an explicit formula, for the most general case it has been obtained only
recently after many years of considerable interest in the subject (see [3] and
references there). Therefore, we consider a large family of kernels on which
we only impose growth conditions that are similar to those of usual Poisson
kernels. This allows us to obtain the desired generalizations.

In doing so, the main difficulty comes from the right choice of definition of
the .#’-convolution, since the various choices are a priori non equivalent du
to the non-commutative nature of the homogeneous Lie group. Once the right
choice is made, we obtain the full characterization of the space of distributions
that can be extended via Poisson integration. We then show that this extension
has the desired properties, namely that it is harmonic if the Poisson kernel is
harmonic and that the original distribution is obtained as a boundary value of
its extension. Finally, we show that the harmonic functions obtained in this
way satisfy some global estimates.

The article is organized as follows. In the next section, we recall the main
results on Lie groups that we will use. We then devote a section to results
on distributions on homogeneous Lie groups and the .#’-convolution on these
groups. Section 4 is the main section of this paper. There we prove the char-
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acterization of the space of distributions that are #’-convolvable with Poisson
kernels and show that their %’-convolution with the Poisson kernel has the
expected properties. We conclude the paper by proving that functions that are
&’-convolutions of distributions with Poisson kernels satisfy global estimates.

2. Background and preliminary results

In this section we recall the main notations and results we need on homogen-
eous Lie algebras and groups. Up to minor changes of notation, all results from
this section that are given without proof can be found in the first chapter of
[4], although in a different order.

2.1. Homogeneous Lie algebras, norms and Lie groups

Let 1 be a real and finite dimensional nilpotent Lie algebra with Lie bracket
denoted [-, -]. We assume that n is endowed with a family of dilatations {4, :
a > 0}, consisting of automorphismes of n of the form §, = exp(Aloga)
where A is a diagonalizable linear operator on 1 with positive eigenvalues. As
usual, we will often write an for §,n and even n/a for §;,,n. Without loss of
generality, we assume that the smallest eigenvalue of A is 1. We denote

1:d1§d2§"'§dn ::C?

the eigenvalues of A listed with multiplicity. If « is a multi-index, we will
write || = o) + - - - + 0, forits length and d(«) = dya; + - - - + dy o, forits
weight.

Next, we fix a basis X1, ..., X,, of n such that AX; = d;X; for each j
and write 9, ..., ¥, for the dual basis of n*. Finally we define an Euclidean
structure on 11 by declaring the X;’s to be orthonormal. The associated scalar
product will be denoted (-, -) and the norm ||-|.

We denote by Jt the connected and simply connected Lie group that cor-
responds to n. If we denote by V the underlying vector space of n and by
Or = %o exp”, then 0y, ..., 6, form a system of global coordinates on ¢ that
allow to see It as V. Note that 6, is homogeneous of degree d; in the sense
that 6;(8,n7) = a%6;(n). The group law is then given by

O (NE) = O, () + 0k (§) + > ey o (mo? )
a7#0,B7£0,d(e)+d(B)=dj

for some constants cf’ﬂ and 6% = 6" - - - 6. Note that the sum above only in-
volves terms with degree of homogeneity < di, thatis coordinates 6y, ..., 6;_;.
Although the group law is written in the multiplicative form, we will write O
for the identity of .
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Now we consider the semi-direct products © = It x R?_ of such a nilpotent
group It with R?, that is, we consider © = % x R with the multiplication

(1, a)(§, b) = (n8u(§), ab).

Finally, we fix a homogeneous norm on 9t, that is a continuous function
x > |x| from 9t to [0, +00) which is € on It \ {0} such that

@) 18anl = alnl,
@ii) |n] =01if and only if n = 0,
(i) [n~" = Inl,

@iv) In-&| < y(nl+ I€]), y > 1 and, according to [5], we will chose |.| in
such a way that y = 1, so that from now on | - £| < |n| + |&]|,

(v) this norm satisfies Petree’s inequality: for r € R,
(L+1nED" < (L4 "1 + 1)
This inequality is obtained as follows: when » > 0, write

L+1Enl =T+ nl+ 18D = A+ DA+ &)

and raise it to the power r. For r < 0, write

L+ &l <1+ (&nl+1n7'D < A+ &0l + ) < (1 + [EnDA + Inl)
and raise it to the power —r.

In particular, d(n, £) = |n~'&| is a left-invariant metric on .

For smoothness issues in the next sections, we will need the following
notation. Let ® be a fixed C* function on [0, +o00] such that ® = 1 in [0, 1],
®d(x) = xon[2,400)and ® > 1 on[1,2]. Then for © € R, we will denote
by w, (1) = (1 + ®(|n|))* which is € in 9i. In all estimates written bellow,
w,, can always be replaced by (1 + |n])".

2.2. Haar measure and convolution of functions
If n € N and r > 0, we define

B(n,r)={eN: [y <r}

the ball of center n and radius r. Note that B(#, r) is compact.

If dA denotes Lebesgue measure on n, then A o exp~! is a bi-invariant Haar
measure on Jt. We choose to normalize it so as to have | B(n, 1)| = 1 and still
denote it by dA. Moreover, we have

|B(n, )| = [BO,r)| = |r-BO, )] =rC,
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where Q = dy + - -+ + d, = tr A is the homogeneous dimension of Jt. This
measure admits a polar decomposition. More precisely, if we denote by S =
{n € N : |n| = 1}, there exists a measure do on S such that for all ¢ € L'(N),

+00
/ () dA(n) = / / o(rE)r% do () dr.
<N 0 S

On & the right-invariant Haar measure is given by d)‘aﬂ.

Recall that the convolution on a group )t with left-invariant Haar measure
dA is given by

f g = /g\f(é)g(é‘ln)dk(é) = /G F01E™)g(€) dA).

This operation is not commutative but, writing f ) = f(n~"), we have
fxg=(g=[)
We will need the following:

LEMMA 2.1. Let h be a €*° function on 0t supported in a compact neigh-
borhood of 0 such that

h(n)di(n) = 1.
N

Set ha(n) = a~2h(8,-1n), then the family h, forms a smooth compactly sup-
ported approximate identity. In particular, if f is continuous and bounded on
N, then f * h, — f uniformly on compact sets as a — 0.

We will need the following elementary lemma, which is proved along the
lines of [2, Lemma 9]:

LEMMA 2.2. Forr,s € R, let
I s(n) = /(1 + ED" (L + £ n)* dA®).
N

Then, ifr +s5 4+ Q < 0, I, 5(n) is finite. Moreover, if this is the case, there is a
constant C, g such that, for every n € %0,

Crs(1+ [n|)rts+@ ifr+0>0ands+ Q >0,
Ls(n) < Cros (L4 )™ log2 + |n]) ifr+ Q@ =0o0rs+ Q =0,
C s (1 + |n|)ymaxtrs) else.

