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POINTWISE MULTIPLIERS IN HARDY-ORLICZ
SPACES, AND INTERPOLATION

ANDREAS HARTMANN

Abstract
We study multipliers of Hardy-Orlicz spaces H� which are strictly contained between

⋃
p>0 H

p

and so-called “big” Hardy-Orlicz spaces. Big Hardy-Orlicz spaces, carrying an algebraic structure,
are equal to their multiplier algebra, whereas in classical Hardy spacesHp , the multipliers reduce
to H∞. For Hardy-Orlicz spaces H� between these two extremal situations and subject to some
conditions, we exhibit multipliers that are in Hardy-Orlicz spaces the defining functions of which
are related to �. In general it cannot be expected to obtain a characterization of the multiplier
algebra in terms of Hardy-Orlicz spaces since these are in general not algebras. Nevertheless,
some examples show that we are not very far from such a characterization. In certain situations
we see how the multiplier algebra grows in a sense from H∞ to big Hardy-Orlicz spaces when
we go from classicalHp spaces to big Hardy-Orlicz spaces. However, the multiplier algebras are
not always ordered as their underlying Hardy-Orlicz spaces. Such an ordering holds in certain
situations, but examples show that there are large Hardy-Orlicz spaces for which the multipliers
reduce to H∞ so that the multipliers do in general not conserve the ordering of the underlying
Hardy-Orlicz spaces. We apply some of the multiplier results to construct Hardy-Orlicz spaces
close to

⋃
p>0 H

p and for which the free interpolating sequences are no longer characterized by
the Carleson condition which is well known to characterize free interpolating sequences in Hp ,
p > 0.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disk of the complex plane. For a space
of holomorphic functions on D, X ⊂ Hol(D), we define the multiplier algebra
of X by

Mult(X) := {g ∈ Hol(D) : ∀f ∈ X, gf ∈ X}.
We will consider spaces X containing the constants so that automatically
Mult(X) ⊂ X. Multiplier algebras have been studied in different settings.
They appear for instance in the context of cyclic functions (see e.g. [1]). Here
we will rather be interested in interpolation problems where multipliers come
into play for example via the Nevanlinna-Pick property (see e.g. [11], [16],
[21]). In this paper we will not consider the Nevanlinna-Pick property but fo-
cus on spaces for which the multiplier algebra is big in the sense that its trace
on H∞-interpolating sequences contains more than only bounded sequences.
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(Recall that H∞ is the space of bounded holomorphic functions on D.) In
such a situation it is possible to interpolate bounded sequences on suitable
non separated unions ofH∞-interpolating sequences. This was done in [4] for
Hardy spaces, and a more general result can be derived from [5] in so-called
(C)-stable spaces. Note (and this will be clear from the definitions below) that
if we can interpolate bounded sequences by functions in the multiplier algebra
then we can interpolate freely in the initial space.

The spaces we are interested in here are included in the Smirnov class N+.
Recall that the Nevanlinna class on D is defined by

N =
{
f ∈ Hol(D) : sup

0<r<1

1

2π

∫
T

log+ |f (reit )| dt < ∞
}
.

Here a+ = max(0, a) for a real number a. It is well known that functions in
the Nevanlinna class admit non-tangential boundary values almost everywhere
on T = ∂D. Then

N+ =
{
f ∈ N : sup

0<r<1

1

2π

∫
T

log+ |f (reit )| dt = 1

2π

∫
T

log+ |f (eit )| dt
}
.

Hardy-Orlicz classes can then be defined by logarithmic convex functions� =
ϕ ◦ log where ϕ is a positive, increasing, convex function with ϕ(t)/t → ∞:

H� =
{
f ∈ N+ :

∫
T
�(|f |) dm < ∞

}
(for more precise definitions, see Section 2). In the special situation when
ϕ(t) = ept we obtain the usual Hardy spaces, and when ϕ(t) = tp we obtain
so-called big Hardy-Orlicz spaces. It is clear that in the first case Mult(Hp) =
H∞ and in the second case Mult(H�) = H� since ϕ(t) = tp satisfies a
quasi-triangular inequality so that H� is an algebra and hence equal to its
multiplier algebra (see also [9, Theorem 3.2]). A natural question arising from
this observation is to understand how the multiplier algebra changes fromH∞
for Hardy spaces Hp (in a sense small Hardy-Orlicz spaces) to H� for big
Hardy-Orlicz spaces.

Under certain conditions on the defining function ϕ of the Hardy-Orlicz
space under consideration H� we will find so-called admissible functions al-
lowing the construction of new Hardy-Orlicz spaces that are included (as well
as the algebras they generate) in the multipliers of H� (Theorem 3.1), or that
contain the multipliers of H� (Theorem 3.4). Corollary 3.7 shows that for cer-
tain scales of Hardy-Orlicz spaces the gap between both inclusions is small.
Proposition 3.3 shows that Theorem 3.1 is optimal in a sense, and Proposi-
tion 5.1 exhibits a function g contained in the space found in Theorem 3.4 as
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an upper bound of the multiplier algebra of H�1/2 (here �1/2(t) = e
√
t ) and

not multiplying on H�1/2 , thereby showing that Theorem 3.4 is not optimal.
We will also discuss the ordering of the multiplier algebras. Under some

technical condition we prove in Proposition 3.3 that the multiplier algebras
conserve the ordering of their underlying Hardy-Orlicz spaces. However, The-
orem 4.2 shows that this is not the general situation. Surprisingly it turns out
that there are very big Hardy-Orlicz spaces for which the multipliers reduce
toH∞. In particular there exist Hardy-Orlicz spaces for which the ordering of
the multipliers is in the opposite direction with respect to the ordering of the
initial Hardy-Orlicz spaces.

Let us mention that multipliers of Hardy-Orlicz spaces have previously been
considered by Hasumi and Kataoka [9], where conditions for H∞ to contain
or to be contained in the multiplier algebra are given, and also by Deeb [3]. In
[9] the authors also give some orderings of Hardy-Orlicz spaces that turn out
to be useful in our situation.

The question of multipliers is strongly related in particular to free inter-
polating sequences. Indeed, if we can interpolate bounded sequences on a
given sequence � = {λn}n ⊂ D by functions in the multiplier algebra, then
� is a free interpolating sequence (for this and the following comments, pre-
cise definitions and results can be found in Section 6). Let us recall some
facts on interpolating sequences. It is well known that the Carleson condi-
tion infλ |B�\{λ}(λ)| > 0 characterizes free interpolating sequences for Hp,
p ∈ (0,∞], and Hardy-Orlicz spaces included in the scale of Hp spaces
(see [2], [22], [10], [6]). We have already mentioned that in this situation
Mult(Hp) = H∞. On the other hand, in N , N+, and in big Hardy-Orlicz
spaces (e.g. ϕ(t) = tp), which are actually algebras (and so equal to their
multipliers), free interpolating sequences are characterized by the existence
of a harmonic majorant of log(1/|B�\{λ}(λ)|) (see [8], [7]). This condition is
much weaker than the Carleson condition (which can be restated as saying that
log(1/|B�\{λ}(λ)|) admits in particular constants as harmonic majorants). For
instance separated sequences (with some conditions if we are in big Hardy-
Orlicz spaces) are interpolating in these classes.

Our starting point was to know whether there exist Hardy-Orlicz spaces
beyond

⋃
p>0 H

p for which the Carleson condition still characterizes the in-
terpolating sequences, which leads us to the following question.

Question 1. Let H� be a Hardy-Orlicz space. If the interpolating se-
quences of H� are characterized by the Carleson condition, is it true that H�

is included in the scale
⋃
p>0 H

p?

In the light of this question, which we will not answer in this paper, a first
step is to construct examples of Hardy-Orlicz spaces above

⋃
p>0 H

p which
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are very close to the latter union and which have interpolating sequences that
are not Carleson. The key to such a construction is the multiplier algebra of
the Hardy-Orlicz space under consideration when this multiplier algebra is
strictly bigger than H∞. Corollary 5.3 exhibits multipliers of H� where e.g.
�(t) = t1/ log t is in a sense very close to the defining functions t 	−→ tp

of Hp, p > 0. In such a situation it is possible to use ideas of Douglas and
Shapiro [4] to interpolate bounded sequences on suitable non separated unions
of Carleson sequences. This yields Corollary 6.9 which claims the existence of
a non Carleson sequence which is free interpolating for H� when Mult(H�)

contains a Hardy-Orlicz space H� that is strictly bigger than H∞.
Since there exist large Hardy-Orlicz spaces for which the multipliers reduce

to H∞ (see Theorem 4.2), the following more precise version of Question 1
can be formulated.

Question 2. If the multiplier algebra of a Hardy-Orlicz space containing
strictly

⋃
p>0 H

p is equal toH∞, does it have interpolating sequences that are
not Carleson?

The paper is organized as follows. In Section 2, we will introduce the ne-
cessary material on Orlicz and Hardy-Orlicz spaces as well as some facts on
decreasing rearrangements. The main results on multipliers are presented in
Section 3. More precisely we exhibit Hardy-Orlicz spaces that bound below
and above the multiplier algebra of a given Hardy-Orlicz space. Orderings of
multipliers will be discussed in Section 4. Under some technical condition
we will prove that the multiplier algebra inherits the ordering of the underly-
ing Hardy-Orlicz spaces. However we will prove that there are large Hardy-
Orlicz spaces for which the multipliers reduce to H∞. An important example
is discussed in Section 5 to show how far we are from a characterization of
the multiplier algebra. Other examples of Hardy-Orlicz spaces coming very
close to

⋃
p>0 H

p and having unbounded multipliers will be treated in Sub-
section 5.2. These examples are important in Section 6 where we apply the
multiplier results to the interpolation problem. Using ideas in the spirit of [4]
we will construct Hardy-Orlicz spaces H� containing strictly

⋃
p>0 H

p but
being very close to this union, and for which there exist non separated unions
of Carleson sequences which are interpolating for H�.

