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SHELLABLE CACTUS GRAPHS

FATEMEH MOHAMMADI, DARIUSH KIANI and SIAMAK YASSEMI∗

Abstract
In this paper a new class of vertex decomposable graphs are determined. Moreover, all shellable and
sequentially Cohen-Macaulay cactus graphs (i.e., connected graphs in which each edge belongs
to at most one cycle) are characterized.

1. Introduction

Assume that G is a finite simple graph with vertex set V (G) = {1, . . . , n} and
edge set E(G). Let K be an arbitrary field and R = K[x1, . . . , xn]. The ideal
I (G) ⊂ R which is generated by all monomials xixj such that {i, j} ∈ E(G) is
called the edge ideal of G. The simplicial complex �G of a graph G is defined
by

�G = {A ⊆ V (G) | A is an independent set of G},
where A is an independent set of G if none of its elements are adjacent. In
fact �G is precisely the Stanley-Reisner simplicial complex of I (G). A graded
R-module M is called sequentially Cohen-Macaulay (over K) if there exists
a finite filtration of graded R-modules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each Mi/Mi−1 is Cohen-Macaulay, and the Krull dimensions of the
quotients are increasing:

dim(M1/M0) < dim(M2/M1) < · · · < dim(Mr/Mr−1).

A graph G is said to be (sequentially) Cohen-Macaulay if the ring K[x1, . . . ,

xn]/I (G) is a (sequentially) Cohen-Macaulay ring.
In [16] Stanley showed that every shellable simplicial complex is sequen-

tially Cohen-Macaulay. Here we mean the non-pure definition of shellability as
introduced by Björner and Wachs [1]. However, the notion of a pure shellable
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complex was studied earlier in [15], [13]. In [18] Van Tuyl and Villarreal in-
troduced the notion of a shellable graph. A graph G is called shellable if �G

is a shellable simplicial complex. Also, Dochtermann and Engström [5] and
Woodroofe [20] studied the vertex decomposable graphs.

Studying vertex decomposable, shellable or (sequentially) Cohen-Macaulay
graphs has attracted significant attention of researchers working in the border-
line of combinatorial commutative algebra and algebraic combinatorics, (see
[5], [8], [10], [17], [19], [20]). In [10] Herzog, Hibi, and Zheng classified all
Cohen-Macaulay chordal graphs. Recently Woodroofe [20] showed that all
5-chordal graphs with no chordless 4-cycles are vertex decomposable.

We are interested in determining the families of shellable graphs. Since
every shellable simplicial complex is sequentially Cohen-Macaulay, by identi-
fying shellable graphs we are in fact identifying some of the sequentially
Cohen-Macaulay graphs. A cactus graph (sometimes called a cactus tree) is
a connected graph in which any two simple cycles have at most one vertex
in common. Equivalently, every edge in such a graph may belong to at most
one cycle. Cactus graphs were first studied under the name of Husimi trees
[11]. In fact a cactus can be constructed from a tree by replacing some set of
edges with cycles of arbitrary size. Note that every pseudo-tree (i.e., a graph
containing exactly one cycle Cn for some n � 3) is a cactus graph.

In this paper we determine a class of vertex decomposable graphs in The-
orem 2.3. Motivated by Francisco, Hà and Villarreal’s works in [8], [19], we
study the effect of adding whiskers, ears and cycles C3 or C5 to a graph. The-
orem 2.3 gives us a criteria to construct more vertex decomposable graphs by
making some modification on graphs, (see Corollary 2.5).

Next we characterize all vertex decomposable, shellable and sequentially
Cohen-Macaulay cactus graphs, (see Theorem 2.8). Moreover, it is shown that
a cactus graph is vertex decomposable if and only if it is sequentially Cohen-
Macaulay.

2. Shellable and sequentially Cohen-Macaulay cactus graphs

Vertex decomposability was introduced by Provan and Billera [14] in the pure
case, and extended to the non-pure case by Björner and Wachs [1], [2]. We
will use the following definition of vertex decomposable graph which is an
interpretation of the definition of vertex decomposability for the independence
complex of a graph studied first in [5], [20]. Let N(u) be the set of all adjacent
vertices of u.

Definition 2.1. The independence complex of G is recursively defined to
be vertex decomposable if G is a totally disconnected graph (with no edges),
or if
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• G \ {u} and G \ ({u} ∪ N(u)) are both vertex decomposable, and

• No independent set in G \ ({u} ∪ N(u)) is a maximal independent set in
G \ {u}.

A vertex u which satisfies in the second condition is called a shedding vertex.