PrOOF. From Peetre’s inequality we immediately get the first part of the
lemma.
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From now on, we can assume thatr +s5+ Q < 0. Write )t = QU Q, U Q3
for a partition of Jt given by

1
Q1={€€%3|§|SE|U|}

and

Q= {E eMN:[E] > %Inl, 1§l < %Inl}

and let
L) = /Q (L4 £ (1 + £ 0 dAGE).

First, for & € ©;, we have %Inl <&yl < %Inl so that
Lim) =G+ 10D’ | (A+15D" dAE)
Q)

Inl

2 1
< Cy(1 4+ |n|)S/ 271+ 1) de
0

Crs(1 4 |n))rtste ifr+0>0
<1CA+In)'In@2+n) ifr+0=0.
Crs(14+n)? ifr+Q <0

Next, for & € Q, we have 31| < [§] < 3|7, thus

L(n) < C.(1+ Inl)’/ﬂ (1+ & "nD* dA®)
|2n\/2
< c,(1+|n|)’/0 971 +0)* dr
Cry(1 4 |p|)y+s+@ ifs+0Q0>0
<{C I+ In@+y) ifs+0=0.
Crs(1+ 0" ifs+0<0
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Finally, for & € Q3, we have %ISI < |7 'n| < 3|€] so that

L) = Cry | A+1ED" M+ 1EDAAE) < Cr,x/ (1+ D" dr(®)

o M

+00
—C,, / (91 1) dE < Gy (14 Inl) 4.
Inl

2

The proof is then complete when grouping all estimates.
2.3. Invariant differential operators on N

Recall that an element X € n can be identified with a left-invariant differential
operator on i via

0
Xf() = 5f(s.exp<sX>)

s=0

There is also aright-invariant differential operator Y corresponding to X, given
by

0
Yf() = a—sf(exp<sX>.§)

s=0
Note that X and Y agree até = 0. For X1, ..., X, the basis of n defined in Sec-
tion 2.1 we write Yy, ..., Y, for the corresponding right-invariant differential

operators.
If « is a multi-index, we will write

o _ Y% o, yva _ o .. YYl
X4 =X\ X0, X% = X X

Yo=Y Ye, YO =Y0 Y

We will write Z* if something is true for any of the above. For instance, we
will use without further notice that

o
|Z a)M| < Ca)u_d(a).
. unctions,
For “nice” functions, one has!

f) X f g ity = (=1 /J X g () dr(n)

and

/} Y £ (g dr(n) = (=D fJ FY®g(n) dr(n).

Vin [4] the ~is missing, this is usually harmless but not in this article.
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As a consequence, one also has

XU(fxg) = f*(X%), XU (fxg) = f*(X%),
an

Y(fxg)=(Yf)xg YO(f xg) = (Y9) * f.

Moreover, using X"‘f = (=D(Y*f) or i"‘f = (—1)""'(}7°‘f)v and cor-
recting the proof in [4], one gets

X“f)xg=f*(Y%) and  (X*f)xg=fx(Y%).

Recall that a polynomial on 9t is a function of the form

P = Za(,ﬁ“

finite

and that its isotropic and homogeneous degrees are respectively defined by
max{|x|, a, # 0} and max{d(«), a, # 0}.
For sake of simplicity, we will write the Leibniz’ Formula as

X oY) = > AapXPoX Py, XUeY) =) AapXPoX* Py

Bz B<a

Further, we may write

2.1) 7= 3" Qupx”

Besy

where £, = {B : |B| < |a|,d(B) > d(x)} and 60{,,3 are homogeneous
polynomials of homogeneous degree d(8) — d(«).

Let us recall that 9t has an underlying vector space V to which 9t may
be identified. In turn, by choosing a basis, V can be identified with R%™V
and then consider this basis as orthogonal. This endows Jt with an Euclidean
structure which we consider as fixed throughout this paper. We may then define
Euclidean derivatives 9;,i = 1,...,dim V on ) as the standard derivation
operator on R“™ " and the Euclidean Laplace operator is defined in the standard

way as
dim V

A=Y a7
i=1

As in (2.1), any Euclidean derivative can be written in terms of left or right
invariant derivatives. We will only need the following in the next section: for
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every M, there exist polynomials wy, || < 2M and left-invariant operators
X¢ such that

(2.2) I=0Y"= " w,x*

lo|<2M

Finally, we will exhibit another link among several of this objects. Let &,
be as in Lemma 2.1 and let f, ¢ be smooth compactly supported functions.
Then

(X% f) % ha, @)
= (XYf, @ % ha) = (=) f, XU (@ % ha)) = (f, 0 % (Yha))

=./J‘ g\f($)<ﬂ(§n)(?“ha)(n)z dr(n) dr(§)

= /ge/mf(é)w(én) Z aa,ﬁ(n)(xﬂha)(n) dr(n) dAa(®)

BeSs

= /) /y F& Y (DR Qe (Em)ha(n) di(n) dA(E)

BeSy

= /) \ / FE Y DY R (X Qup) () (X10) Emha () di(r) d2(§).

BeSy <p

As ?ﬂ_‘aa,ﬂ is a homogeneous polynomial, if it is not a constant, then
XP'Qq,5(0) = 0. With Lemma 2.1, it follows that

| & @upm@erent,maim o

uniformly with respect to § in compact sets, as @ — 0. On the other hand, if
X ﬁ*‘Qa, g 1s a constant,

f) eo?ﬁ*léa,ﬁ)(n)()M)@n)hu(n) dr(n)

= (X"'Qup) 0 fj (') EMha () A1) > XP7Qup(O)X'p(&)

as a — 0, uniformly with respect to £ in compact sets, again with Lemma 2.1.
We thus get that (X f) * h,, ¢) converges to

/) F® D EDPY R (X Qup) 00X 9 (§) dAE).

Be sy <B
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On the other hand (X* f) * h, converges uniformly to X* f on compact sets,
thus -
(XUf) % ha, ) = (X f, 0) = (=D f, X*0).

As the two forms of the limit are the same for all f, ¢ with compact support,
we thus get that

(2.3) XU = (=D Y (DS R (X Qup) (0) X

BeJq =g

2.4. A decomposition of the Dirac distribution

In Section 3.1, we will need the following result about the existence of a
parametrix:

LEmMmaA 2.3. For every integer m and every compact set K C 9t with 0 in
the interior, there exists and integer M, a family of left-invariant differential
operators X* of order |a| < M and a family of functions {Fy}q<m of class
€™ with support in K such that

(2.4) Z X°F, =&

where 8 is the Dirac mass at origin.

Proor. Let us start with the Euclidean case, that is, when It is considered
as an Euclidean vector space (see the previous section). Even though this is
classical (see [11]), let us include the proof for sake of completeness.

