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TOPOLOGICAL QUIVERS AS MULTIPLICITY
FREE RELATIONS

BERNDT BRENKEN

Abstract
For a C*-correspondence E over a C*-algebra A the restricted correspondence R(E ) over the
ideal I = 〈E , E 〉 of A is introduced. The Cuntz-Pimsner algebra OR(E ) is the unaugmented C*-
algebra associated with E . For a topological quiver G an associated multiplicity free quiver, or
topological relation, G1 is introduced. The Cuntz-Pimsner algebra OR(E ) of the correspondence
E associated with G is contained in the algebra OR(E 1) for the correspondence E 1 associated
with G1 if the source map for the quiver is proper on an appropriate codomain. The unaugmented
Cuntz-Pimsner algebras for G and G1 are isomorphic if the left action for the correspondence
R(E ) is by compact adjointable maps and if the kernel for the left action is complemented in I .
There are counter examples if either condition fails.

Introduction

In [2] a topological analogue of a multiplicity free discrete directed graph,
called a topological relation, and a procedure associating a C*-correspondence
with it, were introduced. Almost simultaneously a detailed study of a C*-
correspondence associated with a topological quiver – a topological analogue
of a discrete directed graph with multiplicity – was initiated in [14]. In both
these approaches a pair of continuous maps was involved, with one of the
pair required to be open. Another approach was initiated in [8], with the more
restrictive condition that one of these maps was required to be a local homeo-
morphism. Since C*-algebras are naturally formed from C*-correspondences
([15]) this provided a method of associating C*-algebras with topological ana-
logues of directed graphs. Please refer to [14] for further historical context.
In this paper we introduce a multiplicity free relation, analogous to the edge
graph of a discrete directed graph, associated with a topological quiver. We
show that under a finiteness condition and a boundary condition on the sinks
of a quiver that the C*-algebras associated with both the original quiver and
its associated multiplicity free quiver are isomorphic.

For a general correspondence E over a C*-algebra A one can form the
Cuntz-Pimsner C*-algebra OE associated with E : it is a universal C*-algebra
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for representations of the correspondence E subject to relations determined by
an ideal of A. This C*-algebra contains an isomorphic copy of the algebra A

and can be viewed as the augmented Cuntz-Pimsner C*-algebra associated with
E ([15]). In the following we consider another C*-algebra associated with the
correspondence, namely the unaugmented Cuntz-Pimsner C*-algebra (origin-
ally denoted OE in [15]) generated only by the elements in the Hilbert module
E . This C*-algebra contains a canonical ideal of the algebra A which is gener-
ally proper. For a given C*-correspondence E over A we introduce a restricted
correspondence R(E ) over this ideal of A, and show that its universal (aug-
mented) Cuntz-Pimsner C*-algebra OR(E ) is the unaugmented Cuntz-Pimsner
C*-algebra associated with E .

Given a topological quiverGone can form an associated C*-correspondence
E = EG. The Cuntz-Pimsner C*-algebra of this correspondence OE can be
viewed as the C*-algebra of the quiver G. We show that if one considers the
unaugmented Cuntz-Pimsner C*-algebra OR(E ) as the C*-algebra of the given
quiver, then it is this unaugmented C*-algebra that is appropriate to consider
for certain natural properties; namely under certain finiteness conditions it
remains unchanged if one replaces the given topological quiver G with an as-
sociated multiplicity free topological quiver, or topological relation, G1. This
yields a canonical isomorphism of C*-algebras associated with differing un-
derlying topological structures. The process of forming G1 is defined for any
topological quiver G. The analogous isomorphism results for arbitrary direc-
ted discrete graphs with countable discrete vertex and edge spaces is found in
[1].

As a simple and well known illustration of this isomorphism consider the
discrete graph defined by a directed edge of multiplicity 2 on a single vertex.
The Cuntz-Pimsner C*-algebra OE for the associated correspondence E = EG

is the Cuntz algebra O2 and is the universal C*-algebra generated by two iso-
metries S0 and S1 with S∗

k Sk = ∑
SjS

∗
j for k = 0, 1. The topological relation

G1 is the associated edge graph, so is the directed graph with two vertices v1

and v2 with four edges ek (k ∈ {0, 1, 2, 3}) with e0 a loop on v1, e3 a loop
on v2, e2 an edge from v1 to v2 and e1 an edge from v2 to v1. The Cuntz-
Pimsner C*-algebra OE 1 for the associated correspondence E 1 = EG1 is the
universal C*-algebra generated by four partial isometries Tk with T ∗

0 T0 =
T ∗

1 T1 = T0T
∗

0 + T2T
∗

2 and T ∗
2 T2 = T ∗

3 T3 = T1T
∗

1 + T3T
∗

3 . The algebra *-
homomorphism τ : OE → OE 1 described on generators by τ(Sk) = Tk + Tk+2

is an isomorphism, with inverse ρ defined on generators by ρ(T0) = S0S0S
∗
0 ,

ρ(T1) = S1S0S
∗
0 , ρ(T2) = S0S1S

∗
1 , and ρ(T3) = S1S1S

∗
1 .

One can view the study of topological quivers and their associated universal
C*-algebras as extending the study of topological dynamical systems and their
associated crossed product C*-algebras, since any continuous map f : X → Y



topological quivers as multiplicity free relations 219

of locally compact topological spaces gives rise to a canonical (multiplicity
free) topological relation ([2], [3]). For example if f is a homeomorphism of
a compact space then the Cuntz-Pimsner C*-algebra of the associated topolo-
gical relation is the usual crossed product C*-algebra ([15], [2]).

It is worth recalling that in [10] it was shown that the C*-algebras of to-
pological graphs, a concept more specialized than that of topological quivers,
already contain the C*-algebras appearing in the ‘Elliott’ classification pro-
gram of recent years ([16]). The ability to consider multiplicity free topolo-
gical quivers in certain situations should lead to simplifications in the study of
the structure of the associated C*-algebras. For example an application of the
results here appears in [4], where under some hypothesis a cross product C*-
algebra structure arising from a shift dynamics on a locally compact infinite
path space is given for the C*-algebra (of a core subquiver) of a topological
quiver. It is anticipated that the associated topological relation G1 will be of
further use to investigations of C*-algebras of topological quivers G.

A summary of the contents follows. Section 1 begins with some preliminary
definitions and concepts from the literature, extending where necessary for our
purposes some of the current context. For a given correspondence E over a
C*-algebra A we then introduce the restricted correspondence R(E ) over the
ideal 〈E , E 〉 of A and show that the universal Cuntz-Pimsner C*-algebra OR(E )

of R(E ) is the unaugmented C*-algebra generated by the space E alone.
For an arbitrary topological quiver G there is an associated correspondence

EG, and in Section 2 we consider the restricted correspondence for G. The
desingularization G1 of a topological quiver G is introduced and properties
of this multiplicity free quiver and its associated restricted correspondence
are determined. A crucial tensor product decomposition for the restricted cor-
respondence R(E 1) associated with G1 is established. This decomposition
should provide a general approach to defining a desingularization procedure
for a general C*-correspondences.