Finally a word concerning notation. For two expressions u, v depending on
the same discrete or continuous variable we will sometimes write u 
 v if
u = o(v). As usual, u ∼ v means that u = v(1 + ε) (or v = u(1 + ε)) where
ε = o(1).

Acknowledgements. Part of this work was presented at a joint PICASSO-
GDR AFHA meeting in Marseille. I would like to thank the participants of
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that meeting, in particular A. Borichev and P. Thomas, for some interesting
questions that are maybe answered in this paper.

2. Orlicz and Hardy-Orlicz spaces

When discussing Hardy-Orlicz spaces which are strictly bigger than
⋃
p>0 H

p,
one can consider logarithmic convex defining functions. This is very natural
since convex functions conserve the subharmonicity of log |f | which makes
it possible to define Hardy-Orlicz spaces via the existence of harmonic major-
ants (see [19]). For this reason we will consider in all what follows defining
functions of the form ϕ ◦ log where ϕ : R −→ [0,∞) is a convex, non-
decreasing function with limt→∞ ϕ(t)/t = ∞. To fix the ideas we should set
ϕ(−∞) = 0. According to the terminology in [20] such a function is called
strongly convex.

With such a function we will associate the Orlicz class on T defined by

Lϕ◦log = Lϕ◦log(T) =
{
f measurable on T :

∫
T
ϕ(log |f |) < ∞

}
.

In order to simplify the notation, we will also write

� = ϕ ◦ log,

and so
L� = Lϕ◦log.

The functions ϕ or � are both called defining function for the Orlicz class
(hopefully no confusion will arise in this paper).

It should be noted that the Orlicz class is in general not a vector space (see
for instance the example 2 in [19, p. 52] for the case of Hardy-Orlicz classes),
and one can define two other spaces. According to the notation in [14] we will
call

L∗
� :=

{
f measurable on T : ∃a > 0,

∫
T
�

( |f |
a

)
< ∞

}
the Orlicz space, and

L◦
� :=

{
f measurable on T : ∀a > 0,

∫
T
�

( |f |
a

)
< ∞

}
the space of finite elements of L∗

�. In [13], the latter space was called the
Morse-Transue space. Note that L◦

� ⊂ L� ⊂ L∗
�, and in general these three

classes are different.
In order to ensure that L� is already a vector space, one sometimes adds

another condition to that of a defining function of an Orlicz space: the function
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ϕ satisfies the 
̃2-condition if ϕ(t + 2) ≤ Mϕ(t) + K , t ≥ t0 for some
constants M,K ≥ 0 and t0 ∈ R. This condition is formulated in such a way
that � satisfies the usual 
2-condition: there exist constants M ′,K ′ ≥ 0 and
s0 such that for all s ≥ s0 we have

(2.1) �(2s) ≤ M ′�(s)+K ′.

If ϕ satisfies the 
̃2-condition (or � satisfies the 
2-condition), then L� =
L◦
� = L∗

�.
On L∗

� we can introduce the following functional. For f ∈ L∗
�, let

‖f ‖� := inf

{
t > 0 :

∫
T
�

( |f |
t

)
dm ≤ 1

}
.

If � is convex, then L∗
� equipped with ‖ · ‖� is a Banach space (also if we

replace T by other measure spaces), see [15, p. 120]. The expression J�(f ) :=∫
T �(|f |) dt is sometimes called a modular. It does of course not define a norm

in general.
Here are some facts on orderings of Orlicz spaces. Let ϕ1 and ϕ2 be two

strongly convex functions and set �i = ϕ ◦ log, i = 1, 2. Then lim supt→∞
�1(t)/�2(t) < ∞ if and only if L�2 ⊂ L�1 (see [9, Theorem 1.3] where this
result is proved for Hardy-Orlicz spaces, but the argument works for Orlicz
spaces). The relation L∗

�1
⊂ L∗

�2
follows from limt→∞�1(t)/�2(kt) = ∞

for every k > 0 (see [12, Theorem 13.1] in case �l , l = 1, 2, convex).
Also, if two functions �1 and �2 (or ϕ1 and ϕ2) are comparable, i.e. there
are constants C1, C2 with C1ϕ1(t) ≤ ϕ2(t) ≤ C2ϕ1(t) for big t , then the
corresponding (Hardy-)Orlicz spaces are equal. This allows for instance to
replace the defining functions by smooth ones. In all what follows we can thus
suppose that the defining functions are sufficiently smooth.

It should be noted that it is possible to construct strongly convex functions
ϕ1 and ϕ2 for which lim supϕ1(t)/ϕ2(t) = +∞ and lim inf ϕ1(t)/ϕ2(t) = 0.
In such a situation, by the above cited result, no one of the considered Orlicz
spaces can be included in the other one.

As in the classical case of Lp-spaces, one can associate with L� a subclass
of boundary limits of a space of holomorphic functions on the disk. Recall that
N+ is the Smirnov class. The Hardy-Orlicz class is defined as

H� = Hϕ◦log =
{
f ∈ N+ :

∫
T
ϕ(log |f (ζ )|) dσ (ζ ) < ∞

}
= N+ ∩ L�,

where f (ζ ) is the non-tangential boundary value of f at ζ ∈ T, which exists
almost everywhere since f ∈ N+. By [19, Theorem 4.18] this definition is
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equivalent to the definition via the existence of harmonic majorants that we
mentioned in the introduction to this section. Also, since H� as well as its
multiplier algebra are contained in the Smirnov class N+, we have a factoriz-
ation. Recall that each f ∈ N+ can be written as f = IF , where I is an inner
function and F is outer in N+. More precisely

(2.2) F (z) := [f ](z) := exp

(∫
T

ζ + z

ζ − z
log |f (ζ )| dm(ζ )

)
, z ∈ D,

and log |f | ∈ L1(T). If f ∈ H� then F ∈ H� and moreover |f | ∈ L�(T).
The classical examples are the following. When ϕ(t) = ept for somep > 0,

then H� is simply the Hardy space Hp, in which case Mult(H�) is just the
algebra H∞ of bounded holomorphic functions on D.

The situation which has been considered in [7] in connection with free
interpolation is when ϕ satisfies a quasi-triangular inequality:

(2.3) ϕ(a + b) ≤ c(ϕ(a)+ ϕ(b)),

for some constant c, and all reals a, b ≥ t0, t0 also fixed. A simple example is
ϕ(t) = tp. The condition (2.3) is of course related to the 
2 condition for ϕ.
In this situation, H� is an algebra and its multiplier algebra is of course the
algebra itself: Mult(H�) = H�.

Analogously to the above definitions, we will write H ∗
� for the Hardy-Orlicz

space, H ◦
� for the Hardy-Orlicz space of finite elements (or the Hardy-Morse-

Transue space). Again, if � satisfies the 
2 condition than all spaces are
identical H� = H ∗

� = H ◦
� and we simply write H�.

We will introduce some conditions for a strongly convex function ϕ. Since
we will consider multipliers, we are interested in the integrability ofϕ(log |f |+
log |g|). Hence we would like to know if we can add some growth to the
argument t of ϕ without changing too much the growth of ϕ. Here is a precise
definition.

Definition 2.1. A convex, strictly increasing function ϕ : R −→ R+
with limt→∞ ϕ(t)/t = +∞ is said to satisfy the 
̃-condition if there is a
c > 1, t0 ∈ R and a strictly increasing concave function γ : R+ −→ R+ with
limt→∞ γ (t) = ∞ such that for all t ≥ tγ

(2.4)
ϕ(t + γ (t))

ϕ(t)
≤ c.

A function γ will be called 
̃-admissible if (2.4) holds for suitable c and t0.

The requirement of γ being concave is not restrictive since if an increasing
function γ satisfying (2.4) exists, then we can replace it by a concave one.
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This condition is stronger than the 
̃2-condition since instead of adding 2 in
the argument of ϕ we add a function that can tend to infinity. If ϕ itself already
satisfies the standard 
2-condition (2.1) (which leads us to big Hardy-Orlicz
spaces), then we can choose γ (t) = t so that ϕ then satisfies the 
̃-condition.

Our model case is

ϕα(t) = et
α

, t ≥ t0 > 0,

where α ∈ (0, 1). In this case we can construct the optimal function γ : in
order to have ϕα(t + γ (t)) ≤ cϕα(t) it is necessary and sufficient that t 	−→
(t + γ (t))α − tα is bounded (observe that necessarily γ (t) ≤ t). By standard
calculus, this is equivalent to

tα
(
α
γ (t)

t
+ o

(
γ (t)

t

))
≤ c, t ≥ tγ ,

which happens if and only if

γ (t) ≤ Ct1−α.

So, we can choose γα,C(t) := Ct1−α which meets the requirements of the
function γ in the definition of the 
̃-condition above, and no 
̃ admissible
function can grow faster than any γα,C .

Note that the 
̃-condition imposes a restriction on the growth of ϕ: clearly
we cannot reach the function ϕ(t) = et (definingH 1), which is natural in view
of our results.