First, for M big enough, the function F; defined on RYby Fo(¢) =1/(1+
47%|E|)M (where F is the Fourier transform of F) is of class " and satisfies
(I — MM F = §, where A is the Euclidean Laplace operator.

Now let ¢ be a smooth function supported in K with ¢ = 1 in a neigh-
borhood of 0. Then by Leibniz’s rule, we get that (I — A)M (Fyp) is of the

form
oI = M Fy+ > capd’ Fod“g.

Note that 0% = 0 in a neighborhood of 0 and that Fj is analytic away from
0 so that, if we set H = Y _ ., <an. p1<2m Capd” Fod“@ then H is smooth and
supported in K . Further, as (I — A)” Fogp = ¢(0)8¢ = 8y, we have thus proved
that there exists two functions G and H of class € with support in K such

that
(I-M"G=68,+H

which concludes the proof in the Euclidean case.
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To obtain (2.4), let us recall (2.2):

(I — MM = Z we X°.

lo|<2M

It follows that, for € &,

(=G y)= ) (@uX*G.¥)= > (=D(G. X*(wa¥)))

lo|<2M la|<2M

= Y DY (G X P, X y)

lo|<2M B=a

= Y Y (XP=D)HIGX P w,), ).

lo|<2M B=<a

We have thus written

(I— MG = ZZXﬂ((_l)IaIHﬂ\GXa—,Swa)

a f<a

and as 8o = (I — A)M G — H we get the desired decomposition.

2.5. Laplace operators and Poisson kernels

DEFINITION 2.4. Let Pbe asmooth functionon 9t andletP, () = a~2P(8,-17)
and let I be a real non-negative number. We will say that P has property (%r)
if it satisfies the following estimates:

(1) there exists a constant C such that

1

—w_o_-r <P<Cw_op_r;

C o-I = = o-r

(ii) for every left-invariant operator X¢, there is a constant C,, such that for
every n € N, [X*P(n)| < Cow—g-r—a@ (M),

(iii) for every k, there is a constant Cy such that for every n € )i, and every

a >0, B
1(ad.)*Pa()| < Coa Cw_g_r(8,-11).

REMARK 2.5. Condition (i) implies that P € L'(0). Throughout this paper,
we will further assume that P is normalized so that fm P(n)dr(n) = 1.

Note that several other important estimates will automatically result from
these estimates.
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(1) First, by homogeneity of the left-invariant operator X%, there is a constant
C, such that for every n € 9, and every a > 0,

1X*Pu(n)] < Coa™ 27w o 1 gy (8a-11).

(2) LetX = X]'--- X;* be aleft-invariant differential operator. Set d(X) =
dijo; + - -+ 4 d; o its weight, then the commutation rules in n imply
that X = "5 15— cp X" It follows that

IXP, ()| < Ca= 27w 5 a0 (8a-17).

(3) WritingY* =) ped, QX P where 0., is ahomogeneous polynomial
of degree d(B) — d(a), we get that

[Y*P, ()| < Ca 279 o i) (Sa-11).

In particular, in all estimates, P, can be replaced by lsa. Also, as for the
previous point, Y may be replaced by Y = Y;" - -- Y.
(4) The previous remark also shows that in point (ii) we may as well impose
the condition for right invariant differential operators. This would not

change the class of kernels.

ExXAMPLE 2.6. A large class of kernels satisfying property (%r) is asso-
ciated to left-invariant operators on &. Let us detail the following for which
we refer to [3] and the references therein for details. Consider a second order
left-invariant operator on & of the form

2
S=>7+Z.
j=1
We assume the Hormander condition i.e. that
(2.5) Zy, ..., Z, generate the Lie algebra of &.

The image of such an operator on R* under the natural homomorphism (&, a)
— a is, up to a multiplicative constant,

(ad,)* — aad,.

If a > O then there is a smooth integrable function P, on 9t such that the
Poisson integrals

(2.6) fxPa(n) = /y FEPLE ) dr&)
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of an L* function f is -#-harmonic and moreover, all bounded -#-harmonic
functions are of this form. In particular, P, (n) is -#-harmonic.

The properties (i) and (ii) for P have then been proved in [3] — see the
main theorem there for diagonal action and # satisfying 2.5. (iii) follows
immediately from (i) and the (left-invariant) Harnack inequality applied to the
harmonic function P,(n) i.e.

1(ad.)*Pa ()| < CxPu(n).

Our first aim will be to give a meaning to such Poisson integrals for as
general as possible distributions f so as to still obtain an .#-harmonic functions
when the kernel is .#-harmonic.

3. Distributions on

3.1. Basic facts and the space 9, ,

Distributions on 9t are defined as on R” as the dual of the space & := Z(N) of
¢ functions with compact support, endowed with with the usual inductive
limit topology. We will write the space of distributions &’ := &’(9t). Notions
such as support, Schwartz class & := (), tempered distributions &’ :=
F'(N), - - - are defined as for distributions on R” and the space of compactly
supported distributions will be denoted &’ := &’(t). Because of the link
between left invariant derivatives and Euclidean derivatives (similar to the
links between left and right invariant derivatives, see [4]), these spaces are
just the usual spaces of distributions on Jt seen as V =~ R”". In particular, we
will use the fact that every set of distributions that is weakly bounded is also
strongly bounded.

For T € &', we define 716 9’ by (YV", @) = (T, ¢), while X*T is defined
by (X°T, ¢) = (=T, X¢).

The definition of the convolution of two functions is easily extended to
convolution of a distribution with a smooth function via the following pairings:
for T € 9’ a distribution and ¥, ¢ € & smooth functions

— the right convolution is given by (T x v, ¢) = (T, ¢ * V)
— the left convolution is given by (¢ x T, ¢) = (T, U x ©).
As in the Euclidean case, one may check that 7" 1 and v/ % T are both smooth.

We will now introduce the space of integrable distributions &;, and show
that this is the space of derivatives of L' functions.

DEFINITION 3.1. Let B := AB(N) be the space of smooth functions ¢ :
9t — C such that, for every left-invariant differential operator X%, X%¢ is
bounded.
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Let B = .%’(9%) be the subspace of all ¢ € Z(IN) such that, for every
left-invariant differential operator X%, | X“¢(u)| — 0 when |u| — ooc.

We equip these spaces with the topology of uniform convergence of all
derivatives. )

The space &;, = Z;,(0N) is the topological dual of 2 (Jt) endowed with
the strong dual topology.

Note that % and 6° are dense in 2 (but notin %) so that 9, is a subspace
of #’. Note also that every compactly supported distribution is in &; , . Further,
as % is a Montel space, so is @21.