A description of the proper part of a C*-algebra homomorphism is intro-
duced in the following section and an elementary property of the induced
algebra map for a map of topological spaces is given. This leads to the idea of
a proper quiver, which extends that of a proper map if the quiver arises from a
continuous map f : X → Y . For such a quiver G there is a natural coisometric
morphism from the restricted correspondence R(E ) for the quiver G to the
restricted correspondence R(E 1) for the associated multiplicity free quiver G1

yielding an injection of OR(E ) into OR(E 1).
Section 4 establishes further conditions on the quiver G under which this

injection is an isomorphism of C*-algebras. One condition, termed range finite,
involves the left action of the restricted correspondence acting by compact
adjointable operators. For many quivers, including discrete directed graphs and
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the topological graphs considered by Katsura, this is automatically satisfied
by the previous condition of being proper, so entails nothing new. A second
condition involves a topological restriction on how the kernel of this left action
sits inside the range ideal, namely the sinks of the quiver are a closed, hence
clopen, subset of the range subspace of the vertex space. This later condition
is trivially satisfied, for example, if this subspace is discrete, or if G has no
nontrivial sinks. The section concludes with some examples illustrating non-
isomorphism if various hypothesis are not satisfied.

Notation

For A, B, subsets of a set Y , A−B is the set of those points in A and not in B. If
A is a subset of a topological space Y then the closure of A is denoted by ClY A,
or if there is no ambiguity by A, the complement of A is denoted Y −A, or by
Ac if the context is clear, while ∂Y A = A∩ (Y − A) is the boundary of A. The
interior of A is IntY A. The *-algebra of continuous functions on Y is C(Y ), and
the *-algebra of bounded continuous functions on Y is Cb(Y ). If Y is locally
compact Hausdorff Cc(Y ) is the algebra of continuous functions with compact
support. Its closure in the uniform sup norm, ‖ ‖∞, is the algebra of continuous
functions that vanish at infinity, C0(Y ). For K a compact set in Y the subalgebra
of functions in Cc(Y ) with support in K is CK(Y ). A Radon measure on Y

is a positive linear functional on Cc(Y ), so is continuous when viewed on the
subalgebra CK(Y ) for K compact in Y . The supports of a function f or of a
measure λ are denoted supp(f ) and supp(λ) respectively. If f : Y → Z is
a continuous map of topological spaces then dom(f ) and ran(f ) denote the
domain and range respectively of f , and the dual map f � : C(Z) → C(Y ) is
given by f �(h) = h◦f . Note that if i : A → Y is the inclusion map of a closed
subspace A of topological space Y then i# : Cc(Y ) → Cc(A) is the restriction
map. By an ideal of a C*-algebra A we shall mean a closed two sided ideal, and
if B is a subset of a C*-algebra A then I (B) denotes the ideal of A generated
by B. For an ideal J of A, J⊥ denotes the ideal {a ∈ A | ab = 0, (b ∈ J )}. The
multiplier algebra of the C*-algebra A is denoted M(A). As usual K denotes
the C*-algebra of compact operators on a separable Hilbert space and T the
Toeplitz algebra, so the C*-algebra generated by an isometry.

1. The unaugmented C*-algebra of a correspondence

For results and conventions on C*-modules we follow Lance [11]; so if A is a
C*-algebra a Hilbert A-module E is a Banach space which is a right A-module
with an A-valued inner product 〈 , 〉A, denoted 〈 , 〉 if the context is clear. The
norm on E is given by ‖x‖2 = ‖〈x, x〉‖, (x ∈ E ); L (E ) denotes the C*-
algebra of adjointable operators on E while K (E ), in analogy with the case
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when A is the complex numbers, is the closed two-sided ideal of ‘compact’
operators span{θE

x,y | x, y ∈ E } where θE
x,y(z) = x〈y, z〉, (z ∈ E ). If E is a

Hilbert A-module the linear span of {〈x, y〉 | x, y ∈ E }, denoted 〈E , E 〉, has
closure a two-sided ideal of A. Note that E 〈E , E 〉 is dense in E ([11]). The
Hilbert module E is called full if 〈E , E 〉 is dense in A. If A is a C*-algebra
then AA refers to the Hilbert module A over itself, where 〈a, b〉 = a∗b for
a, b ∈ A.

Definition 1.1. If A, B are C*-algebras then a C*-correspondence E

from A to B is a right Hilbert B-module E together with a left action of A on
E given by a *-homomorphism φA : A → L (E ), a · x = φA(a)x, for a ∈ A,
x ∈ E . Just φ is used if the context is clear. When convenient the notation AEB

is used to denote a C*-correspondence from A to B. If A = B refer to E as a
correspondence over A.

The identity correspondence A over A is A viewed as a Hilbert module over
itself with the left action given by left multiplication.

If E and F are C*-correspondence over C*-algebras A and B respectively
then a morphism (T , π) : E → F is a *-homomorphism π : A → B and a
linear map T : E → F with

1. π(〈e, f 〉A) = 〈T (e), T (f )〉B
2. T (φA(a)e) = φB(π(a))T (e)

3. T (e)π(a) = T (ea)

for all e, f ∈ E , a ∈ A.

Condition 1 ensures that T is a continuous linear map of bound 1, and if
π restricted to the ideal 〈E , E 〉 of A is injective then T must be an isometry
of Hilbert modules, so injective. Thus a morphism (T , π) : E → F is an
isomorphism if T : E → F is a surjection and π restricted to the ideal 〈E , E 〉
of A is injective. Evidently the composition of two morphisms is a morphism.
A representation of E in a C*-algebra B is a correspondence morphism (T , π) :
E → B where B is viewed as the identity correspondence.

It is still the case for a morphism of correspondences (T , π) : E → F , as
noted in [14] in the case that (T , π) is a representation in a C*-algebra, that
the third condition is a consequence of the first, since ‖T (e)π(a) − T (ea)‖2

is the norm in B of the element 〈T (e)π(a) − T (ea), T (e)π(a) − T (ea)〉B .
The first condition along with properties of the B-valued inner product ensure
however that this inner product is equal to 0.

If (T , π) : E → B is a representation of E in a C*-algebra B the C*-
subalgebra of B generated by T (E )∪π(A) is denoted C∗(T , π). If ρ : B → C

is a *-homomorphism of C*-algebras then (ρ ◦T , ρ ◦π) is a representation of
E in C, denoted ρ ◦ (T , π). A morphism of correspondences (T , π) from E to
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F yields a *-homomorphism 
T : K (E ) → K (F ) by 
T (θx,y) = θT (x),T (y)

for x, y ∈ E ([6]), and if (S, σ ) : D → E , (T , π) : E → F are morphisms
of C*-correspondences then 
T ◦ 
S = 
T ◦S . For B a C*-algebra, using the
identification of K (B) with B, a representation (T , π) of E in a C*-algebra
B yields a *-homomorphism 
T : K (E ) → B given by θx,y → T (x)T ∗(y).
As noted in [3] the argument of Lemma 2.2 [6] showing that 
T is injective if
π is injective also serves to show that 
T is injective if only the restriction of
π to the ideal 〈E , E 〉 of A is injective.