Whenϕ satisfies the 
̃-condition, we will see (Theorem 3.1) that the admiss-
ible functions γ allow us to construct subalgebras of multipliers, i.e. algebras
which bound the multipliers of H� from below. So it is natural to ask whether
something sensible can be said about the multipliers when condition (2.4) is
not satisfied. Actually, it turns out that if γ is not admissible then the algebras
constructed in Theorem 3.1 do no longer bound the multiplier algebra from
below. However it seems too ambitious to hope for an upper bound in this situ-
ation. Still, under some mild growth condition on the quotient ϕ(t+γ (t))/ϕ(t)
we can obtain such an upper bound.

Definition 2.2. A convex, strictly increasing function ϕ : R −→ R+ with
limt→∞ ϕ(t)/t = +∞ is said to satisfy the ∇̃-condition if there is a strictly
increasing concave function γ : R+ −→ R+ with lims→∞ γ (s) = ∞ and an
ε > 0 such that for all s ≥ sγ

(2.5)
ϕ(s + γ (s))

ϕ(s)
≥ log1+ε ϕ(s).
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A function γ will be called ∇̃-admissible if (2.5) holds for suitable sγ and
ε > 0.

Let us discuss the ∇̃-admissible functions for the model case ϕα(s) = es
α

.
The condition (2.5) is equivalent to

es
α((1+γ /s)α−1) ≥ s(1+ε)α, s ≥ sγ ,

so that for example

γ (s) := γ (log)
α,η (s) := (1 + η)s1−α log s, s ≥ sγ ,

with η > 0 works. Of course for “bigger” functions γ the estimate in (2.5)
is more easily true. However, as we will see later on, we will use reciprocals
of ∇̃-admissible functions to find upper bounds for the multipliers. Hence we
will get more precise bounds with small ∇̃-admissible functions γ . The reader
may check that the function γ (log)

α,η is not ∇̃-admissible for η = 0.

2.1. Decreasing rearrangements

We will need some facts on decreasing rearrangements (for the material of this
subsection see for instance [15, pp. 114–120]). Let us begin by recalling some
basic facts.

Let (�,�,μ) be a measure space (we will only be concerned with T
equipped with the usual normalized Lebesgue measure on Borel sets). With a
measurable function f on � one associates the distribution function

μf (t) = μ{ω ∈ � : |f (ω)| > t}, t > 0,

and the decreasing rearrangement

f ∗(s) = inf{t > 0 : μf (t) ≤ s}, s ∈ (0, μ(�)).
Note that the decreasing rearrangement of f is a positive function. The main
consequence on rearrangement invariant spaces that we will use in the context
of (Hardy-)Orlicz spaces is that

(2.6)
∫

T
�(|f (t)|) dt =

∫ 1

0
�(f ∗(t)) dt.

(We have used here that (� ◦ |f |)∗ = � ◦ f ∗ since � is increasing.) We will
also use the fact that when � is convexe, then L∗

� is rearrangement invariant
[15, p. 120].

The reader should notice that the initial measure space we are interested
in, i.e. T equipped with the Lebesgue measure, can be identified with the
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measure space [0, 1] (equipped with normalized Lebesgue measure) on which
the decreasing rearrangement f ∗ is defined. Thus f ∗ is obtained from |f | by
a measure preserving mapping α from� := T (i.e.� := [0, 1]) onto itself, so
that f ∗(t) = |f (α(t))|.

Moreover, it is clear that if a function g multiplies on H� then so does its
outer part (the modular J� in Hardy(-Orlicz) spaces does not “feel” the inner
part). In all what follows we will thus assume that the multiplier is outer (it
could even be assumed that |g| ≥ 1). Let g∗ be the decreasing rearrangement
of a multiplier g, and let αg be a corresponding measure preserving mapping
of T (or [0, 1]) onto itself. We have already mentioned that g is automatically
in H� and so |g| ∈ L�. By (2.6) the function g∗ is also in L�, and so we can
associate with it the outer function G in H� such that |G| = g∗ a.e. on T.

Lemma 2.3. If g ∈ Mult(H�) then the outer functionG defined by |G| = g∗
a.e. T is also a multiplier on H�.

More generally it can be said that for every outer multiplier g and every
measure preserving mapping α : T → T, the outer function gα with |gα| =
|g ◦ α| a.e. on T is also a multiplier.

Proof. Let α be the measure preserving mapping such that g∗ = |g ◦ α|
a.e. on T. Let f ∈ H� with outer part F . Then the outer function with modulus
|F ◦ α−1| is also in H� (with same modular J� as f ), and∫

T
�(|f (ζ )G(ζ )|) dm(ζ ) =

∫
T
�(|f (ζ )g(α(ζ ))|) dm(ζ )

=
∫

T
�(|f ◦ α−1(ζ )g(ζ )|) dm(ζ )

=
∫

T
�(|F(ζ )g(ζ )|) dm(ζ ) < ∞

In the later discussions we can (and will) thus suppose that the multiplier
is outer, its only singularity is in ζ = 1, and θ → |g(eiθ )| is decreasing in θ
on (0, 2π) (2π corresponding to 1).

3. Multipliers – upper and lower bounds

In this section we will give a general construction to obtain multipliers of
a Hardy-Orlicz space with a defining function ϕ satisfying the 
̃-condition.
More precisely, the 
̃-admissible functions γ associated with ϕ allow the
construction of defining functions �γ of Hardy-Orlicz spaces contained in
the multiplier algebra. Since Mult(H�) is an algebra it is clear that when
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H�γ ⊂ Mult(H�) then also Alg(H�γ ) ⊂ Mult(H�). Here Alg(F ) denotes
the algebra generated by a family of functions F

Then, using the ∇̃-condition, we will give an inclusion of the multiplier
algebra of H� in another Hardy-Orlicz space the defining function of which
� = ψ◦log is associated with ∇̃-admissible functions. Again, since Mult(H�)

is an algebra, if it contains f ∈ H� then it contains also all powers f n,
n ∈ N, and so does H� . Hence, setting � [n](t) = ψ(n log t), the inclusion
Mult(H�) ⊂ H� implies that

Mult(H�) ⊂
⋂
n∈N∗

H�[n] .

We will discuss both results in the model case ϕ(t) = ϕα(t).
Let us begin with a lower bound on the multiplier algebra.

Theorem 3.1. Let ϕ be a strongly convex function satisfying the 
̃-condi-
tion and γ a 
̃-admissible function. Then

Alg(H�γ ) ⊂ Mult(H�)

where �γ = ϕ ◦ γ−1 ◦ log.

Remarks 3.2. 1) Obviously, Mult(H�) contains the algebra generated by
the union over all H�γ where γ is admissible for ϕ.

2) In generalψγ := ϕ◦γ−1 does not satisfy 
̃2 and so we have to distinguish
a priori in the theorem between H�γ , H ◦

�γ
and H ∗

�γ
. This is of no harm since

all these spaces are of course included in Alg(H�γ ) (and we are of course
interested in the biggest lower bound); see also some comments concerning
the 
̃2-condition of ψγ in the model case at the end of this section.

Proof. Let f ∈ H� and g ∈ H�γ . Let A := {ζ ∈ T : log |g(ζ )| ≤
γ (log |f (ζ )|)} and A0 := {ζ ∈ A : log |f (ζ )| ≥ tγ }. Then∫

A0

ϕ(log |fg|) dm =
∫
A0

ϕ(log |f | + log |g|) dm

≤
∫
A0

ϕ (log |f | + γ (log |f |)) dm

≤ c

∫
A0

ϕ(log |f |) dm,

and so the integral on A0 converges. Since on A \A0, |f | and |g| are bounded
(so that ϕ(log |fg|) is bounded), the integral also converges on A.
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We will now consider the part of the integral onB := T\A. SetB0 := {ζ ∈
B : γ−1(log |g(ζ )|) ≥ tγ }. Clearly log |f (ζ )| < γ−1(log |g(ζ )|) on B. Hence∫

B0

ϕ(log |f | + log |g|) dm ≤
∫
B0

ϕ(γ−1(log |g|)︸ ︷︷ ︸
x

+ log |g|) dm

≤ c

∫
B0

ϕ(γ−1(log |g|)) dm.

Since by assumption g ∈ H� where � = ϕ ◦ γ−1 ◦ log, the last integral
converges. Since on B \B0 the functions |f | and |g| are bounded, the integral
converges also on B.

Note that if ϕ satisfies the 
2-condition (the case of big Hardy-Orlicz
spaces), then, as we have already mentioned, we can choose γ (t) = t . Hence
�γ (t) = ϕ ◦ γ−1 ◦ log(t) = ϕ(log(t)) = �(t), which confirms that we are in
the algebra situation.

In order to show that Theorem 3.1 is sharp we shall prove that if a function
γ is not admissible for ϕ, then H�γ contains functions that do not multiply on
H�. Recall that �γ = ϕ ◦ γ−1 ◦ log.

Proposition 3.3. Let ϕ be a strongly convex function, and let γ be a
concave function on R strictly increasing to infinity such that

lim sup
t→∞

ϕ(t + γ (t))

ϕ(t)
= +∞.

Then there exists g ∈ H�γ such that g /∈ Mult(H�).

Proof. The proof follows some ideas of the proof of [9, Theorem 1.3]. By
the hypotheses, there exists a sequence (tn)n such that⎧⎪⎪⎨

⎪⎪⎩
ϕ(tn + γ (tn))

ϕ(tn)
≥ n,

ϕ(tn) ≥ 2n

n2
.