It is also obvious that if T € 92,, ¢ € P and X* is left-invariant, then
X*T € 9;, and 9T € 9,,. We will need the following characterization of
this space:

THEOREM 3.2. Let T € &' (N). The following are equivalent
i) T eP,,(N);
(ii) T has a representation of the form T = . .. X f, where f, € L'(M)
and X¢ are left-invariant differential operators;
(iii) for every ¢ € D(N), the regularization T * ¢ € L'(N).
ProoF. The proof follows the main steps of the Euclidean case, see [11,

page 131]. Denote by & the set of all functions ¥ € & such that |||, < L.
(i) = (iii) Assume that 7 € &;, and let ¢ € &. Now, note that

(3.7 (T, ¥)=(T, ¥ x¢)

so, if ¢ is fixed and ¥ runs over &, the set of numbers on the right of (3.7) is
bounded, thus so is the set of numbers {(T * ¢, ¥), ¥ € Z1}.ButT x ¢ isa
(smooth) function so this implies that T x ¢ € L'.

(iil) = (i) Assume that, forevery € &, T« € L', thus T ¢ € L".
Now, for ¢ € & fixed, the set of numbers

(Tx@,4) = (T, %@) = (T, px¢) = (T %y, )

stays bounded when ¢ runs over &;. It follows that the set of distributions
(T % ¢, ¢ € 9} isbounded in &' since it is a weakly bounded set.

This implies that there exists an integer m and a compact neighborhood K
of 0 such that, for every function ¥ of class € with supportin K, T x @ *¥(0)
stays bounded when ¢ varies over &;. Using

Txexy(0) = (T @, W) = (T, ¢ @) = (T * ¥, ¢)

we get that T % ¢ € L! for every ¢ € €™ with support in K.
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Now, according to Lemma 2.3, we may write

ZX"‘Fa = 8

finite

where the F,’s are of class € and are supported in K. It follows that

T=ZT*X“FQ=ZX“(T*E1).

finite finite

The first part of the proof shows that the 7 % F,’s are in L' so that we obtain
the desired representation formula.
(i1) = (i) is obvious so that the proof is complete.

DEFINITION 3.3. Let A, := %B.() be the space B () endowed with the
topology for which ¢, — 0 if,

(i) for every left-invariant differential operator X%, X*¢, — 0 uniformly
over compact sets,

(ii) forevery left-invariant differential operator X, the X*¢,’s are uniformly
bounded.

The representation formula of 7 € &;, given by the previous theorem
shows that 7" can be extended to a continuous linear functional on %,. For
example, if we write T = fy + Z|a|>l X fo, then

(T g0 = o = [ H© 0r®).

3.2. The S’ -convoultion

Recall that if G € % and ¢ € & then G x ¢ € €™ so that the following
definition makes sense:

DEFINITION 3.4. Let F, G € & /@E), we will say that they are .%’-convol-
vable if, for every ¢ € S(N), (¢ * G)F € ;. If this is the case, we define

(F%G,o)=((¢xG)F 1), 4.

IfF,G € (M), then F and G are ’-convolvable and the above definition
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coincides with the usual one. Indeed, for every ¢ € (),
(FxG.g) = [ FxGotn i
€N

= ﬁ ? /J eF(S)G(aﬁ—lnxo(n) dA(€) dr(n)

= /J (/J w(n)é(n—lg)dx(n)) F(§).1dA(§)

= ((¢ * (v;)F, 1)@;1,%.

REMARK 3.5. There are various ways to define the .#’-convolution that
extend the definition for functions. For S, T € 2’(), let us cite the following:

(1) S and T are #-convolvable if, for every ¢ € Z(N), S, ® Typ(xy) €
D, (Nt ® N). The F|-convolution of S and T is then defined by

(§#1 T, 9) = (S @ Typ(xy), 1) 7/, nem). 2. ieom)-
(2) S and T are ;-convolvable if, for every ¢ € 9, S(YV’ * @) € D, (M)
(S T, 9) = (S(T % 9), Dy, 8,00

(3) SandT are #j-convolvable if, forevery ¢, ¥ € S (N), (Sx@)(Txy) €
L'(M). The F;-convolution of S and 7 is then defined by

(S22 Ty = [ ST ) dan

It turns out that in the Euclidean case, all four definitions are equivalent and
lead to the same convolution [10]. There are various obstructions to prove this
in our situation, mostly stemming from the fact that left and right-invariant
derivatives differ.

Also, one may replace the &, space by the similar one defined with the
help of right-invariant derivatives. We will here stick to the choice given in the
definition above as it seems to us that this is the definition that gives the most
satisfactory results.

One difficulty that arises is that the derivative of a convolution is not easily
linked to the convolution of a derivative. Here is an illustration of what may
be done and of the difficulties that arise. We hope that this will convince the
reader that several facts that seem obvious (and are for usual convolutions of
functions) need to be proved, e.g. that T * P, is harmonic if P,, is.
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LEMMA 3.6. Let S, T € &' (N) and let Y be a right-invariant differential
operator of first order. If S and T are &’ -convolvable, if YS and T are & /-
convolvable and if, for all ¢ € S'(N), Y((¢ * T)S) € &;,(N), then

Y §*«T)=XS)*T.

PrOOF. As (Yf)g =Y (fg) — fYg, we get that

(Y(S*T),¢) = —(SxT,Yp) = —(((Yp) x T)S, 1)
= —(Y(e*T)S,1) = (Yo +T)S), 1) + (¢ x T)YS, 1)
=0+ ((YS)* T, ¢)

the next to last equality being justified by the assumptions on F, G.

Using this lemma inductively gives
Y(S*T)=X*S) =T

provided all intermediate steps satisfy the assumption of the lemma. This is
the case if S is compactly supported.

3.3. Weighted spaces of distributions

We will need the following weighted space of integrable distributions, intro-
duced in the Euclidean setting in [7], [8], [9].

DEFINITION 3.7. Given u € R we consider
0 DN =0, D, N ={T € S N : w_, T € D;,(M)}
with the topology induced by the map

w0 D (N) — Dy (N)

T o,

This space admits an other representation given in the following lemma:

LEMMA 3.8. Given u € R, we have
(3.8)

0, D (N) = {T eSM: T = ZX"‘ga, where go € L'(N, w_Md)»)}.

finite
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ProOF. Let us temporarily indicate with 7” the right hand side of (3.8).
GivenT € 7", wecanwrite T = Y .. X* (w, fu), where f, € L'. But then,

T=Y > AupXPo,XPf,

finite 0<B<«a

=w, Z Z Awpo_ X Pw,XP f,.

finite 0<B <«

By definition, the distribution X” £, belongs to 9, .. Moreover, and easy
computation shows that the function w_, X*~#(w,,) belongs to the space 2.
Since &, , is closed under multiplication by functions in 9, we conclude that
T belongs to w, Y, ;.