Proposition 1.2. Let E be a C*-correspondence over A, F a C*-corre-
spondence over B and (T , π) : E → F a morphism. If 
T : K (E ) → K (F )

is the *-homomorphism defined by (T , π) then

1. φB(π(a))
T (θ) = 
T (φA(a)θ) and 
T (θ)φB(π(a)) = 
T (θφA(a))

2. 
T (θ)T (e) = T (θ(e))

for all a ∈ A, θ ∈ K (E ), e ∈ E .

Proof. To check these conditions it is enough to show them for θ = θx,y ,
x, y ∈ E . For z ∈ F we have

φB(π(a))
T (θx,y)(z) = φB(π(a))(θT x,T y(z)) = φB(π(a))(T x〈Ty, z〉)
= T (φA(π(a)x)〈Ty, z〉) = 
T (θφA(a)x,y

)(z)

= 
T (φA(a)θx,y)(z).

The second equality follows from the first by taking adjoints and noting that

T , π , φA, and φB are *-homomorphisms.

The left hand side of the second condition is θT x,T yT (e) = T (x)〈Ty, T e〉B
= T (x)π(〈y, e〉A) = T (x〈y, e〉A) = T (θx,y(e)) from Definition 1.1.

For E a C*-correspondence over A denote the ideal φ−1(K (E )) of A by
J (E ), and the ideal J (E ) ∩ (ker φ)⊥ by JE .

Definition 1.3. If E and F are C*-correspondence over C*-algebras A

and B respectively and K an ideal in J (E ), a morphism (T , π) : E → F is
coisometric on K if 
T (φA(a)) = φB(π(a)) for all a ∈ K . A morphism is
coisometric if K = J (E ).

Note that since 
T : K (E ) → K (F ) this equality can only occur if
φB(π(a)) ∈ K (F ), i.e., if π(K) ⊆ J (F ).

Given a C*-correspondence E over A and K an ideal in J (E ) there is a
representation (TE , πE ) of E in a C*-algebra which is coisometric on K and
universal among all such representations ([5]), in the sense that if (T , π) is a
representation of E in a C*-algebra B which is coisometric on K then there
is a *-homomorphism ρ : C∗(TE , πE ) → B with (T , π) = ρ ◦ (TE , πE ).
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The C*-algebra C∗(TE , πE ) is called the relative Cuntz-Pimsner algebra of E

determined by K and denoted O (K, E ). When K = 0 the C*-algebra O (K, E )

is denoted T (E ) and called the universal Toeplitz C*-algebra for E . The C*-
algebra O (JE , E ) is denoted OE .

A representation (T , π) : E → B of a correspondence E over A in a
C*-algebra B is said to admit a gauge action γ if γ : T → Aut C∗(T , π)

is a homomorphism with γt (T (e)) = tT (e) for all e ∈ E and γt (π(a)) =
π(a) for all a ∈ A, (t ∈ T). Since the *-homomorphism 
T is defined by
mapping θx,y → T (x)T ∗(y) ∈ C∗(T , π) we have that γt (
T (θ)) = 
T (θ)

for θ ∈ K (E ) and t ∈ T. The universal representation (TE , πE ) of E which
is coisometric on K admits a gauge action, called the canonical gauge action,
on O (K, E ): this follows from the universal property of O (K, E ). The Gauge-
Invariant Uniqueness Theorem (cf. [12]) states that if (T , π) : E → B is a
representation of a correspondence E in a C*-algebra B coisometric on JE

then the induced *-homomorphism ρ : OE → C∗(T , π) is an isomorphism if
and only if π is injective and (T , π) admits a gauge action.

Proposition 1.4. Let E be a C*-correspondence over A and F a C*-
correspondence over B. Let (TE , πE ) be a universal representation of E in
O (K, E ) coisometric on an ideal K in J (E ) and (S, σ ) a representation of
F in a C*-algebra C coisometric on an ideal L in J (F ). If (T , π) : E →
F is a morphism coisometric on K with π(K) ⊆ L there is a unique *-
homomorphism ρ : O (K, E ) → C with ρ ◦ (TE , πE ) = (S, σ ) ◦ (T , π).

Proof. It is enough to show that the morphism (S, σ )◦(T , π) = (S◦T , σ ◦
π) is a representation of E in C coisometric on K . However 
S◦T (φA(a)) =

S
T (φA(a)) = 
SφB(π(a)) = σ(π(a) for a ∈ K , the later equality fol-
lowing from noting that π(a) ∈ L and that (S, σ ) is coisometric on L.

Note that the condition π(K) ⊆ L is automatically satisfied when L is
the ideal J (F ). The following is basically a version of the Gauge-Invariant
Uniqueness Theorem.

Corollary 1.5. Let E be a C*-correspondence over A and F a C*-
correspondence over B. Let (TE , πE ) be a universal representation of E in OE

and (TF , πF ) a universal representation of F in OF . If (T , π) : E → F is a
morphism coisometric on JE with π(JE ) ⊆ JF and π injective on A then there
is a unique injection ρ : OE → OF with ρ ◦ (TE , πE ) = (TF , πF ) ◦ (T , π).

Proof. Since (TF , πF ) admits a gauge action γ it is immediate that the
representation (TF , πF ) ◦ (T , π) satisfies the conditions for a gauge action.
Thus the sub C*-algebra C∗(TE ◦ T , πE ◦ π) is invariant under γ and the
restriction of γ is a gauge action for (TF , πF ) ◦ (T , π). Since both πF and π
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are injective the Gauge-Invariant Uniqueness Theorem implies that the induced
*-homomorphism ρ is injective.

Definition 1.6. For a given C*-correspondence E over A the restricted
correspondence R(E ) is the C*-correspondence I EI over the ideal I = 〈E , E 〉
of A where the space E remains unchanged, the original A-valued inner product
is viewed as having values in the ideal I , and the *-homomorphism φI : I →
L (E ) defining the left action of the correspondence is given by φ ◦ i, with
i : I → A the inclusion.

Remark 1.7. For a given C*-correspondence E over A it is clear that the
C*-algebra of adjointable operators L (E ), respectively its C*-ideal K (E ), on
the Hilbert A-module E is identical to the C*-algebra L (R(E )), respectively
K (R(E )), of operators on the Hilbert I -module R(E ).

Proposition 1.8. If E is a C*-correspondence over a C*-algebra A and
R(E ) is the restricted correspondence over the C*-algebra I = 〈E , E 〉 then
J (E ) ∩ I = J (R(E )) and JE ∩ I = JR(E ).