Shellability was initially considered only for pure complexes, (see [14],
[15]) and then extended to non-pure complexes by Björner and Wachs in [1]
as follows.

Definition 2.2. A simplicial complex � is shellable if the facets (maximal
faces) of � can be ordered F1, . . . , Fs such that for all 1 � i < j � s, there
exists some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with Fj \ Fl = {v}.
We call an ordering F1, . . . , Fs of the facets of � satisfying this condition a
shelling of �.

A graph G is called vertex decomposable (shellable) if the independence
complex �G is vertex decomposable (shellable). By [2, Theorem 11.3], vertex
decomposability implies shellability and it is shown first by Stanley [16], that
shellability implies sequentially Cohen-Macaulayness.

Let H be an induced subgraph of G. For any vertex v in V (G), define
d(v, H) as d(v, H) = min{d(v, u) | u ∈ V (H)}, where d(v, u) is the length
of shortest path between two vertices v and u in G. If there exists no path
between v and u, then d(v, u) is infinite.

In the following theorem we find a class of vertex decomposable graphs
including chordal graphs and graphs considered by Woodroofe in [20].

Theorem 2.3. The graph G is vertex decomposable/shellable/sequentially
Cohen-Macaulay if for any chordless cycle Cm, m �= 3, 5, one of the following
holds:

(i) There is a vertex of degree one adjacent to Cm.

(ii) There is a cycle C3 such that V (C3) ∩ V (Cm) �= ∅ and degG(v) = 2 for
some v ∈ V (C3).

(iii) There is a cycle C5 such that V (C5) ∩ V (Cm) = {u} for some vertex u

and degG(v) = degG(w) = 2, where NC5(u) = {v, w}.
Proof. We do a proof by induction on |V (G)|. If |V (G)| ≤ 3, then the

result is obvious. Suppose |V (G)| ≥ 4 and the result holds for any graph with
fewer vertices than G. If G does not have any chordless cycle Cm, m �= 3, 5,
then by [20, Theorem 1.1] the result holds. Now suppose that G has at least one
chordless cycle Cm for m �= 3, 5. First we show that G′ = G \ ({u} ∪ NG(u))

fulfills the induction hypothesis for any u ∈ V (G). Let Cm for m �= 3, 5 be
a cycle of G′. If there is a vertex v of degree one adjacent to Cm in G, then
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v is in G′ too. If Cm satisfies the condition (ii) in G, then it has the same
property in G′, when its joint cycle C3 was not removed. Otherwise the vertex
v in (ii) is a vertex of degree one adjacent to Cm. Let Cm obeys the condition
(iii) in G. If C5 does not appear in G′, then degG′(v) = 1 or degG′(w) = 1
which are some adjacent vertices to Cn. Thus G′ is a graph which fulfills the
induction hypothesis and so it is vertex decomposable. A similar argument
shows that G\ {u} satisfies the condition of the theorem, where u is on any Cm

for m �= 3, 5. In the following we find a shedding vertex of G in each case. In
all cases the graphs G\ ({u}∪NG(u)) and G\{u} are vertex decomposable by
the above argument and so G is vertex decomposable by induction hypothesis.

Case (i). Let v be a vertex of degree one adjacent to Cm for m �= 3, 5 and let
u be the adjacent vertex to v. Any maximal independent set of G which does
not contain u, contains v. Hence an independent set of G \ ({u} ∪ NG(u)) is
not a maximal independent set of G \ {u} and so u is a shedding vertex of G.

Case (ii). Let u ∈ V (Cm) ∩ V (C3) and degG(v) = 2 for some v ∈ V (C3).
For any independent set A of G \ ({u} ∪ NG(u)), A ∪ {v} is an independent
set of G \ {u} and so u is a shedding vertex of G.

Case (iii). Any maximal independent set of G which does not contain u,
contains either v or w. Thus any independent set of G \ ({u} ∪ N(u)) is not a
maximal independent set of G \ {u}. It follows that u is a shedding vertex of
G.

The idea of adding some vertices and edges to a graph in order to get a
(sequentially) Cohen-Macaulay graph is studied widely in [5], [7], [19]. For
a graph G, adding a whisker to G which means adding a new vertex to G

and joining it to a vertex in G, is considered in [7], [19] and adding an ear to
G (adding a new vertex to G and joining it to two adjacent vertices in G) is
studied in [5], [8]. Also, by adding a cycle C5 or C3 to G, we mean to add a
cycle C5 or C3 to G which is adjacent to exactly one vertex of G.