Conversely, given T € wM@/L, we can write, by definition, T =
Ou Y e X% fu, Where fo € LY or, T = @, > o X* (0, 80), Where go €
L' (w—,,dA). Now, given ¢ € .7, the pairing (T, ¢) 4 ¢ can be written as

D (=D ga, 0y X (@u9)) 5.7

finite ~ ~ ~
=Y Y DA p(gar 0w (X P w0) XP0) g 5.

finite 0<B<«
We observe that for each multi-indexes « and 8, the function
ba,ﬂ = (_l)la‘xa,ﬂwfu(iaiﬂwu)

belongs to 4. Thus,

(T, @) g7 =Y _(=DPUXP(=1)"by pga), ).
a.f
ofr,
T =Y (~DPXP((=1)"by 5 ).
a.fp

To conclude that the distribution 7 belongs to 7" we only need to observe that
L'(w_,dA) is closed under multiplication by functions in %. This completes
the proof of Lemma 3.8.

As an immediate corollary, we get that

COROLLARY 3.9. The space w, 9, ,(N) is closed under the action of left-

invariant differential operators X“ and under multiplication by functions in
B.
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4. Distributions that are .#’-convolvable with the Poisson kernel

4.1. Extensions of distributions with the Poisson kernel
We are now in position to prove the following:
THEOREM 4.1. Let T € &' and P be kernel satisfying property (%r) with
[ > 0. Then the following are equivalent:
(ii) T is &'-convolvable with P, for some a > 0,
(iii) T is &’-convolvable with P, for each a > 0.
PrOOF. Itis of course enough to prove equivalence between (i) and (ii), the

equivalence with (iii) will then automatically follow.
Let us assume that T € a)Q+r9/L,. We want to show that, if ¢ € &,

(p * Iv’u)T € Z;,. It is enough to show that (¢ * Isa)a)QJrr € 2. But, for a
left-invariant derivative X* and 8 < «,

X« pxPo)(n) = ¢ % (X* PP () = /J XPRL 5 Dp(§) dA(®).
Therefore
X (¢ % P ()l

1
=¢ /92 (1 + |- 1p|)Q+T+d@)—d(p) @(&)dr(€)

< Co-g-r-sarsay® [ (1-+1EDCTHO Dy (6) drie)

by Petree’sinequality. As [ XPwgr| < Cpwoir—acp), itfollows from Leibnitz’
Rule that (¢ * Isa)a)Qer € 9. The first part of the proof is thus complete.

Conversely, let us assume that T is &’-convolvable with P, and fix ¢ € %,
a non-negative function supported in B(0, 2) and such that ¢ = 1 on B(0, 1).
Then

¢ Pa() = /J PEP(n') dAE)

> C(a) da(g).

po.1) (1 4+ [n~tgpe+r
But, for £ € B(0, 1), |n7'€] < (In] + |€]) < (1 + |n]). It follows that,

ok Pam > —D S oo .
(1 + [T ©
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1

As we have already shown that wg. ¢ * Isa (n) € B, we get that ———~—
wQ-H"(p*Pa('])

2. Finally, writing

1 v
T =wgir———(@*P)(mT
wo4+r@ * Py(n)

gives the desired representation since, by hypothesis, (¢ * Isa)T €9,

4.2. Regularity of the &'-convolution of a distribution and the Poisson
kernel

We may now prove the following lemma, which allows us to represent T x P,

as a function:

LEMMA 4.2. Let T € wgrP;,(9N) and P be a kernel having property (Rr)
with T > 0. Then, the &’-convolution of T with the kernel P, is the function
given by

(4.9) 1 (00T, woir P ™)y, 4,

PrOOF. First note that & > wgr ()P, (n'€) is in B and w_g-r()T €
9, so that (4.9) makes sense.

We want to prove that, if 7 = Y . woir X® f, with f, € L', and if
¢ € &, then (T *P,, ¢) := ((¢p * P)T, 1) is equal to

«a)_Q_p(-)T, C()Q+F(‘)I5a (77_1'))@2] B <P(77)>-

By linearity, it is enough to consider only one term in the sum, 7' = wgr X* f
with f € L'(N). But then

(woir (@ * P)Xf, 1)
= (=DM f, X*(wgr (¢ % Po))

= DY R [ FOR o OF (0 5P a6

B=a

Further, we have

XP(p P =px (X'P)E) = / e (XPP)(n™'8) dr(m).
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It follows that
<‘UQ+F(<P * I\:sa)Xafot, 1>

(4.10) = (=D"Y " Aup / FEOX P oo @(XPPH0'E)

e % JIn
dA (&) ¢(n) da(n)

= (-1 /}e (/ﬁ f(S)ia(wa(')Fv’a(n”‘))(S) dk(S)) @(n)dr(n)
using (X#P,)(n~'&) = X{P,(n~'¢) and Leibnitz’ Rule. Thus

(wo+r(p*P)X* . 1) = / (X f (&), 0+ (§IPu(r™'8)) ¢ (n) dA(n)
<N
as claimed. 5
All inversions of integrals are easily justified by the fact that wy,rP, € %.

COROLLARY 4.3. Let T € wo,rY,, and P be a kernel satisfying property
(Zr) with T > 0. Then the function T % P, is smooth. Moreover, for any left-
invariant derivative X*, T is & -convolvable with X*P, and X*(T * P,) =
T % (X%P,) and for any k € N, T is & -convolvable with (ad,)*P, and
(@d) (T xP,) =T % ((aau)kPa). In particular, T % P, is harmonic if P is.

PrROOF. As the proof of the implication (i) = (ii) of Theorem 4.1 only
depends on the estimates of the Poisson kernel from Section 2.5, we get with
the same proof thatif 7' € wgpr%;, then T is #’-convolvable with X*P, and
(@d,)"Py.

For the other assertions, we may again assume that 7 = wgr X% f. As
T * P, is a function, from (4.10) in the proof of the previous lemma, we get
that

T xPa(p) = (=D Y " Ko /y FEX P @XE (Pa(n™'6)) da®).

B=a

It then remains to differentiate with respect to n under the integral to complete
the proof.

We will need the space &1, of all functions ¢ € ¢ such that, for every
left-invariant partial differential operator X%, X*¢ € L!(w,d}) endowed with
the topology given by the family of semi-norms

lllay =Y 1XP0l11w,a0-

B=a
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We may get a more precise estimate of the Poisson integrals at fixed level.