Set εn = (n2ϕ(tn))
−1. Clearly εn ≤ 2−n so that there exists a sequence (σn)n of

disjoint measurable subsets of T with |σn| = εn, where |·| denotes the Lebesgue
measure. Letf be the outer function the modulus of which is equal to

∑
n e

tnχσn
on

⋃
n σn and 1 otherwise (χE is the characteristic function of a measurable

set E). Then
∫

T �(|f |) dm = ∑
n ϕ(tn)|σn| = ∑

n ϕ(tn)εn = ∑
n

1
n2 < ∞.

Hence f ∈ H�.
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In the same way, we let g be the outer function the modulus of which takes
the values

∑
n e

γ (tn)χσn on
⋃
n σn and 1 elsewhere. Then

∫
T ϕ(γ

−1(log |g|)) dm
= ∑

n ϕ(tn)|σn| < ∞ (the reader might have observed that this is equal to∫
T �(|f |) dm). Let us compute the modular of their product∫

T
�(|fg|) dm =

∫
T
ϕ(log |f | + log |g|) dm

=
∑
n

ϕ(tn + γ (tn))|σn| ≥
∑
n

nϕ(tn)εn

=
∑ 1

n
= +∞.

We shall discuss this proposition further on an example in Section 5.
The next result discusses an upper bound of the multiplier algebra via ∇̃-

admissibility.

Theorem 3.4. Letϕ be a strongly convex function satisfying the ∇̃-condition
and γ a ∇̃-admissible function. Then

Mult(H�) ⊂
⋂
n∈N∗

H�
[n]
γ
,

where, as before, �γ = ϕ ◦ γ−1 ◦ log, and � [n]
γ (t) = ϕ(γ−1(n log t)).

Before proving the theorem, we will cite the following well-known property.

Lemma 3.5. Every positive decreasing function on (0, 1] which is integrable
on (0, 1] is necessarily bounded by the function t 	−→ 1/t on (0, t0) for a
suitable t0 ∈ (0, 1].

Note that it is not possible to replace the function t 	−→ 1/t by t 	−→
1/(t log(1/t)) in this lemma.

Proof of Theorem 3.4. Let g ∈ Mult(H�). As before we will suppose g
outer and |g| equal to its decreasing rearrangement. This will allows us to test
g against functions in H� that approach the maximal possible growth of the
class. Since we have identified T with [0, 1], we will set

(3.1) w(t) = e

t log1+η e
t

, t ∈ (0, 1],

where η ∈ (0, ε) is fixed (ε being the value associated with the ∇̃-admissible
function γ ). It is clear that w ∈ L1. Let f be the outer function in H� such
that log |f (e2πit )| = ϕ−1(w(t)) a.e. on (0, 1].
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Since g is a multiplier on H� and |f |, |g| are decreasing on (0, 1], the
function

φ := ϕ(log |fg|) = ϕ(log |f | + log |g|)
is decreasing on (0, 1] and integrable on this interval. By Lemma 3.5, we get

φ(t) ≤ e

t
, t ∈ (0, t0)

(where t0 ∈ (0, 1) is fixed suitably).
Hence

ϕ(ϕ−1(w)+ log |g|) ≤ e

t
,

and so
log |g| ≤ ϕ−1(e/t)− ϕ−1(w).

Hence

(3.2) �γ (|g|) = ϕ(γ−1(log |g|)) ≤ ϕ(γ−1(ϕ−1(e/t)− ϕ−1(w))).

Since ϕ satisfies the ∇̃-condition and γ is admissible we have

ϕ(s + γ (s)) ≥ ϕ(s) log1+ε ϕ(s), s ≥ sγ ,

so that
s ≥ γ−1(ϕ−1(ϕ(s) log1+ε ϕ(s))− s), s ≥ sγ .

Applying ϕ to this inequality and choosing s such that w = w(t) = ϕ(s) we
obtain

(3.3) w ≥ ϕ(γ−1(ϕ−1(w log1+ε w)− ϕ−1(w))).

We will check that 1/t ≤ w log1+ε w. From (3.1), we get

w(t) log1+ε w(t) = e

t log1+η(e/t)
log1+ε

(
e

t log1+η(e/t)

)

= e

t log1+η(e/t)

(
log(e/t)− log log1+η(e/t)

)1+ε

= e

t
logε−η(e/t)

(
1 − log log1+η(e/t)

log(e/t)

)1+ε

≥ e

t
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for t sufficiently small since ε > η. Injecting this into (3.3) we get

w ≥ ϕ(γ−1(ϕ−1(e/t)− ϕ−1(w))).

We recognize here the right hand side of (3.2) so that

�γ (|g(eit )|) ≤ w(t) = 1

t log1+ε(1/t)
.

Since w ∈ L1, we conclude g ∈ Hψ . By the remarks in the introduction to
this section we also have g ∈ H�[n] for every n ∈ N∗.

Example. Let us consider the model case ϕα , 0 < α < 1. We have
already constructed the optimal function γα,C = Ct1−α . Obviously, γ−1

α (t) =
(t/C)1/(1−α), and ψα,C(t) := ϕα ◦ γ−1

α,C(t) = edt
α/(1−α) = ϕdα/(1−α), where

d = C−α/(1−α). This together with Theorem 3.1 yields the first inclusion of
the proposition below.

Note that Alg(H�α/(1−α) ) = ⋃
d>0 Hϕdα/(1−α)◦log (one can use that fg =

(1/2)((f + g)2 − f 2 − g2) and h ∈ Hα/(1−α) implies h2 ∈ Hϕdα/(1−α) with

d = (1/2)α/(1−α)).
For the second one we introduce another defining function. Set

ϕ
(log)
α,δ (t) = e

δ
(

t
log t

)α/(1−α)

, t ≥ t0,

where δ > 0. Clearly, if β < α/(1 − α) then

ϕβ(t) = et
β 
 ϕ

(log)
α,δ (t), t → ∞.

Hence by the remarks on orderings of (Hardy-)Orlicz spaces in Section 2

(3.4) H
ϕ
(log)
α,δ ◦log � H�β .

Proposition 3.6. Let 0 < α < 1. Then

Alg(H�α/(1−α) ) =
⋃
d>0

Hϕdα/(1−α)◦log ⊂ Mult(H�α ) ⊂
⋂
δ>0

H
ϕ
(log)
α,δ ◦log.

Before proving this result, we give the following consequence which is
maybe easier to state and follows immediately from this proposition and (3.4).

Corollary 3.7. Let 0 < α < 1. Then

Alg(H�α/(1−α) ) =
⋃
d>0

Hϕdα/(1−α)◦log ⊂ Mult(H�α ) ⊂
⋂

0<β<α/(1−α)
H�β .
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Corollary 3.7 shows that Theorem 3.4 is optimal in the sense that it allows
to separate those Hardy-Orlicz spaces contained in the scale (H�β )β>0 and
multiplying on H�α from those contained in the scale that do not multiply on
H�α . We could of course have replaced H�β by

⋂
n∈N∗ H�

[n]
β

in the corollary.

Proof of the Proposition. As already indicated, the first inclusion is
established by the above discussion. Let us consider the second inclusion.
Recall that for ϕα the function

γ (s) = (1 + η)s1−α log s

is ∇̃-admissible whenever η > 0. Set �γ = ϕ ◦ γ−1 ◦ log. It can be checked
that

γ−1(u) ∼
(

1 − α

1 + η

u

log u

)1/(1−α)
, u → ∞.

So

�γ (t) = exp

[(
1 − α

1 + η

log t

log log t

)α/1−α
(1 + o(t))

]
, t → ∞.

Since γ is ∇̃-admissible for arbitrary η > 0 and o(t) is arbitrarily small, we
can take

�γ (t) = exp

[
(1 − δ)Cα

(
log t

log log t

)α/(1−α)]
.

where δ > 0 is arbitrary and Cα = (1 − α)α/(1−α). From Theorem 3.4 we
deduce that Mult(H�) ⊂ H�γ . And by the general remarks we also have
Mult(H�) ⊂ H�

[n]
γ

, where

� [n]
γ (t) = exp

[
(1 − δ)Cα

(
n log t

log(n log t)

)α/(1−α)]

= exp

[
c

(
log t

log n+ log log t)

)α/(1−α)]

with a suitable constant c. Clearly there exist δ1, δ2 such that ϕ(log)
α,δ1

(log t) ≤
� [n]
γ (t) ≤ ϕ

(log)
α,δ2

(log t) from which the remaining inclusion of the proposition
follows.

The example ϕα is quite instructive concerning the behaviour of the mul-
tiplier algebra. Clearly the index α/(1 − α) that we can associate with ϕα
increases with α (we will see in Proposition 4.1 that for reasonable strongly
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convex functions – and ϕα are reasonable in our situation – that the multi-
plier algebra increases with the space). A crucial point is α = 1/2. Then
ψ1/2,1(t) = ϕ1/2 ◦ γ−1

1/2,1(t) = ϕ1(t) = et which is the defining function for
H 1, so that the multiplier algebra of H�1/2 contains Alg(H 1) = ⋃

p>0 H
p (and

it is contained in H�β for any β < 1, and even in smaller Hardy-Orlicz spaces

defined by ϕ(log)
α,δ ).

When α > 1/2, then by the corollary we have Mult(Hα) ⊂ ⋂
n∈N∗ H�

[n]
1

=⋂
p>0 H

p. Choosing β ∈ (1, α/(1−α))we can even deduce that Mult(Hα) ⊂
H�β which is extremely small and close to H∞.