Proof. The ideal JE ∩ I = φ−1(K (E )) ∩ (ker φ)⊥ ∩ I is contained in
φ−1

I (K (E )) ∩ (ker φI )
⊥ = JR(E ) since φ−1(K (E )) = φ−1

I (K (E )) ∩ I , i.e.;
J (E ) ∩ I = J (R(E )). Suppose a ∈ JR(E ). We need to show that ax = 0 for
x ∈ ker φ. However if eλ is an approximate unit for I then eλx ∈ I ∩ ker φ =
ker φI so a(eλx) = 0. Taking limits we have ax = 0.

For the universal representation (T , π) of E coisometric on JE in the C*-
algebra OE consider the C*-subalgebra C∗(T (E )) of OE generated by the
subspace T (E ).

Proposition 1.9. Let (T , π) : E → OE be the universal representation of
a C*-correspondence E over A coisometric on JE . Then the C*-subalgebra
C∗(T (E )) of OE is a gauge invariant ideal, and is equal to the C*-subalgebra
generated by T (E ) ∪ π(〈E , E 〉).

Proof. Noting that π(a)T (e) = T (φ(a)e) ⊆ T (E ) and T (e)π(a) =
T (ea) ∈ T (E ) for a ∈ A, e ∈ E , and that π is a *-homomorphism it follows
that C∗(T (E )) is an ideal of OE . If γ : T → Aut(OE ) is the canonical gauge
action for the representation (T , π) then γt (T (e)) = tT (e) ∈ C∗(T (E )) for
e ∈ E , t ∈ T, so since γt is a *-homomorphism the ideal is gauge invariant.
Also, for e, f ∈ E , π(〈e, f 〉) = T ∗(e)T (f ) ∈ C∗(T (E )), so π(〈E , E 〉) ⊆
C∗(T (E )).

Theorem 1.10. The universal Cuntz-Pimsner C*-algebra O (JR(E ), R(E ))

= OR(E ) associated with the correspondence R(E ) is isomorphic to the C*-
subalgebra C∗(T (E )), generated by the subspace T (E ), of the Cuntz-Pimsner
C*-algebra OE .
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Proof. Let (T , π) be a universal representation of E coisometric on JE

and (S, σ ) a universal representation of R(E ) coisometric on JR(E ). The rep-
resentation π is injective, so π|I is also and (T , π|I ) is a covariant represent-
ation of R(E ) which is coisometric on JE ∩ I , which is JR(E ) by Proposi-
tion 1.8. The universal property applied to (S, σ ) yields a *-homomorphism
ρ : OR(E ) → OE with ρ ◦ (S, σ ) = (T , π|I ). Since the C*-algebra generated
by T (E ) ∪ π(I) is C∗(T (E )), and the canonical gauge action for (T , π) is a
gauge action for the coisometric representation (T , π|I ) of R(E ), the gauge
invariant uniqueness theorem implies that ρ is an isomorphism.

Thus for E a correspondence over a C*-algebra A and I the ideal 〈E , E 〉
of A, the Cuntz-Pimsner C*-algebra OR(E ) is the unaugmented universal C*-
algebra associated with E .

2. Desingularization of a topological quiver

Following [14], G = (X, E, r, s, λ) is a topological quiver when X, E are a
pair of second countable locally compact Hausdorff spaces, r : E → X and
s : E → X a pair of continuous maps (the range and source maps) with r

open, and λ a family {λx | x ∈ X} of Radon measures on E with

(1) supp(λx) = r−1(x), (x ∈ X)

(2) x → λx(f ) = ∫
E

f (α)dλx(α) ∈ Cc(X) for f ∈ Cc(E).

A topological quiver G defines a C*-correspondence E (or EG) over the C*-
algebra A = C0(X) as follows: for g, h ∈ Cc(E) an A-valued inner product
given by

〈g, h〉(x) =
∫

r−1(x)

g(α)h(α)dλx(α), (x ∈ X),

defines a norm, ‖f ‖2 = ‖λx(|f |2)‖∞, on Cc(E) with completion E , a Hilbert
module over C0(X). The left action arising from a *-homomorphism φ : A →
L (E ) and the right action of A on an element h of Cc(E) are given by

h · a = h(r�(a))

φ(a)h = (s�(a))h,

for a ∈ A.
In [14], Xsink denotes the open set of X with ker φ ∼= C0(Xsink) and it is

shown that Xsink = X − s(E), or equivalently that s(E) = {x ∈ X | f (x) =
0, (f ∈ ker φ)}, so ker φ = {f ∈ C0(X) | f |s(E) ≡ 0}. The open subset Xfin

of finite emitters of X is defined by C0(Xfin) ∼= φ−1(K (E )) = J (E ), and it is
shown that Xfin = {x ∈ X | ∃ neighbourhood Nx of x with Nx and s−1(Nx)
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compact with r|s−1(Nx) a local homeomorphism}. Since (ker φ)⊥ = C0(X −
Xsink) = C0(Int(s(E))) it follows ([14]) that JE = C0(Xfin ∩ Int(s(E))). If G

is a discrete directed graph then Xfin = Xfin ∩ Int(s(E)) and consists of the
vertices of the graph which emit a finite number of edges.

In [3] it is shown that the ideal I = 〈E , E 〉 of A is C0(r(E)) = {f ∈ A |
f ≡ 0 on X \ r(E)}. Thus, the restricted C*-correspondence R(E ) over the
ideal I = C0(r(E)) has ker(φI ) = I ∩ ker(φ) = C0(r(E)) ∩ C0(Xsink) =
C0(FG) where FG denotes the open set r(E) ∩ Xsink = r(E) − s(E) of sinks
that are not isolated in X. When the context is clear, F will denote this open
subset of X naturally associated with G. The ideal J (R(E )) = C0(Xfin∩r(E))

and the ideal JR(E ) = C0((Xfin ∩ r(E)) − F) = C0(Xfin ∩ r(E) ∩ Int(s(E))).

Remark 2.1. Note for a fixed compact set K in E that by definition λx

is a bounded linear functional on the Banach space CK(E) for each x ∈ X.
Since an element of Cc(X) is bounded, the second quiver condition implies
that for each l ∈ CK(E) there is a constant Nl such that ‖λx(l)‖∞ ≤ Nl ,
(x ∈ K). By the Uniform Boundedness Principle, there is an N = NK so that
‖λx(l)‖∞ ≤ NK‖l‖∞ for l ∈ CK(E) and x ∈ X. Thus a norm dense subset
of the Banach space CK(E) is also dense in CK(E) when equipped with the
Hilbert A-module norm.