ProPOSITION 4.4. Let T € wgr Y, ,(N) and P be a kernel having property
(%r) with T > 0. For each a > 0, the & -convolution T * P, belongs to

9L] (w,Q,rd)\)‘

ProOF. By linearity, it is enough to prove that, if T = wg,r X* f for some
f e L'(M), then X(T xP,) =T« X'P, € wo+r 1. But, from (4.9), we get
that

T x X'P,(n)

= (=DM f, X*(worr (X Pa(n™")))

@11 =D " Aup fj ? FEOXPwgr@XPXP,(n7'8) dAE)

B=a

using Leibnitz’ Formula and the facts that f € L' and wgr (1) X'P,(n~") €
2. Using the estimates

1X*Pwgir @) < Cle, Bogir—aw+ap) )

and
IXEXLP.(n'8)] < Cla. B. @)w_g—r—aipy-ay (')

we see that the Ll(w_Q_rdA)—norm of each term of the sum in (4.11) is
bounded by

C -0+ [ 1£©1001r-at0ra €00 0-r- s (7€) 41(6) dr)

=<, | fE)|worr—daw@)+ap) &)
/y w_g-r(M®—g_r—ap)-aw &) dA(n) dA ()
<C ; | f (&) w—a@)+ap) (&) dA(§)

with Lemma 2.2. As d(B8) < d(«) we get the desired result.
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4.3. The Dirichlet problem in wg -9,

We will now prove that T is the boundary value of T * P, in the wg,r%;,
sense.

THEOREM 4.5. Let T € wgrY;, and P be a kernel satisfying property
(ZRr) withT > 0, normalized so that f\JE P(n) dA(n) = 1. Then the convolution
T % P, convergesto T in wgr9;, when a — 0.

PrOOF. We want to prove that, for ¢ € %’
(4.12) (w—o-r(T %P,), (p)%ﬂ. — (w_g-rT, (p)%ﬁ.

when a — 0. It is of course enough to consider T = wg4r X* f with f € L'
Write ¢_g-r = w_g-r¢ and ¢¢_g_r(1n) = ¢_g-r(§n). Then

(@—-r(T Py), 90)% %

= (- ﬁ | /J FOR (@osr ©Pu )90 () A A1)

=0 [ £ Y Rap @ Pagane)

B=a

XE(Batn™'8))9—o-r(n) di(n) dA(&)

= (=D /J ‘ /J FE Y RapXPwgir) @)

B«

(XPP) (Mo o_r(En) di(n) dr(E)

= (=D /J \ /J FE Y RapXPwgir) @)

B«

(—DPIYPP,(meg_o-r(n) di(n) dA(E).

Now let ¥ be a smooth cut-off function such that ¢(n) = 1 if [y| < 1 and

¥(n) =0if [n| =2 and write = 1 — . Then (0_o_r(T *P,). ), ;=
1

S1 + S, where S is ’

G ﬁ ? /J ?f@)ZKa,ﬂ(i“*”wa)(@
W p<a ~
(—=DPIYPPy()ep—o-r (MY (1) d2(n) dA(E)
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while S, = (=D?I Y, Ay 585 with
B _ va—p
Sy = / FEX Pagir)E)
NJIN ~ ~
(=DPIYPP,(ep—o-_r (¥ () dr(n) dA(E).

Let us first show that each Sf — 0 so that S, — 0. As, for || > 1,
(1 + [nl/a)"2T=4B) < qQ+T+d(B) ;) —0-T—d(p)
< CaQ+r+d(ﬂ)(1 + |n|)—Q—F—d(,3)’

thus, using the estimates of derivatives of P, and wg.r, we get
St =C [ 1@+ jgperraon
x /| . a®tMP A+ |n)fa)” TP A+ g0 97T dr(p) A )
ni=
< ca” [ 7@+ jgperaone

X / (1 + )~ 2B + 1&9) =27 da(n) dA(E)
[nl=1

<Cad" I flp

with Lemma 2.2. It follows that S, — 0.
Let us now turn to S;. First, from (2.1),

5= [ [ 16X RupFe )@

B=a

x (=D Qg (1) X'Pa (1) 60— () () di() dA(E)

e gy
(1 /) /y}f@)ﬁ;xa,ﬂ@“—ﬁwgw)(s)
x (=DPIP, () i(—l)“‘il(éﬂ,l;sofgfrw)(mdun)dus)
edy
(1 /) /g}f@)ﬁgxa,ﬁ&“—%gw)@)
x (—=D)PIP, () Z_(—l)“‘ > A
e V<t

@.13)  X(Qpuep—o-r) X W () i) dA).
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Assume first that ' # 0. Then X “r s supported in 1 < |n| < 2. Further,
from Leibnitz’ Rule, ¢ € % and Peetre’s inequality we get that

X (Qpue9-0-1) (1)

is bounded by Cw_¢p_r(£§) with C independent from 7. It follows that

/9 PuX ™ (Qpucp—o-r) X Y (1) dk(n)‘

¢

< Cw_g-r(§) . ZPa(n)dk(n)-
<lnl=

Consequently, since this integral goes to 0, we have

ﬁ ? J‘f(é)(i"”ﬂwgw)(é)l’a(n)
X(Qpe0—o-r) X ¥ () dr(n) dr(§) — 0.

It follows that, when passing to the limit in (4.13), only the term ¢ = O remains.
Thus S; has same limit as

5= 0" [ [ 103 Rap @ Fogin @)

B=a

x (=DP¥IP, () Y (= DMX"(Qp e0—0-r) () (n) di(n) dA(&)

1edy
= (=D f / FE D Aap(X*Pargir)®)
% Jn feu

< (=DPP, ) Y (=D S K, X Qpu)

1edy U=t

X'co_o_r(m¥ () dr(n) dAE).

Now, if X ‘_‘/6 .. 18 not a constant polynomial, then X ‘_‘/(3,%(0) = 0 so that
(4.14) f Pa() X Qp (M) X c0_g—r (¥ () dA(n)
€N

goes to 0 when a — 0, while if X (3,3,[ is constant, then, as ¥ (0) = 1, this
integral goes to

X Qp.(0)X'c0_o_r(0).
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Moreover, as (4.14) stays bounded by Cw_¢g_r (&), from the dominated con-
vergence theorem, we get that

5= =0 [ £© Y RupF g @)

B=a

< (=D DI R X Qp (01X 9 o1 (0) dA(E)

tedp U<t

= (=D /) S Y RapX TP o)X ep_o-r(0)drE)

B=<a

where we have used Identity (2.3) in the last equality. But X# eP—o-r(0) =
X# ¢@—g-r (&) so that Leibnitz’ Formula implies that this limit is

0" [ F@F @oirp-0-©d©) = =1 [ ©F 06 are)
= (X“f.)
as claimed.

REMARK 4.6. Assume as in Example 2.6 that P, is harmonic for some left-
invariant differential operator .# on &. The above result imply that given for
a distribution T € wQ+r@£1, the function u = T % P, is a solution of the
Dirichlet problem

Fu=0 in©
{ Ulg=o =T

where the boundary condition is now interpreted in the sense of convergence
inwgsr?;, asa — 0*.