Remark 2.4. Our proof of Theorem 2.3 implies that for a vertex decom-
posable graph G, by adding a whisker, or an ear, or a cycle C5 or C3, we get a
vertex decomposable graph. Also, when G is shellable, the constructed graph
by adding a whisker, an ear or a cycle C3 or C5 is again shellable. The shelling
order of the new graph is that of G \ {u}, followed by the shelling order of
G \ ({u} ∪ N(u)) with u added to each facet, where u is the shedding vertex
as found in each case.

As an immediate consequence of the proof of Theorem 2.3 we have

Corollary 2.5. Let G be a graph and G′ be a graph constructed by
adding a whisker, or a cycle C3 or C5 at every vertex of G. Then G′ is vertex
decomposable.
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The next result has been considered previously in [5, Theorem 4.4] for
adding a whisker in any vertex of graph, (see also [8], [19]).

Corollary 2.6. Let G be a graph and G′ be a graph constructed by
adding a whisker, or a cycle C3 or a cycle C5 at every vertex of G. Then the
independence complex of G′ is pure and vertex decomposable.

Proof. Let F be a facet of the independence complex of G′. For any vertex
u ∈ G, if there is an adjacent vertex v to u of degree one, then u ∈ F

or v ∈ F . Suppose that there is an adjacent cycle C3 to u in G′. It means
that the vertices v, w ∈ C3 and the edges {u, v}, {u, w}, {v, w} are added
to G. So F contains one of the vertices u, v or w. In the case that there is
an adjacent cycle C5 to u in G′, the vertices v, x, y, w ∈ C5 and the edges
{u, v}, {v, x}, {x, y}, {y, w}, {w, u} are added to G′. Since F contains the two
vertices u, x, u, y, w, x, w, v or v, y, the independence complex of G′ is pure
and so Corollary 2.5 completes the proof.

Recall that the link of a face F in � is defined as

link�(F ) = {G ∈ �; G ∪ F ∈ �, G ∩ F = ∅}.
The following lemma has been studied in [2, Proposition 10.14] with respect
to shellability and in [3] for the sequentially Cohen-Macaulay version.

Lemma 2.7. Let � be a sequentially Cohen-Macaulay complex. Then for
any face F in �, link�(F ) is also sequentially Cohen-Macaulay.

Proof. Let F ∈ � and let G be a face in �′ = link�(F ). It is easy to
check that link�′(G) = link�(F ∪ G). Thus [3, Definition 1.2(i)] shows that
�′ is sequentially Cohen-Macaulay.

It is shown that in bipartite graphs, three concepts vertex decomposabil-
ity, shellability and sequentially Cohen-Macaulayness are equivalent, see [17,
Theorem 2.10]. Using Lemma 2.7 we have the same property in cactus graphs.
For any graph G and a subset A of V (G), by a maximal independent subset A′
of A, we mean an independent set of G which can not be extended to another
independent set contained in A. Hence for any u ∈ A \ A′, there is a vertex
v ∈ A′ adjacent to u.

Theorem 2.8. Let G be a cactus graph. Then G is sequentially Cohen-
Macaulay if and only if G satisfies the condition of Theorem 2.3. In particular,
the following are equivalent:

(i) G is sequentially Cohen-Macaulay.
(ii) G is shellable.

(iii) G is vertex decomposable.
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Proof. It is enough to show that any sequentially Cohen-Macaulay graph
satisfies the condition of Theorem 2.3. Let G be a sequentially Cohen-Macau-
lay graph. By contradiction assume that there is a cycle Cm for m �= 3, 5,
such that it does not obey the condition of Theorem 2.3. Let A = {v ∈
V (G); d(v, Cm) = 2}. By Theorem 2.3 (iii), for any cycle C5 : u, v, x, y, w, u

with V (Cm) ∩ V (C5) = {u}, we can assume that degG(v) > 2 and {v, z} ∈
E(G) for some vertex z. Consider a maximal independent subset A′ of A such
that for any cycle C5 adjacent to Cm with above indices, z, y ∈ A′. Thus A′
is an independent set of G such that for any vertex v adjacent to Cm, there is
a vertex y ∈ A′ adjacent to v. Therefore one of the connected components of
G \ (A′ ∪ NG(A′)) is Cm which is not sequentially Cohen-Macaulay by [8,
Proposition 4.1]. On the other hand, by Lemma 2.7 the independent complex
of G \ (A′ ∪ NG(A′)), link�G

(A′), is sequentially Cohen-Macaulay which is
a contradiction.

From Theorem 2.3 one can get several examples of vertex decomposable
graphs which are not trees, chordal or bipartite. For example, the following
graph obeys the condition of Theorem 2.3 and so is vertex decomposable.
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