Given a topological quiver G = (X, E, r, s, λ) we define what we show is
a new topological quiver, in fact a topological relation ([2]) G1 = (X1, E1, r1,

s1, λ
1) or multiplicity 1 topological quiver associated with G. With F = FG =

r(E)− s(E) as above, the closure of F in r(E), Clr(E)(F ), is F ∩ r(E). Since
this is the intersection of a closed and open subset in a locally compact space,
it is locally compact. We denote this by F throughout since that is the only
closure of F we consider. Define X1 as the disjoint union or coproduct of
the topological spaces E and F , so X1 = E � F . To define E1 first consider
the disjoint union of s−1(r(E)) and F , a locally compact subset of X1. By
properties of the coproduct there is a continuous map σ : s−1(r(E)) � F →
r(E) with σ(v) = v for v ∈ F and σ(e) = s(e) for e ∈ s−1(r(E)). Define
E1 as the pullback of the continuous maps σ : s−1(r(E)) � F → r(E)

and r : E → r(E); i.e., E1 = {(e, f ) ∈ E × [s−1(r(E)) � F ] | r(e) =
σ(f )} equipped with the continuous maps s1 and r1 from E1 to X1 which
are the restrictions of the canonical projection maps on E × [s−1(r(E)) � F ],
so s1(e, f ) = e and r1(e, f ) = f for (e, f ) ∈ E1. Note that r1(E

1) =
s−1(r(E)) � F . Finally, define a family λ1

e , e ∈ X1 = E � F of Radon
measures on E1 by λ1

e = λs(e) for e ∈ s−1(r(E)), λ1
v = λv for v ∈ F and zero

otherwise. Since E1 ⊆ X1 × X1 it is a relation on the set X1.
The case with F the empty set corresponds to the situation that the restricted

C*-correspondence R(EG) has an injective left action φI . Then F is empty
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and G1 = (X1, E1, r1, s1, λ
1) with X1 = E, and E1 = {(e, f ) ∈ r−1(s(E))×

s−1(r(E)) | r(e) = s(f )}.
Proposition 2.2. The set E1 is closed in X1 × X1.

Proof. If (en, fn) → (e, f ) with en ∈ E, fn ∈ [s−1(r(E)) � F ] then,
since E is closed in X1, we have e ∈ E, and by continuity r(en) → r(e).
If f ∈ E, then fn ∈ E eventually, and by continuity s(fn) → s(f ). Since
s(fn) = σ(fn) = r(en) we must have r(e) = s(f ), so f ∈ s−1(r(E)) and
(e, f ) ∈ E1. If f ∈ F then fn ∈ F eventually and r(en) = σ(fn) = fn →
f = σ(f ), so r(e) = σ(f ) and (e, f ) ∈ E1.

In fact, since E1 is contained in E × X1 we have that E1 is also closed in
E × X1. Note that E1 is contained in the disjoint union [E × s−1(r(E))] ∪
[r−1(F ) × F ].

For X, Y locally compact Hausdorff spaces define a bilinear map � :
Cc(X)×Cc(Y ) → Cc(X×Y ) by �(f, g)(x, y) = f (x)g(y), (x, y) ∈ X×Y .
In the following Lemma the map ϕ : Cc(X) ⊗ Cc(Y ) → Cc(X × Y ) is the
linear map with ϕ(f ⊗g) = �(f, g) and π1, π2 the canonical projection maps
of X × Y to X and Y respectively.

Lemma 2.3. Let X, Y be locally compact Hausdorff spaces, f ∈ Cc(X×Y )

with supp(f ) = K and ε > 0. There is an element g in the (algebraic)
tensor product Cπ1(K)(X) ⊗alg Cπ2(K)(Y ) with supp(ϕ(g)) ⊆ supp(f ) and
‖f − ϕ(g)‖∞ < ε.

Proof. It is enough to show this for positive functions f . Let Ul × Vk be a
finite covering of π1(K)×π2(K) by open rectangles with compact closures on
which the function f varies by less than ε/2. Then use a partition of unity αl, βk

subordinate to Ul and Vk respectively in each of Cπ1(K)(X) and Cπ2(K)(Y ), and
set g = ∑

δl.kαl ⊗ βk where δl,k = inf{f (x, y) | (x, y) ∈ Ul × Vk}, so that
the set of points where ϕ(g) is nonzero is contained in the set of points where
f is nonzero. We have that f (x, y) is within ε of δl.k on Ul× Vk and since
ϕ
(∑

αl ⊗ βk

) = 1 on K the result follows.

Proposition 2.4. For ξ ∈ Cc(E
1) there are compact subsets K1, K2 of

E and X1 respectively such that for any ε > 0 there is ξ0 ∈ Cc(E
1) with

‖ξ − ξ0‖∞ < ε, supp(ξ0) ⊆ supp(ξ), and ξ0 = i#ϕ(g) the restriction to E1 of
an element ϕ(g) in Cc(E × X1) with g ∈ CK1(E) ⊗alg CK2([s

−1(r(E)) � F ]).

Proof. Since E1 is closed in E × X1 the Tietze Extension Theorem and
Urysohn’s Lemma yield an element in f ∈ Cc(E × X1) whose restriction to
E1 is ξ . Since r is an open map, E × [s−1(r(E)) � F ] is open in E × X1 and
there is an open set V containing supp(ξ) with V compact and contained in
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E × [s−1(r(E)) � F ]. We can choose V so that V is contained in any given
neighbourhood of supp(ξ). The function f can be chosen with supp(f ) ⊆ V .
Let Ki = πi(V ). Apply the previous lemma to obtain g and set ξ0 to be the
restriction of ϕ(g) to E1 as required. The proof of this lemma also shows that
{a ∈ E1 | ξ0(a) �= 0} is contained in the set of elements of E1 where f , so ξ ,
is nonzero, and the support condition follows.

Theorem 2.5. If G = (X, E, r, s, λ) is a topological quiver then the
associated relation G1 = (X1, E1, r1, s1, λ

1) is a topological quiver.

Proof. First we show the map r1 is open since it is defined using the
pullback of the open map r; if O ⊆ E1 is open and (a, b) ∈ O we show that
there is an open set V in s−1(r(E)) �F with b = r1(a, b) ∈ V ⊆ r1(O). First
note there are neighbourhoods Oa, Ob of a, b respectively with E1∩Oa×Ob ⊆
O. Since r is open r(Oa) is open and b is in the open set V = Ob∩σ−1(r(Oa)).
To see V ⊆ r1(O) choose f ∈ V ; then f ∈ Ob and there is an e ∈ Oa with
σ(f ) = r(e). Thus (e, f ) ∈ E1∩Oa×Ob and f ∈ r1(E

1∩Oa×Ob) ⊆ r1(O).
Thus V ⊆ r1(O) and b = r1(a, b) ∈ V ⊆ r1(O).