Conversely, if α < 1/2, then since α/(1 − α) < 1, we get ϕα/(1−α)(t) =
o(ept ) which yields Hp ⊂ H�α/(1−α) for every p > 0 and hence

⋃
p>0 H

p ⊂
H�α/(1−α) ⊂ Mult(H�α ). So, in this case, the multiplier algebra is very big
containing every Hp, p > 0, and even bigger spaces.

Corollary 3.7 tells us that in this example the multiplier algebras vary from
very small spaces when H� is close to the classical Hardy spaces to very big
ones when we approach the big Hardy-Orlicz spaces.

Another observation can be made concerning the critical value α = 1/2.
For α ≤ 1/2 the function ξ : t 	−→ (t + 2)α/(1−α) − tα/(1−α) is bounded so
that ψα,C = ϕα ◦ γ−1

α,C satisfies that 
2 condition, whereas for α > 1/2 the
function ξ is unbounded and so ψα,C /∈ 
2.

A similar observation can be made in the context of Theorem 3.4. By
the above proof, the ∇̃-admissible function γ (log)

α,η satisfies
(
γ
(log)
α,η

)−1
(t) ∼

c(t/ log t)1/(1−α) for a suitable constant c. The function ξ(log) : t 	−→ ((t +
2)/ log(t + 2))α/(1−α) − (t/ log t)α/(1−α) is bounded if and only if α ≤ 1/2 so
that ψγ = ϕα ◦ (

γ
(log)
α,η

)−1
satisfies the 
2 condition if and only if α ≤ 1/2.

4. Orderings on multipliers

4.1. A general result

We begin the section with a general fact. Pick �1 = ϕ1 ◦ log and �2 = ϕ2 ◦
log two defining functions of Hardy-Orlicz spaces, where ϕ1, ϕ2 are strongly
convex. In Section 2 we have mentioned that the condition

(4.1) lim sup
t→∞

�2(t)

�1(t)
< +∞

is equivalent to H�1 ⊂ H�2 . Replacing �i by ϕi we get the same kind of
estimate for ϕ2/ϕ1 in (4.1). It is also possible to replace moreover ϕ1 by ϕ1 +ϕ2

without changing H�1 , so that we can suppose that h := ϕ1 − ϕ2 is strongly
convex, and even that h′ = ϕ′

1 − ϕ′
2 tends to infinity at infinity. This does

unfortunately not always imply that ϕ−2 − ϕ−1 is increasing. However, if
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we assume the later to hold then the ordering of the Hardy-Orlicz spaces is
inherited by their respective multipliers.

Proposition 4.1. Let ϕ1, ϕ2 be strongly convex functions. If ϕ−1
2 − ϕ−1

1 is
increasing then

Mult(H�1) ⊂ Mult(H�2).

Proof. We can suppose that ϕ1 and ϕ2 are differentiable. By the hypothesis
ϕ−1

2 − ϕ−1
1 is a strictly increasing function, so that (ϕ−1

2 − ϕ−1
1 )′ ≥ 0. Hence

((ϕ−1
2 )′(ϕ1(u)) − (ϕ−1

1 )′(ϕ1(u)))ϕ
′
1(u) ≥ 0 (note that obviously ϕ′

1 ≥ 0).
Hence

(ϕ−1
2 ◦ ϕ1)

′(u) ≥ 1,

for sufficiently big u. Setting ξ(u) := ϕ−1
2 ◦ ϕ1 ◦ log(u) we deduce from

this that ξ ′(u) ≥ 1/u for big u. Define now � = �−1
2 ◦ �1. Then we get

(log ◦�)′(u) = ξ ′(u) ≥ 1
u

, and hence the function

� : t 	−→ �(t)

t
= �−1

2 ◦�1(t)

t

is increasing.
After these preliminary remarks let us come to the proof of the proposition.

Suppose g ∈ Mult(H�1). Let f ∈ H�2 . We have to check that gf ∈ H�2 .
Define a measurable function on T by f0 = �−1

1 (�2(|f |)). Clearly there exists
an outer functionF the modulus of which is equal tof0 almost everywhere on T,
and by construction F ∈ H�1 . Since g multiplies on H�1 we have gF ∈ H�1 .
For the remaining argument we will suppose |g| ≥ 1 almost everywhere on
T (we have already seen that g can be supposed outer; it is also clear that g
is a mulitplier if and only if the outer function the modulus of which is equal
to max(1, |g|) is a multiplier). With this assumption we have |F | ≤ |gF | and
since � is increasing we get

�(|F |)
|F | ≤ �(|gF |)

|gF | ,

i.e. |g|�−1
2 (�1(|F |)) ≤ �−1

2 (�1(|gF |)),
from where we get∫

T
�2(|gf |) dm =

∫
T
�2(|g|�−1

2 (�1(|F |))) dm

≤
∫
�1(|gF |) dm < ∞.
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Any “reasonable” pair of strongly convex functions with H�1 ⊂ H�2 sat-
isfies the hypothesis of Proposition 3.3. A simple example is ϕ1(t) = et

α

and
ϕ2(t) = et

β

with α > β (this follows already from Corollary 3.7). Another
example is given by ϕ1(t) = et and ϕ2(t) = et/ log t for which it is simple to
check that (ϕ−1

2 − ϕ−1
1 )′ ≥ 0.

A natural question raised by the preceding proposition is whether there exist
Hardy-Orlicz spaces for which the ordering of the multipliers is in the opposite
direction of that of the Hardy-Orlicz spaces themselves. The next subsection
answers this question by giving examples where the ordering of the multipliers
cannot be pulled back to the underlying Hardy-Orlicz spaces

4.2. Small multipliers on large Hardy-Orlicz spaces

Here we show that there are large Hardy-Orlicz spaces for which the multipliers
reduce toH∞, so that in general the multipliers are not necessarily ordered as
the Hardy-Orlicz spaces (when these can be ordered).

Let us make more precise what we mean by “large” here. In fact it turns out
that the Hardy-Orlicz spaces we consider can be very far from

⋃
p>0 H

p. We
have to introduce a new class of strongly convex functions. Set

ϕα(t) = e(ln t)
α

, t ≥ t0.

These functions define Hardy-Orlicz spaces H�α , where�α = ϕα ◦ log, which
are much bigger than those associated with ϕ(t) = et

α

considered in Section 3.
Let us observe that for every (concave) function γ strictly increasing to infinity
and such that γ (t) = o(t) we have

ϕα(t + γ (t))

ϕα(t)
= exp

[
(ln t)α

((
1 + ln(1 + γ (t)/t)

ln t

)α
− 1

)]

= exp

[
α

γ (t)

t (ln t)1−α + o

(
γ (t)

t (ln t)1−α

)]
.

which is bounded when γ (t) ≤ Ct(ln t)α−1. The latter expression suggests that
we could attain a growth faster than the identity when α > 1. In this situation
the above computations, which work under the assumption γ (t) = o(t), are
of course false. Anyway, since we are only interested in concave γ it is not
worth while seeking γ growing faster than the identity. So, ϕα satisfies the

̃-condition and for instance γp(t) = tp is admissible for every p ∈ (0, 1).
Using Theorem 3.1 this implies that the multipliers of H�α contain a very big
space: H�α,p , where�α,p = ψα,p◦log,ψα,p(t) = ϕα ◦γ−1

p (t) = e(1/p)
α(ln t)α =

ϕ
(1/p)α
α .

We have the following result.
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Theorem 4.2. For every β > 1 there exists a strongly convex function ϕ
satisfying the 
̃2-condition such that H� contains H�β and

Mult(H�) = H∞.

Proof. We begin by constructing the strongly convex function on R+. Sup-
pose ϕ(1) = 1. Let (tn) be a sequence of positive real numbers tending strictly
to infinity and t1 = 1. We will also assume that (tn+1 − tn) goes to infinity.
The construction of ϕ goes inductively. On each interval In = [tn, tn+1) the
function is affine with ϕ(tn) = limt→t−n ϕ(t) so that ϕ is continuous in tn and
with slope ϕ(tn) (the function doubles its values from tn to tn + 1). This yields
of course a convex function the slope of which tends to infinity from where
we deduce that it is strongly convex. (It is clear how to extend ϕ to R−.)

Let us check that by a suitable choice of (tn)we obtain a function ϕ tending
more slowly to infinity than ϕβ . This will show that H�β ⊂ H�. Fix γ > 1

β−1 .

By constructionϕ(tn+1) = ϕ(tn)(1+(tn+1−tn)). Set tn+1 = tn+enγ −1, so that
ϕ(tn+1) = en

γ

ϕ(tn), and an immediate induction yields ϕ(tn) = e
∑n−1

k=1 k
γ

ϕ(t1),
where ϕ(t1) = 1. It is well known that

∑n−1
k=1 k

γ ∼ (n−1)γ+1

γ+1 , from where we

deduce that e(1−ε)(n−1)γ+1/(γ+1) ≤ ϕ(tn) ≤ e(1+ε)(n−1)γ+1/(γ+1) for sufficiently
bign (depending on ε). Now tn+1−tn ∼ en

γ

, so that tn = t1+∑n−1
k=1(tk+1−tk) ∼∑n−1

k=1 e
kγ ≥ e(n−1)γ . By assumption γ > 1

β−1 , so that γβ > γ + 1. Hence for
sufficiently big n

ϕβ(tn−1) ≥ e(ln e
(n−2)γ )β = e(n−2)γβ � e(1+ε)(n−1)γ+1/(γ+1) ≥ ϕ(tn).