5. Global estimates for Poisson integrals of distributions in @g,r %},

In this section, we will prove that the Poisson integrals of measures in wg r &, ,
satisfy some global smallness property measured by a weak-L! type norm.
Further, they also have a decrease at infinity.

NortaTION 5.1. For a Borel set F C ©, we denote by | F'| its measure with
respect to dA da. A function on & is said to be in L'*>(dA da) if there exists
a constant C such that, for all « > O,

c

Hm.a) €@ 1f(n,a) > a)| < -
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ForT" > 1, let r(n,a) =
Indeed

: 1 1
W’w and note that E@p € L *(drda).

a~1/@+D

1
H(n, a): —dr(n,a) > (x} = / ’B(O, aT—D/(@+D) , —1/(Q+D) _ a)’ da
a 0

o 1/@+D
:/ ((@T=D/@+T)g=1/@+D) _ 4)C 44
0

_! /1 (1T-D/e+D _ I)Q dr

o Jo

by changing variable t = aa!/(*D_ It should also be noted that ®p ¢
100 (dida

=),
We will denote by - the set of complex measures p on 9t such that

/(1 +1EDTCTD d|ul¢) < +oo.
N

For € M and n € M, let us denote by ., the left translate of by 7, that
is the measure defined by

/yst)(é)dm,(é) = /pr(né)du(«f)

for all continuous functions ¢ with compact support on Jt. From Petree’s
inequality, we get that 1, € /. Further note that, if 4 € ./, then

ILl(B(0, ) < <1+r>Q+F/ (1+ gD~ CHDd|u|E) < A +r)2th.
|&]<r

We are now in position to prove the following:

THEOREM 5.2. Let T > 1 and let P be a kernel having property (%r) with
' >0.Ifu e Mr then

1
(5.15) —(A4+a+n)" 2 TuxP,(n) € L"*°(drda).
a

Moreover, for every ay > 0,
(5.16) (1 +a+ )~ a™" w* P Xinwesama) (0, @) € L*(dAda).
REMARK 5.3. At this stage, we have been unable to prove a converse, that

is, if T is .%’-convolvable with P, and if T * P, satisfies the above estimates,
then T € /ﬁlr.
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Proor. Without loss of generality we may assume that @ is a positive
measure.

LetE; ={(n,a) € © |n| <landa < 1}and E, = ©\ E;and let ny € N
be such that [57g| > 2. Assume that we have proved that for every £ C E,

1
—(+a+ D~ T * P xe € L"*(drda)

for every measure u € #r. Applying this to E = 5, 'E, and to the left-
translate po € Mr of u by ny U'we get that

(I +a+ )2 a " wx Py () xe (0, @)
= (L+a+1nh~ " a™" o % Palng 'm x5, (ng ' ms @)
<CU+a+1ng'n)=C " a™ o * Palng ' mx,.15 (g ' 0, @)
€ L"*(drda).

It is thus enough to prove that
1
(5.17) —(I4a+ )2 wxPum)xe, € L"(drda).
a

Note that if P has property (%r) then (1 +a + )2 Ta~'u * P,(n) is
bounded by

a"V / du(é)
(L4+a+mhe*r Jy (@ + In~'ENHCHT

S (e § IR Y B [reer=
(L+a+mD2T \Jig<ty Jimziei<om Jami<ie)/ @+ In7teherr

=1+1+1II.

Let us first estimate /. Note that, if |§]| < %Inl, then

1
a+In'El>a+Inl— €l >a+ 1= Cla+inh = A +1u)/2

since we only consider (, a) € E,. It follows that

a(l"—l)
Ixg, <C / du@ (A + 1)~ e,
(I+a+ MmN Jig<iyy
1 al

e L"*°(dxrda).

<C-
a (I+a+ [n)e+r
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Moreover, this computation also shows that a =" *!1 € L>®(dAda).
Let us now estimate //I. Note that, if || > 2|n|, then

1
(5.18) a+|77_1€IZa+ISI—In|Za+5|$|2C(a+I$I)-

Further, as (n, a) € E, then either @ > 1 or |n| > 1 in which case |§] > 2.
Therefore a + |n~'&| > C(1 + |£]). It follows that

aT—Db
Hlixg, <C 1+ )2 "d
e, = C e [ A+ 16D du®
1 ab

e L"*®(drda).

C-
a(l+a+phetr

Again, the same computation shows that a =" /Il € L*°(dAda).
We will now prove the result for /1. To do so, notice first that, if a > ag then

gy _ C / du(é)
(1+a+|nhe+r Lnl<lg|<20n] (a+|n~tgpe+r

- C
T att (14 n)hetr

a

/ du() < Ca 97"
j§1<21n]

thus a " T x,- 4, € L°(dAda).

It now remains to prove that Il € L'*°(dA da).

Note first that, if |n| < |&] < 2[nl, then (I +a + [n)~2" < C(1 +
1EN~2T, thus

1 —1 -Q0-T
II < C—/ Sr(n~ &, a)(1+ &) du(§)
a Jim=igl=2m

1
_ c_/ Or (7€, a)dv (&)
sInl=<lg1=<2in|

a

where v is a finite measure on . Thus I/ is estimated with the help of the
following proposition:

PROPOSITION 5.4. For every finite positive measure v on N, the function U,
defined on S by

r-1

% (@+ n~1g)e+r

U,(n,a) = dv(§)

belongs to L*°(d\ da).
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The proof will follow a simplified version of that of Theorem 1 in [12]
which deals with the Euclidean case, for more general measures.

NortaTION 5.5. On © we denote by D, the distance given by Doo((n, a),
n', a’)) = max(|n’ln/|, la — a/l).

PROOF OF PROPOSITION 5.4.  We want to prove that U, € L'**°(d\ da), that
is, that there exists a constant C > 0 such that for all « > O,

|{(n7a) € @ . UU(nsa) > a}| S E
For iy a non-negative integer, let
Ko = B(0,2%) x 10, 2"].
It is enough to prove that there is a constant C > 0, independent of iy such
that, forall > 0
~ C
{((1.0) € S: U, a) > 0} O Kof < —.

To do so, we will show that there is a constant C such that, for each o > 0, we
may construct a set S C © which satisfies the following properties:
1) Hm,a):U, >a}n Kol < C|S];
@) U,(n,a) > % for all (n,a) € S;
(iii) foralln € %N,

aF—l
Us(n) = /S e 6 da

satisfies Ug(n) < C.
Once this is done, we can conclude as follows
{@.0) € @:U,(1,0) > @} N Ko
C? C? c?
<C|§| = — / Uy(n,a)dr(n)da = — / Us(mdv(n) = — vl
a Jg a Jy o
where we have respectively used Property (i), (ii), Fubini’s Theorem and Prop-
erty (iii).
Construction of the set S.