For b ∈ s−1(r(E)) � F , (r1)
−1(b) = {(a, b) ∈ E1 | a ∈ E, r(a) =

σ(b)} = r−1(σ (b)) × {b}, while (r1)
−1(b) = φ otherwise. Thus supp(λ1

b) =
supp(λσ(b)) = r−1(σ (b)) = (r1)

−1(b).
For ξ ∈ Cc(E

1) we need to show that the map on X1 sending b to H(ξ)(b) =∫
E1 ξ(e, f ) dλ1

b((e, f )) is continuous. We have H(ξ)(b) = ∫
r−1

1 (b)
ξ(e, f )

dλ1
b((e, f )) = ∫

r−1(σ (b))
ξ(e, b)dλσ(b)(e). Choose K1, K2 compact sets of E

and X1 respectively, and for ε > 0, choose ξ0 = ϕ(k) with k in CK1(E) ⊗
CK2(X

1) as in the preceding proposition. If ξb denotes the function in CK1(E)

defined by ξb(e) = ξ(e, b) we have by Remark 2.1 ‖H(ξ)(b) − H(ξ0)(b)‖ =
‖λσ(b)(ξ

b−ξb
0 )‖ ≤ NK1‖ξb−ξb

0 ‖∞ ≤ NK1‖ξ −ξ0‖∞, which is independent of
b. However, for ξ0 = ϕ(k) with k a simple tensor g ⊗ h ∈ CK1(E) ⊗ CK2(X

1)

compute that H(ξ0)(b) = h(b)
∫

g(e)dλσ(b)(e); this is the product of an ele-
ment in CK1(E) and an element in σ #(Cc(X)) ⊆ Cb(X

1), so is in CK1(E).
Thus H(ξ) ∈ CK1(E).

Lemma 2.6. If h : E → X is an open map of topological spaces and A ⊆ X,
then h−1(A) ∪ h−1(A)c is dense in E.

Proof. If not, there is an open set N ⊆ E with N ⊆ E − [h−1(A) ∪
h−1(A)c] = h−1(Ac)∩h−1(A). Thus the open set h(N) ⊆ Ac ∩A, so h(N) ⊆
Ac and h(N) ∩ A �= φ, a contradiction.

Proposition 2.7. If G = (X, E, r, s, λ) is a topological quiver with asso-
ciated topological relation G1 = (X1, E1, r1, s1, λ

1) then F = X1
sink, the set

of sinks of G1.
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Proof. The set X1
sink = X1 − s1(E1) = (E � F) − s1(E1), and since

E1 ⊆ E × [s−1(r(E)) � F ], s1(E
1) = {e | (e, f ) ∈ E1} ⊆ E. Now E is

closed in X1, so s1(E1) ⊆ E and X1
sink = [E − s1(E1)] � F .

The image σ [s−1(r(E)) � F ] = s(s−1(r(E))) � F = [s(E) ∩ r(E)] � F ,
so s1(E

1) = r−1(Im(σ )) = r−1([s(E) ∩ r(E)] � F) = r−1([s(E) ∩ r(E)]) ∪
r−1(F ) ⊇ r−1(s(E))) ∪ r−1(s(E)

c
). The preceding lemma with h = r and

A = s(E) shows s1(E
1) is dense in E, so X1

sink = F .

Let E 1 = EG1 denote the C*-correspondence associated with the topological
relation G1. Then the ideal I1 = 〈E 1, E 1〉 = C0(r1(E

1)) where the image of
r1 is {f | (e, f ) ∈ E1} = {f | f ∈ s−1(r(E)) � F, σ(f ) ∈ r(E)} =
s−1(r(E)) � FG, so the restricted correspondence R(E 1) = I1(E

1)I1 is a
bimodule over the C*-algebra C0(s

−1(r(E))�F) = C0(s
−1(r(E)))⊕C0(F ).

Since the kernel, ker((φ1)I1) of the restricted left multiplication map for the
correspondence R(E 1) is C0(F

1) where F 1(= FG1) = r1(E
1) ∩ X1

sink the
proposition implies F 1 = (s−1(r(E))�F)∩F = F , so ker((φ1)I1) = C0(F ).

Corollary 2.8. If G = (X, E, r, s, λ) is a topological quiver with as-
sociated topological relation G1 = (X1, E1, r1, s1, λ

1) then the associated
restricted correspondence R(E ) has an injective left action φI if and only if
the left action (φ1)I1 for the correspondence R(E 1) is injective.

The map σ # : C0(r(E)) → Cb(s
−1(r(E)) � F) defines a left action of

the C*-algebra I = C0(r(E)) on the C*-algebra I1 = C0(s
−1(r(E)) � F) =

C0(s
−1(r(E))⊕C0(F ), allowing I1 to be viewed as a C*-correspondence from

I to I1.
There is also a left action of I1 on the Hilbert module EI . Note first that

C0(E) acts by left multiplication on the (nonclosed) ideal Cc(E) and since
C0(s

−1(r(E)) is an ideal of C0(E) there is a left multiplication action of
C0(s

−1(r(E)) on Cc(E). Since the I -Hilbert module structure on EG is defined
using the integral of a product of functions in Cc(E), the left multiplication
action of C0(s

−1(r(E)) on the Hilbert module E is by adjointable operators.
Letting C0(F ) act as 0 on E yields a C*-correspondence I1 EI from I1 =
C0(s

−1(r(E)) ⊕ C0(F ) to I .

Theorem 2.9. Let G = (X, E, r, s, λ) be a topological quiver with asso-
ciated correspondence EG = E and G1 = (X1, E1, r1, s1, λ

1) the associated
topological relation with correspondence EG1 = E 1. Then the restricted cor-
respondence R(E 1) = I1(E

1)I1 is isomorphic to the interior tensor product
I1 EI ⊗ I (I1)I1 of C*-correspondences.

Proof. With i : E1 → E × r1(E
1) the inclusion and ϕ the linear map

defined on the algebraic tensor product in Lemma 2.3 form the linear map
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i# ◦ ϕ : Cc(E) ⊗alg Cc(r1(E
1)) → Cc(E

1). For g ⊗ h a simple tensor in
the algebraic tensor product, a ∈ I and (e, f ) ∈ E1 we have i#ϕ(ga ⊗ h −
g ⊗ σ #(a)h)(e, f ) = (ga)(e)h(f )− g(e)(σ #(a)h)(f ) = g(e)a(r(e))h(f )−
g(e)a(σ (f ))h(f ) = 0 since r(e) = σ(f ) for (e, f ) ∈ E1. This defines a
well defined linear map γ from the quotient of the algebraic tensor product
by the subspace N generated by {ga ⊗ h − g ⊗ ah | a ∈ I, g ∈ Cc(E), h ∈
Cc(r1(E

1))}, so from the pre-Hilbert I1-module interior algebraic tensor pro-
duct Cc(E)I ⊗alg ICc(r1(E

1)), to Cc(E
1).