This implies that on the whole interval In the function ϕβ dominates ϕ. Since
this is true for every interval In (n sufficiently big), we can deduce that H�β ⊂
H�.

The remaining part of the proof is again built on the arguments of [9, The-
orem 1.3]. Suppose now that there exists an unbounded multiplier g for H�.
Let σk = {ζ ∈ T : log |g(ζ )| ∈ [k, k + 1)} which can be supposed of pos-
itive measure by assumption. Since ϕ tends to infinity, there exists a sub-
sequence (tnk )k such that ϕ(tnk ) ≥ 1

k2|σk | . Then we can find σ ′
k ⊂ σk such

that ϕ(tnk )|σ ′
k| = 1

k2 . Let f be the outer function the boundary values of
which are in modulus equal to

∑
k e

tnk χσ ′
k

on
⋃
k σ

′
k and 1 elsewhere. Then∫

T �(|f |) dm = ∑
k ϕ(tnk )|σ ′

k| = ∑
k

1
k2 < ∞.

On the other hand, since for γ > 0 we have ϕ(tnk +γ ) ≥ ϕ(tnk )+ϕ(tnk )γ ≥
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γ ϕ(tnk ), we obtain∫
T
�(|fg|) dm ≥

∑
k

∫
σ ′
k

ϕ(log |f | + log |g|) dm

≥
∑
k

∫
σ ′
k

log |g|ϕ(tnk ) dm

≥
∑
k

kϕ(tnk )|σ ′
k| =

∑
k

1

k
= ∞.

So, g does not multiply f to a function in H�. We have reached a contradiction,
and any multiplier in H� has to be bounded.

It is easily checked that, by construction, ϕ satisfies the 
̃2-condition, so
that we also have H∞ ⊂ Mult(H�).

5. Some more examples

5.1. Optimality of the conditions

We begin this section with an example discussing the optimality of the results
of Section 3. We have already seen in Proposition 3.3 that the result of The-
orem 3.1 is in a sense sharp: whenever a concave function γ is not admissible
for ϕ then we can find a function in H�γ , where�γ = ϕ ◦ γ−1 ◦ log, that does
not multiply on H�.

We will discuss this more thouroughly here through the example ϕ1/2(t) =
e
√
t . Recall that in this situation our Theorem 3.1 gave the inclusion

⋃
p>0 H

p⊂
Mult H�1/2 . On the other side, Theorem 3.4 shows that Mult H�1/2 ⊂ H

ϕ
(log)
1/2,δ◦log

for every δ > 0. Recall that ϕ(log)
1/2,δ(t) = e

δ t
log t .

Here we will use Proposition 3.3 to show the existence of a function g not
multiplying on H�1/2 and which is in Hardy-Orlicz classes coming much closer
to

⋃
p>0 H

p than do the spaces H
ϕ
(log)
1/2,δ◦log, δ > 0. This shows that Theorem 3.4

is not optimal (even if Corollary 3.7 gave us some optimality; see the comments
after that corollary).

We begin by introducing a new scale of Hardy-Orlicz spaces. In order to
simplify the notation we will set for k ≥ 1

logk := log ◦ · · · ◦ log︸ ︷︷ ︸
k times

.

We will also set e1 := e and ek+1 := eek . Then for k ≥ 2 we introduce the
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functions ϕ(k) which are defined by

ϕ(k)(t) = exp

(
t

logk−1(t)

)
, for t ≥ e2k.

The functions are completed suitably for t < e2k to convex functions.
The spaces H�(k) , where�(k) = ϕ(k)◦log, come extremely close to

⋃
p>0 H

p

when k → ∞ without ever atteining the latter union.

Proposition 5.1. There is a function g ∈ ⋂
k≥1 H(k) that does not multiply

on H�1/2 .

Proof. Using the numbers ek , we will define a function γ which is not
admissible for ϕ1/2. Let ε : R+ → R be continuous and piecewise affine such
that

ε(ek) = k, k ≥ 1.

The function ε is clearly concave on [1,+∞), and so will be γ defined by
γ (t) = √

tε(t) on [1,+∞). The function γ is not admissible since

ϕ1/2(t + γ (t))

ϕ1/2(t)
= e

√
t+√

tε(t)−√
t = e

1
2 ε(t)+o(ε(t))

tends to infinity (we had already mentioned in Section 2 that any 
̃-admissible
function for ϕα can grow at most as t → Ct1−α). Hence by Proposition 3.3
there is a function in H�γ that does not multiply on H�.

We will show that
H�γ ⊂ H�(k) ,

for every k. For this it is sufficient to check that for every k ∈ N∗ there is a tk
such that for every t ≥ tk

ϕ1/2 ◦ γ−1(t) ≥ e
t

logk t .

Passing to logarithms and observing that γ is continuous and strictly increasing
to +∞ so that we can change to the variable u = γ−1(t), we are led to the
verification of

logϕ1/2(u) = √
u ≥ γ (u)

logk(γ (u))
=

√
uε(u)

logk
(√
uε(u)

)
for u sufficiently big. This is of course equivalent to logk(

√
uε(u)) ≥ ε(u) for

big u. The left hand side of this estimate behaves like logk u so that it remains
to show that ε is neglectible with respect to logk at infinity. Fix such a k and
let n > k. Then for t ∈ [en, en+1) we have logk(t) ≥ logk(en) = en−k which



pointwise multipliers in hardy-orlicz spaces 129

goes “extremely” fast to infinity (one could observe that for k ≥ 1 we have
ek+1/ek = eek /ek ≥ M := ee−1 since et ≥ Mt for t ≥ e, so that en−k grows at
least exponentially in n), whereas ε(t) ≤ ε(en+1) = n+ 1.

5.2. Big multipliers in small Hardy-Orlicz spaces

In this section we will show that there are Hardy-Orlicz spaces beyond
⋃
p>0H

p

coming very close to
⋃
p>0 H

p and containing unbounded multipliers. More
precisely, such Hardy-Orlicz spaces contain Hardy-Orlicz spaces strictly big-
ger than H∞. This is of central interest in the interpolation problem since
it will allow to conclude that such Hardy-Orlicz spaces admit interpolating
sequences which are not Carleson, i.e. which are not interpolating for H∞.

The key result to our examples here is the following proposition.

Proposition 5.2. Let ϕ be a strongly convex function on R strictly increas-
ing to +∞. Let (tn)n be the sequence defined by

ϕ(tn) = 2n, n ∈ N.

If (tn+1 − tn)n tends to infinity, then ϕ is 
̃-admissible, and there exists γ :
[t0,+∞) → R concave, increasing with limt→∞ γ (t) = +∞ such that

(5.1) ϕ(t + γ (t)) ≤ 4ϕ(t), t ≥ t0.

Proof. Since we are only interested in the estimate (5.1) for big t , we can
normalize the function ϕ such that ϕ(0) = 1.

Split R into subintervals [tn, tn+1) (possibly adding (−∞, t0]).
Let us construct a 
̃-admissible function. To begin with let γ0 be the con-

tinuous and piecewise affine function defined on each interval [tn, tn+1) by

γ0 : [tn, tn+1) −→ [tn+1, tn+2),

t 	−→ tn+1 + tn+2 − tn+1

tn+1 − tn
(t − tn).

This is just the affine increasing bijection from [tn, tn+1) onto [tn+1, tn+2).
Define moreover γ1(t) = γ0(t)− t so that γ1(tn) = tn+1 − tn for every n. This
function is still continuous and piecewise affine. Moreover it tends to infinity
since the sequence (tn+1 − tn)n does and since it is bounded below on any
interval [tn, tn+1) by the values γ (tn) and γ (tn+1). It is clear that we can then
bound below γ1 by a function γ which is concave (one could construct such
a function as a continuous piecewise affine function with decreasing growth
coefficient on each interval).
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Let us check that the so obtained function γ satisfies the 
̃-admissibility
type condition (5.1). Let t ∈ R and suppose t ∈ [tn, tn+1). Observe that then
γ0(t) ∈ [tn+1, tn+2). Hence

ϕ(t + γ (t)) ≤ ϕ(t + γ1(t)) = ϕ(γ0(t)) ≤ ϕ(tn+2) ≤ 22ϕ(tn) ≤ 22ϕ(t).

As a consequence of the previous proposition and Theorem 3.1 we obtain

Corollary 5.3. Let ϕ be as in the proposition. There exists a strongly
convex function ψ such that

Alg(H�) ⊂ Mult(H�),

where � = ψ ◦ log.

Important examples of strongly convex functions for which the sequence
(tn+1 − tn)n tends to infinity are given by ϕ(log)

k (t) = et/ logk t , k ∈ N∗, ϕ(t) =
et/

√
logk(t), and it is even possible to construct functions ϕ(t) that behave on

intervals In like ϕ(log)
n .

Let us discuss more thouroughly the case of ϕ(log)
k . This function defines

a Hardy-Orlicz space that is very close to
⋃
p>0 H

p and having unbounded
multipliers. We will check that γk,c(t) = c logk(t) is admissible:

t + c logk t

logk(t + c logk t)
− t

logk t
= t logk t + c log2

k t − t logk(t + c logk t)

logk t logk(t + c logk t)

= c log2
k t − t (logk(t + c logk t)− logk t)

logk t logk(t + c logk t)

≤ c
logk(t)

logk(t + logk t)
≤ c.

Also γ−1
k,c (t) = expk(t/c) where expk = exp ◦ · · · ◦ exp︸ ︷︷ ︸

k times

. So

�̃k,α(t) = ϕ ◦ γ−1
k,c ◦ log t = ϕ

(
expk

log t

c

)
= ϕ(expk−1 t

α)

= exp

(
expk−1 t

α

logk expk−1 t
α

)
= exp

(
expk−1 t

α

α log t

)
.