We will use a dyadic covering of Kj:
— Set Q; = B(0,2/0) x [207i=1 2071] i =0, 1,...
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— cover each Q; by sets of the form
Qi = B(n;j,2°7"73) x [2007i71 gl

in such a way that each element of Q; belongs to at most « sets Q; ; where
k is a number that depends only on the group 9. This is possible thanks to
a covering lemma that may be found e.g. in [4, Section 1.F].

We will order the Q; ;’s by lexicographic order and define inductively the
authorized pieces A; ; and the associated set of forbidden pieces F; ; as follows:

- Ai,j = Qi,j lf
@) 1Qi; N {(n,a) € Ko : Upy(n, a) > a}| > 0,
® and Qi ¢ | Fir

(k<G j)
Else, we set A; j = 0.

— if A; ; # ) we define the set of forbidden pieces as

Fij={0u: (L0 > G, j) and Da(Qig, Qi) < 207 o),
Else we set F; ; = (.
Note that the authorized pieces are disjoint and that, if A; ; # ¢, then F; ; has
the following property:

(5.19) < C|A;l.

U e

Q€F;

PRrOOF OF (5.19). Assume that Q; x € F; ; and let (n, a) € Q;x. Then

d(n, mi.) < d(n, %\ B(p, 207'7))
+ Doo(Quk» Qij) +d(nij, W\ B(n; ;. 27 7))
< io=i=3 2io—i+ﬁ+l 4 Qio—i=3 < 2i0—i+ﬁ+2.
It follows that
Qi C B(ni j, €207 x 20711 2071],

Now, as pieces of different order are disjoint,

+00
UQ]=2\ U Qrons

QEFi,j m=0 Qi+m,kEFiAj
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and as those of a given order overlap at most « times, this is

+00
<k Z]B(m,j, szio—i+ﬁ+1) % [2i0—i—m—1’ 2;0_i_,n]’

m=0

400 +oo
<C Z 2 lo—i+ g Qoio—i—m _ nlio—=D)(Q+1) Z 2—#"1 = C|A; ]
m=0 m=0
which establishes (5.19).
Finally, we set S = U A
@)
Proof of Property (i).

By construction, the authorized and the forbidden pieces cover {U, > A} N K
and as these overlap at most k times, we obtain

(1) € Ko : Uy(.a) > o] < Z('Aw' + 3 IQI)

@, J) Q€F;;
<(C+DY |4l =(C+DIS|
(G¥))
where C is the consant in (5.19).
Proof of Property (ii).
If (n,a) € S, thatisif (, a) € A; ; for some (i, j), then there exists (', a’) €

A, j such that U,(n',a’) > a. But then |n~!n/| < 207172 < %/ so that, for
& e,

/ -1/ 4 -1/ -1 a -1 1 -1
atlEnlza = nl+IE nl ==+ 0l = @+ nl).
From this, we immediately get that
a<U(n',a) < CU7n, a).
Proof of Property (iii).
Set S; = U ; Ai j the set of authorized pieces of order i and write
Si — le x [2i0—i—1’ 2i0—i]‘

Set r-1

a
00 = [ e 6 da
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for the part of Uy issued from pieces of order i.

LEMMA 5.6. There exists a constant Cy such that, for all n € N and
alli > 0, Uj(n) < C,. Moreover, if p > —i and d(n, T;) > 2%P, then
Ui(n) < G2~ T,

PROOF OF LEMMA 5.6. By definition

S da(§)
5.20 Ui(n) = =1 /
20 o /2“ 7, (a+[E- ) e+T

R G
= /2 aCt! /T A+ g nl/aeT ™

_ / 1 / ) da
" Jura Jrge QI @f@hoT T

changing variable ¢ = & /a. By translation invariance of dA we thus get that

20 A
U; < da < C,.
) /210 cra Jy (1+1C)eHT ?

Thus

Further, if d(n, T;) > 20FP then, for £ € T;, |§~'n| > 207 so that, from
(5.20), we deduce that

Ui (i) < 20T da(§) < 2(io—i)1"/ A
&

T; (Qio—i=l 4 |g=-Ippo+T — ~Ip|>2i0+» |E-1n|e+r

< 2(io—i>r/ dk(f)r _ Cp-lHpr
e|>20+p [C]2F

when integrating in polar coordinates. The proof is thus completed.

Now, for every n € I, there exists an m > 0 such that
(5.21) C27" ' < Ui < C27"

(where C; is the constant of Lemma 5.6). From Lemma 5.6, we get that
d(n, T/) < Dio+(m+1)/T—j
On the other hand, by construction, if i < j then

AT, T)) > 2i0—i+ﬁ+1
so that

d(n, T,) > d(T;, Ty) — d(n, Tj) > 207 ger +1 _ giotn+h/T—j
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It follows that d(n, T;) > 2200+ g5 _ it D/T~J Further, if ig + (m +

/T —j<ig—i+ %,in particular, if j —i > (m + 1)/ T, then

d(n, T)) > 2077
From Lemma 5.6 we then get that
(5.22) Ui(n) < €272
fori < j—m.
We will now prove by induction on j that there exists a constant C, for

which, for every n > 0 and every j > 0, there exists a permutation o = 0,

of {0, ..., j} such that, for eachi € {0, ..., j}, Ui(n) < Co2 @),
It then immediatly follows that > U; is convergent and uniformly bounded
as desired.

For j = 0, this is just Lemma 5.6. Assume now the hypothesis is true up to
order j — 1.
Let n € N and let m be such that C;27"~! < U;(n) < C,27™.

—Ifm > j,then U;(n) < Cﬂfﬁj . Further, by induction hypothesis, there
exists a permutationo;j_ , of {0, ..., j—1} suchthat, fori € {0, ..., j—1},

U; < 270 %-1® Tt is then enough to extend o;_; , by setting o; ,(i) =
oj_1,,()ifi < jand 0;,(j) = J.

— Otherwise, m < j and the (5.22) shows that, fori = 0,...,j —m — 1,
Ui(n) < C2 o0,

By the induction hypothesis, U;_,, (1), ..., U;j—1 (1) are bounded by m — 1 dif-

ferent elements of {Cz, Cﬂ‘ﬁ, R Cﬂ‘ﬁ(-"_l)}. But these are decreas-
ing, so we may as well assume that they are bounded by the m — 1 first
elements of the family. In other words, there exists a one-to-one mapping o
from{j—m,...,j—1}t0{0,...,m—1}suchthat,fori = j—m,..., j—1,
Ui(n) < G277, ‘

Finally, as U;(n) < sz—ﬁm, if we set

j—i ifi=0,...,j—m—1
oj,)=q01() ifi=j—-—m,....,j—1.
m ifi =j
the proof of the induction is completed.

We have thus established (5.15) which completes the proof of the Theorem.
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