Using the description of the map H on simple tensors in the proof of The-
orem 2.5 and computing we have 〈γ (g⊗h), γ (k⊗l)〉 = H(i#ϕ(g⊗h)i#ϕ(k⊗
l)) = H(i#ϕ(gk⊗hl)) = hl〈g, k〉I which is, by definition of the interior tensor
inner product, equal to 〈g ⊗ h, k ⊗ l〉I1 ([11]). Thus γ defines an isometry, de-
noted γ still, of Hilbert I1-modules. The map i# ◦ϕ has dense range in Cc(E

1)

by Remark 2.1 and Proposition 2.4, so γ is a surjective isometry.
For b = (b1, b2) ∈ I1 = C0(s

−1(r(E)) ⊕ C0(F ), g ⊗ h a simple tensor
in Cc(E)I ⊗alg ICc(r1(E

1)) and (e, f ) ∈ E1 we have (γ (g ⊗ h)b)(e, f ) =
γ (g ⊗ h)(e, f )b(r1(e, f )) = g(e)h(f )b(f ) = γ (g ⊗ (hb))(e, f ) = γ ((g ⊗
h)b)(e, f ). We also have [γ (b(g ⊗ h))](e, f ) = γ ((b · g) ⊗ h))(e, f ) =
(b1g)(e)h(f ) = b1(e)g(e)h(f ) which, since s1(E

1) ⊆ E, is equal to (bs1(e,

f ))γ (g⊗h)(e, f ) = [b ·γ (g⊗h)](e, f ). It follows that both γ (xb) = γ (x)b

and γ (bx) = bγ (x) for x ∈ EI ⊗ I (I1) and b ∈ I1, so that (γ, IdI1) is an
isomorphism of the stated correspondences.

We use the isomorphism of correspondences in Theorem 2.9 to recast how
we view the left action (φ1)I1(a) on R(E 1) for a ∈ I1. Denote the left multi-
plication action of C0(s

−1(r(E)) on the Hilbert module EI , the completion of
Cc(E), by Ma for a ∈ C0(s

−1(r(E)). In fact this multiplication action is the
restriction to the ideal C0(s

−1(r(E)) of the multiplication action M of Cb(E)

by adjointable operators on (the completion of) Cc(E) ([14] Lemma 3.6).
If j is the inclusion s−1(r(E)) into s−1(r(E)) � F then the left action of
I1 on the Hilbert module EI is the left multiplication action Mj #a on E , for
a ∈ C0(s

−1(r(E)) ⊕ C0(F ). Therefore we may view (φ1)I1(a) on R(E 1) as
equal to Mj #a ⊗ IdI1 on I1 EI ⊗ I (I1)I1 , (a ∈ I1).

Remark 2.10. This tensor product characterization of the correspondence
of the multiplicity free quiver R(E 1) provides a means to define R(E 1) for
a general restricted C*-correspondence R(E ) not necessarily arising from a
topological quiver.



topological quivers as multiplicity free relations 231

3. Proper quivers

We introduce the concept of a proper topological quiver G, and show that if G

is proper then there is an injection of the restricted C*-correspondence R(E )

to R(E 1).
For A, B given C*-algebras and ϕ : A → M(B) a *-homomorphism we

are interested in isolating what we term the proper part ϕp of ϕ, namely the
aspect of ϕ mapping into B.

If π : M(B) → M(B)/B is the canonical quotient map onto the corona
algebra with kernel B we set Ap to be kernel of π ◦ ϕ, an ideal of A. It is clear
that ϕ restricted to Ap maps into ker π = B. Denote by Bp the smallest ideal
of B containing the image C*-algebra ϕ(Ap) and ϕp : Ap → Bp the restriction
of ϕ to domain Ap and codomain Bp. Note that if B is unital then Ap = A.

Definition 3.1. For a continuous map s : E → X of locally compact
Hausdorff spaces let Xp(s) = {x ∈ X | ∃ a neighbourhood Nx of x with both
Nx and s−1(Nx) compact}. If the context is clear Xp is used.

The set Xp is open in X and always contains the open set X − s(E) so a set
U is in Xp if and only if U ∩ s(E) ⊆ Xp.

IfK ⊆ Xp is compact then s−1(K) is compact inE, since it is a closed subset
of the compact set

⋃
i∈B s−1(Nxi

) where {Nxi
| i ∈ B} is a finite subcover of

the open cover {Nx | x ∈ K} of K, Nx chosen with s−1(Nx) compact. If U is an
open subset of Xp and K ⊆ U the set s−1(K) ⊆ s−1(U) so is also compact in
the subspace s−1(U). Therefore the map of locally compact Hausdorff spaces
given by the restriction of s to domain s−1(U) and codomain U is a proper
map. Thus Xp(s) is the largest open set U of X so that s : s−1(U) → U is
a proper map. Note that if E is a compact space then s is a proper map and
Xp = X.

Lemma 3.2. Let s : E → X be a continuous map of locally compact
Hausdorff spaces and Y ⊆ Xp(s). Then Y ∩ s(E) = Y ∩ s(E).

Proof. For x ∈ Y ∩ s(E), choose a neighbourhood Nx of x with both Nx

and s−1(Nx) compact. If en is a net with s(en) → x then there is an n0 with
en ∈ s−1(Nx), so in the compact set s−1(Nx), for n0 ≺ n. There is a convergent
subnet eni

→ e ∈ s−1(Nx), so s(eni
) → s(e). Thus x = s(e) ∈ r(E)∩ s(E)p.

Theorem 3.3. If s : E → X is continuous map of locally compact
Hausdorff spaces and ϕ : C0(X) → Cb(E) is the induced map s# , then
ϕp : C0(Xp) → C0(s

−1(Xp)) is the proper part of ϕ with ϕp = (sp)#, sp the
proper map given by restricting s to domain s−1(Xp) and codomain Xp.

Proof. Let π denote the projection of Cb(E) = M(C0(E)) to the corona
algebra Cb(E)/C0(E). We first show that C0(Xp) is the ideal C0(X)p =
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ker(π ◦ ϕ). To show the containment C0(Xp) ⊆ ker(π ◦ ϕ) it is enough
to show that ϕ(f ) ∈ Cc(E) for f ∈ Cc(Xp). However if supp(f ) = K

is compact in Xp then by the above comment s−1(K) is compact in E and
clearly ϕ(f ) = f ◦ s has support in s−1(K). Thus if O is the open set
in X with C0(O) = C0(X)p we have that Xp ⊆ O. Suppose that there
is an x ∈ O − Xp. Then there are neighbourhoods N , M of x with com-
pact closures and N ⊂ M ⊂ M ⊂ O. By Urysohn’s Lemma there is an
f ∈ Cc(O) ⊆ C0(X)p with 0 ≤ f ≤ 1, f is 1 on N and supp(f ) ⊆ M . Since
x /∈ Xp, s−1(N) is not compact in E and ϕ(f ), which is identically 1 on this
noncompact set cannot be in C0(E) = ker(π). This contradicts f ∈ ker(π◦ϕ),
so O = Xp and C0(Xp) = C0(X)p.