Setting also
�k,α(t) = expk t

α,
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we again get ⋃
α>0

H�k,α =
⋃
α>0

H�̃k,α
⊂ Mult(H�k ).

The spaces H�α (and a fortiori the spaces H�k,α ) are extremely small, by
which we mean that they are very close to H∞. This can be expressed by
the Boyd indices. For Orlicz spaces, [15, Proposition 2.b.5] gives an explicit
formula allowing the computation of these indices. It turns out that – not very
surprisingly – pX = qX = +∞ for X = H�k,α .

6. Interpolation

In this section we will consider the interpolation problem in Hardy-Orlicz
spaces beyond

⋃
p>0 H

p.
We shall begin by recalling some definitions. The interpolation problem we

would like to consider is that of free interpolation.

Definition 6.1. A sequence� = {λn}n ⊂ D is called a free interpolating
sequence for a space of holomorphic functions on D,X = Hol(D), if for every
f ∈ X, and for every sequence (bn)n with

|bn| ≤ |f (λn)|, n ∈ N,

there exists a function g ∈ X such that g(λn) = bn, n ∈ N.
Notation: � ∈ Intl∞ X.

Another way of expressing that a sequence is of free interpolation is to say
that l∞ is contained in the multiplier algebra of X|� := {(f (λn))n : f ∈ X}:
for every (an)n = (f (λn))n ∈ X|� and for every μ = (μn)n ∈ l∞ there is
g ∈ X such that g(λn) = μnan, n ∈ N, i.e. (μnan)n ∈ X|�.

It is clear that if we can interpolate the bounded sequences by functions in
the multiplier algebra, i.e. l∞ ⊂ Mult(X)|�, then � ∈ Intl∞ X.

The definition of free interpolation originates in the work byVinogradov and
Havin in the 70s. It is very well adapted to the Hilbert space situation where it
can be connected to the unconditionality of a sequence of reproducing kernels,
see e.g. [18, Theorem C3.1.4, Theorem C3.2.5] for a general source; see also
[8] or [7] for more motivations for the non-Banach situation.

Let us recall that by a famous result of L. Carleson [2] the interpolating
sequences for H∞, i.e. the sequences � for which H∞|� = l∞, are charac-
terized by the Carleson condition:

(6.1) inf
λ∈� |B�\λ(λ)| = δ > 0.
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Here BE = ∏
λ∈E bλ is the Blaschke product associated with a discrete set

E ⊂ D (supposed to satisfy the Blaschke condition
∑

λ∈E(1 − |λ|2) < ∞).
Recall that for λ ∈ D

bλ(z) = |λ|
λ

λ− z

1 − λz
, z ∈ D.

A sequence satisfying (6.1) will be called a Carleson sequence. It is clear that
for X = H∞ classical interpolation and free interpolation are the same.

The Carleson condition still characterizes interpolating sequences (free or
classical) in a large class of Hardy-Orlicz spaces included in the scale of Hp

spaces (see [22] for Hp, p ≥ 1; [10] for Hp, p < 1 and [6] for more general
Hardy-Orlicz spaces included in the scale of classical Hardy spaces Hp).

The situation is intrinsically different in spaces close to the Nevanlinna and
Smirnov classes. Here interpolating sequences are characterized by the exist-
ence of harmonic majorants of the function ϕ� defined by ϕ�(λ) = log 1

|Bλ(λ)|
when λ ∈ � and ϕ� = 0 otherwise. See [8] for precise results in the
Nevanlinna and Smirnov classes and [7] for big Hardy-Orlicz spaces where
Mult(H�) = H�.

Of course a big gap remains between big Hardy-Orlicz spaces considered
in [7] and

⋃
p>0 H

p. In particular an intriguing question is to know whether
there are Hardy-Orlicz spaces beyond

⋃
p>0 H

p where the Carleson condition
still characterizes the interpolating sequences. In the light of Theorem 4.2,
this question is still more exciting since there are very large Hardy-Orlicz
spaces for which the multipliers reduce toH∞. Here we will give examples of
Hardy-Orlicz spaces which are close to the union

⋃
p>0 H

p and which have
free interpolating sequences which are not Carleson.

We will consider the problem through the multiplier algebra of the Hardy-
Orlicz space under consideration. As already explained, the idea is to solve the
interpolation problem: find � = {λn}n ⊂ D such that

l∞ ⊂ Mult(H�)|�.
Then � is a free interpolating sequence for H�, and in our context we would
like that � is not a Carleson sequence.

The situation we will consider here is that of a Hardy-Orlicz space H�

the multiplier algebra of which contains H� where � = ψ ◦ log and ψ :
R → [0,∞) is a strongly convex function. Examples of such a situation
can be deduced from Corollary 5.3. In such a situation H� contains not only
H∞ but also – and this will be important for us – unbounded functions such
as for example the outer function g with |g| = �−1 ◦ v1 a.e. on T, where
v1(t) = 1

t log1+ε(1/t) and ε > 0.
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Let M := Alg(H�) which is inluded in Mult(H�).
We need two simple properties on M . Recall from (2.2) that for a function

f in the Smirnov class we have written [f ] for its outer part. We will use more
generally this notation for the outer function associated with a measurable
function f on T with log |f | ∈ L1.

Lemma 6.2. If f ∈ M then there exists n ∈ N∗ such that [f ]1/n ∈ H�

Proof. We begin by checking the result for products and sums of functions
in the generator H� of M . Observe first that if f1, f2 ∈ H� , then [w] ∈ H�

where w := max(|f1|, |f2|) (just split the integral
∫

T �(|w|) dm into two
parts where |f1| (respectively |f2|) has bigger modulus). So, if f = f1f2

then |f | ≤ w2 and [f ]1/2 ∈ H� . By a simple induction this holds for finite
products.

Also, [f1 +f2]1/2 ∈ H� whenever f1, f2 ∈ H� , and this extends obviously
to finite sums of functions in H� (we have not supposed � ∈ 
2).

Let us now look whether the property holds for products and sums of
functions in M . If f1, f2 ∈ M with [f1]1/n ∈ H� , [f2]1/k ∈ H� then
[w]1/N ∈ H� , where w := max(|f1|, |f2|) and N = max(n, k) (just split
the integral

∫
T �(|w|1/N) dm into two parts where |f1| (respectively |f2|) has

bigger modulus; the case when |f1| ≤ 1 or |f2| ≤ 1 is of no relevance
here). Hence, if f = f1f2 then |f | ≤ |[w]|2, and

∫
T �(|f |1/(2N)) dm ≤∫

T �(|w|1/N) dm < ∞, i.e. [f ]1/(2N) ∈ H� . By a simple induction this also
holds for finite products.

For sums of functions inM , letf1, f2, w,N as above. In particular [w]1/N ∈
H� . If now f = f1 + f2, then |f | ≤ 2w so that |[f ]1/N | ≤ |2w|1/N from
where we deduce that [f ]1/2N ∈ H� . By a simple induction this generalizes
to finite sums.

Since the property of the lemma is true for functions in H� and it is con-
served by finite sums and products of functions in M = alg(H�) it holds for
the algebra generated by H� .

A simple consequence is the following.

Corollary 6.3. If f ∈ M , then [max(1, |f |)] ∈ M .

Proof. From the lemma we obtain that [f ]1/n ∈ H� for a convenient
n ∈ N∗. Then clearly h := [max(1, |f |)]1/n = [max(1, |f |1/n)] ∈ H� . Hence
[max(1, |f |)] = hn ∈ M = Alg H� .

We can add another consequence of Lemma 6.2.

Corollary 6.4. We have Alg(H�) = ⋃
n∈N H�n where �n(t) = �(t1/n).
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It should be noted that �n is not necessarily convex, but ψn(t) := �n ◦
exp(t) = ψ(t/n) is still strongly convex in the terminology of [20] so that we
still can define the corresponding Hardy-Orlicz classes (which are not neces-
sarily vector spaces). In the case �1,α(t) = et

α

, which defines a Hardy-Orlicz
space contained in the multiplier algebra of H

�
(log)
1

(�(log)
1 (t) = elog t/ log log t for

t sufficiently big), (�1,α)n will be convex (we have taken the notation from the
end of Subsection 5.2).

Like in [4] our example of a free interpolating sequence will be constructed
as a non separated union of two Carleson sequences (this is different to [23]
where Carleson’s method is used to interpolate lq-sequences byHp-functions).
In order to do that we will use the results of [5] based on the so-called (C)-
stability.

Let us recall the definition of (C)-stability (see [5]).

Definition 6.5. Let X ⊂ Hol(D). If there exists δ0 ∈ (0, 1) such that for
every pair of Carleson sequences � = {λn}n ⊂ D and �̃ = {λ̃n}n ⊂ D with

sup
n

|bλn(λ̃n)| = δ < δ0

we have
X|� = X|�̃

then X is called (C)-stable.

Since H∞ ⊂ H� and M is an algebra containing H� we also have H∞ ⊂
M = Mult(M) which in particular implies that a Carleson sequence is a free
interpolating sequence for M .

Proposition 6.6. The space M is (C)-stable.

Proof. Pick f ∈ M , and let�, �̃ as in the definition. Set an = f (λn). We
have to verify that {an}n ∈ M|�̃. Putw = max(1, |f |) a.e. T. By Corollary 6.3,
F := [w] ∈ M . It is clear that |an| ≤ |An| where An = F(λn). Note that
log |F | is by construction a positive harmonic function, and so by Harnack’s
inequality there is a constant c > 1 such that

|F(λ̃n)|1/c ≤ |F(λn)| ≤ |F(λ̃n)|c, n ∈ N.

So
|an| ≤ |Fc(λ̃n)|.

Let n be a natural number bigger than c. Then |Fc| ≤ |Fn| and Fn ∈ M by
Lemma 6.2.
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Since �̃ is a Carleson sequence by assumption, and so a free interpolating
sequence for M , there exists a function g ∈ M , such that

g(λ̃n) = an, n ∈ N.

HenceM|� ⊂ M|�̃. Since the problem is symmetric, we also have the reverse
inclusion, and M is (C)-stable.

We will now examine the trace of H ∗
� . For our purpose it will be sufficient

to know the restriction H ∗
� |�when� is a Carleson sequence. For this we will

use the Jones-Vinogradov interpolation operator (see e.g. [18, Vol. 2, pp. 179–
180]), which with a sequence a = {an}n associates a holomorphic function

Ta(z) =
∑
n∈N

anfn(z), z ∈ D.

The exact form of the functions fn is not very interesting for our discussion
here (we refer the reader to the above cited monograph, or to [5]). The family
(fn) is of course a Beurling-type family, by which we mean that fn(λk) = δnk
and

sup
z∈D

∑
n∈N

|f (z)| < ∞.

The operator T is continuous from

l1(1 − |λ|2) =
{
a = (an)n : ‖a‖l1(1−|λ|2) :=

∑
n∈N

(1 − |λn|2)|an| < ∞
}

to H 1 and from l∞ to H∞ (see the above cited monograph). These results
suggest the use of interpolation between Banach space (lattices). In order to
do this we will adapt a Calderón interpolation theorem for rearrangement
invariant subspaces (see e.g. [15, Theorem 2.a.10]) to our situation.

The space

l∗�(1 − |λn|2) :=
{
a = (an)n : ∃C > 0,

∑
n∈N

(1 − |λn|2)�
( |an|
C

)
< ∞

}
,

equipped with the usual norm ‖ · ‖� is a Banach space.

Proposition 6.7. Let� ∈ (C). The operator T is continuous from l∗�(1 −
|λn|2) to H ∗

� .

Consequently, if � ∈ (C) then

l∗�(1 − |λn|2) ⊂ H ∗
� |�.
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...

...

a*(s) � ans

1 � �λns�
2

sns
s L

Figure 1. Decreasing rearrangement of (an)n

Proof. We have already introduced the distribution function and the de-
creasing rearrangement of a function defined on a measure space. We now have
to consider these notions in the sequence space l∗�(1 − |λn|2) (the underlying
measure space being N with the measure μ = ∑

n∈N(1 − |λn|2)δn) and in the
Lebesgue space L∗

� .
We start with a sequence a ∈ l∗�(1 − |λn|2). Repeating the arguments of

the proof of Calderón’s theorem given in [15, Theorem 2.a.10], we set for our
sequence a and an s ∈ [0, L], L := ∑

n∈N(1 − |λn|2) < ∞,

bsn =
{
(|an| − a∗(s)) an|an| if |an| > a∗(s)

0 if |an| ≤ a∗(s)

and csn = an − bsn. Clearly, ‖cs‖l∞ ≤ a∗(s).
Also, the norm of bs in l1(1 − |λn|2) corresponding to the hatched region

in Figure 1 can be computed as follows

‖bs‖l1(1−|λn|2) =
∑
n∈N

(1 − |λn|2)|bsn| =
∑

n:|an|>a∗(s)

(1 − |λn|2)(|an| − a∗(s))

=
∑

n:|an|>a∗(s)

(1 − |λn|2)|an| − a∗(s)
∑

n:|an|>a∗(s)

(1 − |λn|2)

=
∫ s

0
a∗(t) dt − sa∗(s)
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(here ns is an integer with a∗(s) = ans and sns = ∑
n:|an|>a∗(s)(1 − |λn|2)).

Now, T is linear, and by a well known estimate on decreasing rearrange-
ments (T a)∗(s+s) ≤ (T bs)∗(s)+(T cs)∗(s). Hence, we obtain as in the proof
of Calderón’s theorem∫ s

0
(T a)∗(t) dt

= 2
∫ s/2

0
(T a)∗(2s) ds

≤ 2
∫ s/2

0
(T bs)∗(s) ds + 2

∫ s/2

0
(T cs)∗(s) ds

≤ 2
∫ s/2

0
(T bs)∗(s) ds + 2

∫ s/2

0
‖T cs‖∞ ds

≤ 2‖T bs‖1 + s‖T cs‖∞

≤ 2 max(‖T ‖l1(1−|λn|2)→H 1 , ‖T ‖l∞→H∞)(‖bs‖l1(1−|λn|2) + sa∗(s))

= 2 max(‖T ‖l1(1−|λn|2)→H 1 , ‖T ‖l∞→H∞)

∫ s

0
a∗(t) dt

The function g defined by

g(e2πit ) = a∗(Lt), t ∈ (0, 1],

is in L∗
� (recall that L was the Blaschke sum

∑
(1 − |λn|2) corresponding to

the measure μ(N)), and the above inequality becomes

(6.2)
∫ s

0
(T a)∗(t) dt ≤ c

∫ s

0
g∗(e2πit ) dt, ∀s ∈ (0, 1]

(here c is a suitable constant).
Now, L∗

�(T) is a rearrangement invariant space (see [15, p. 120]) and so,
by [15, Proposition 2.a.8], we deduce from (6.2) that T a ∈ L∗

�(T) and that
‖T a‖L∗

�
≤ c1‖g‖L∗

�
≤ c2‖a‖l∗� . This achieves the proof.

We should mention that we do not know whether H ∗
�|� embeds into l∗�(1−

|λn|2), and for this reason it is not clear if H ∗
� is (C)-stable. This explains why

we pass through M which we know to be (C)-stable.
Let us now turn to the construction of an interpolating sequence for H� not

satisfying the Carleson condition. As already mentioned, for that it is sufficient
to construct a sequence�which is not Carleson yetM|� contains l∞. We will
use Theorem 1.4 of [5] (the idea of course goes back to [4].
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Proposition 6.8. There exists a sequence � �∈ (C) such that M|� ⊃ l∞.

Proof. Let �j = {λn,j } ⊂ D be Carleson sequences, j = 1, 2, such that
|bλn,1(λn,2)| ≤ δ0 and such that

lim
n→∞ |bλn,1(λn,2)| = 0.

The latter condition guarantees that� = �1 ∪�2 is not Carleson. The condi-
tion on the speed of convergence to zero of (|bλn,1(λn,2)|)n will be fixed later.

Let M(�1) = M|�1 (= M|�2), and set

M2(�) :=
{
(an,i)n∈N,i=1,2 : (an,1)n ∈ M(�1),

(
an,1 − an,2

bλn,2(λn,1)

)
n

∈ M(�1)

}
,

which is a kind of inductive limit of first order discrete Sobolev-Orlicz spaces.
Since M is (C)-stable, we deduce from [5, Theorem 1.4] that

M2(�) ⊂ M|� := {(f (λn,i))n∈N,i=1,2 : f ∈ M}
(the careful reader might have observed that we only use one half of that
theorem, but this is sufficient for our purpose here since we are only interested
in one inclusion). Set also

l∗�,2(1 − |λn,i |2) :=
{
(an,i)n∈N,i=1,2

: (an,1)n ∈ l∗�(1 − |λn,1|2),
(
an,1 − an,2

bλn,2(λn,1)

)
n

∈ l∗�(1 − |λn,1|2)
}
,

and analogously l�,2(1 − |λn,i |2) by omitting the stars everywhere in the pre-
vious definition. By Proposition 6.7, l∗�(1 − |λn,1|2) ⊂ H ∗

� |� ⊂ M(�1), and
so l∗�,2(1 − |λn,i |2) ⊂ M2(�). In particular we can interpolate every sequence
(an,i)n∈N,i=1,2 with∑

n∈N

(1 − |λn,1|2)�
(

|an,1| +
∣∣∣∣an,2 − an,1

bλn,1(λn,2)

∣∣∣∣
)
< ∞

by a function in M . Now, since �1 is a Blaschke sequence, there exists an
increasing sequence (γn)n of positive elements tending to infinity and such
that ∑

n∈N

(1 − |λn,1|2)γn < ∞.

Choosing �2 such that (|bλn,1(λn,2)|)n goes to zero and

|bλn,1(λn,2)| ≥ 2

�−1(γn)− 1
,
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we obtain for every a ∈ l∞ with ‖a‖∞ ≤ 1,

∑
n∈N

(1 − |λn,1|2)�
(

|an,1| +
∣∣∣∣an,2 − an,1

bλn,1(λn,2)

∣∣∣∣
)

≤
∑
n∈N

(1 − |λn,1|2)�
(

1 + 2

|bλn,1(λn,2)|
)

≤
∑
n∈N

(1 − |λn,1|2)γn < ∞.

Hence, the unit ball of l∞ is in M|�, and so also the whole space l∞ since M
is a vector space. We are done.

As a consequence we obtain the following result.

Corollary 6.9. Let ϕ be a strongly convex function, and � a strictly
increasing, convex, unbounded function such that

H� ⊂ Mult(Hϕ◦log).

Then there exists � �∈ (C) such that � ∈ Intl∞ Hϕ◦log.
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