The map sp is a proper map and (sp)# : C0(Xp) → C0(s
−1(Xp)). Therefore

C0(E)p ⊆ C0(s
−1(Xp)). Writing C0(E)p as C0(U) for some open set U in E

we have U ⊆ s−1(Xp). If this inclusion is proper then there is an e ∈ s−1(Xp)−
U . Chose a neighbourhood N of x = s(e) with N and s−1(N) compact and
N ⊆ Xp. Applying Urysohn’s Lemma again yields a f ∈ Cc(Xp), 0 ≤ f ≤ 1,
f (x) = 1, and supp(f ) ⊆ N . Since ϕ(f )(e) = 1, it follows that ϕ(f ) /∈
C0(U), contrary to how C0(E)p is defined, so C0(E)p = C0(s

−1(Xp)).

Definition 3.4. A topological quiver G = (X, E, r, s, λ) is proper if
r(E) ⊆ Xp(s). Denote by sp the restriction of s to domain s−1(r(E)) and
codomain r(E).

Note that the open set Xfin ⊆ Xp(s). Since r is an open map, the comment
following Definition 3.1 implies that a quiver G = (X, E, r, s, λ) is proper if
r(E) ∩ s(E) ⊆ Xp. If G is a discrete directed graph then Xfin = Xp(s), and
G is proper if all the vertices which are not sources emit a finite number of
edges. If the quiver arises from a continuous map f : X → Y then it is proper
if and only if the map f is a proper map in the usual sense.

For G proper, the map sp : s−1(r(E)) → r(E) is a proper map by the last
theorem. Also, from Lemma 3.2 we have that r(E)∩ s(E) = r(E)∩ s(E) and
so s(E) is closed in the subspace r(E).

Lemma 3.5. If G = (X, E, r, s, λ) is a proper topological quiver then the
restriction of σ , σp : s−1(r(E)) � F → r(E) is a proper surjection.

Proof. Let K be a compact subset of r(E). Recalling that F denotes the
closure of F = r(E)− s(E) in r(E), we have that K ∩F is a closed subset of
the compact set K , so is compact in r(E). Since K ∩ F is contained in F it is
also compact in the subspace F . We have (σp)−1(K) = (sp)−1(K) � (K ∩ F)

which is compact in s−1(r(E)) � F . We have r(E) = (r(E) ∩ s(E)) ∪ F =
(r(E) ∩ s(E)) ∪ F . By Lemma 3.2 this is (r(E) ∩ s(E)) ∪ F and since sp is
onto r(E) ∩ s(E) and the identity maps onto F we see σp is onto.
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In particular note that if r(E) is compact then this implies that s−1(r(E))�F ,
and so s−1(r(E)) must be compact.

Proposition 3.6. Let G = (X, E, r, s, λ) be a proper topological quiver
and G1 = (X1, E1, r1, s1, λ

1) the associated topological relation. With E =
EG and E 1 = EG1 the pair (s1

#, σ #
p ) : R(E ) → R(E 1) defines an injective

morphism of C*-correspondences.

Proof. It follows from the above lemma that σ #
p : C0(r(E)) →

C0(s
−1(r(E)) ⊕ C0(F ) is an injective *-homomorphism of C*-algebras, σ #

p :
I → I1.

General properties of the pullback construction of E1 imply s1 : E1 → E is
also proper, for if K is a compact subset of E then r(K) is compact and since σp

is proper, σ−1
p (r(K)) is compact in E � F . Since the set (s1)

−1(K) is a closed
subset of the compact set K × σ−1

p (r(K)) it is compact. Also s1 is surjective
since σp is. Thus (s1)

# : Cc(E) → Cc(E
1) is an injective *-homomorphism.

We need to verify the first two conditions that a morphism of correspond-
ences must satisfy (Definition 1.1). For g, h ∈ Cc(E) and for f ∈ σ−1

p (r(E))

we have that

〈(s1)
#(g), (s1)

#(h))〉I1(f ) =
∫

(r1)−1(f )

(s1)#(g)(e, f )(s1)
#(h)(e, f ) dλ1

f (e, f )

=
∫

r−1(σp(f ))

g(e)h(e) dλσp(f )(e)

= 〈g, h〉I (σp(f )) = σ #
p 〈g, h〉I (f ),

so (s1)
# is an isometry of pre-Hilbert modules and extends to a well defined

isometry of their completions. To see (s1)
#(φI (a)g) = [(φ1)I1(σ

#
p a)][(s1)

#(g)]
evaluate at (e, f ) ∈ E1. The left side is equal to (φI (a)g)(e) = a(σp(e))g(e)

while the right side is (σ #
p (a))(e)(g(s1(e, f ))) = a(σp(e))g(e).

We consider the *-homomorphism 
(s1)# : K (E ) → K (E 1) (Remark 1.7)
defined by the morphism (s#

1 , σ #
p ) : R(E ) → R(E 1) of correspondences.

Proposition 3.7. Let G = (X, E, r, s, λ) be a proper topological quiver
and G1 = (X1, E1, r1, s1, λ

1) the associated topological relation. Under the
isomorphism I1(E

1)I1
∼=I1 EI ⊗ I (I1)I1 we have 
(s1)# (T ) = T ⊗ IdI1 for

T ∈ K (E ).

Proof. As in the last proposition σ #
p : C0(r(E)) → C0(s

−1(r(E))) ⊕
C0(F ) is an injective *-homomorphism of C*-algebras. Thus the left action of
I on I1, which is given by the injection σ #

p , is by elements of I1 = K (I1), so
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([11], Proposition 4.7) the map T → T ⊗IdI1 is an injective *-homomorphism
of K (E ) → K (E 1). To show this map equals 
(s1)# it is enough to show both
agree on the elements θk,l ∈ K (E ), k, l ∈ Cc(E).

Note first that for g ∈ Cc(E), h ∈ Cc(s
−1(r(E)) ⊕ Cc(F ) and (e, f ) ∈

E1 we have (g ⊗ h)(e, f ) = g(e)h(f ) = (s1)
#(g)(e, f )(r1)

#(h)(e, f ) =
[(s1)

#(g) · h](e, f ), so g ⊗ h = (s1)
#(g) · h. Using this twice we compute

[
(s1)# (θk,l)](g ⊗ h) = (θ(s1)#(k),(s1)#(l))(g ⊗ h) = (s1)
#(k) · 〈(s1)

#(l), g ⊗
h〉I1 = (s1)

#(k) · 〈(s1)
#(l), (s1)

#g ·h〉I1 = (s1)
#(k) · 〈(s1)

#(l), (s1)
#g〉I1h. Since

(s1)
# is a Hilbert module morphism, the later is (s1)

#(k) · [(σ #
p )(〈l, g〉I )]h =

k ⊗ [(σ #
p )〈l, g〉I ]h = k · 〈l, g〉I ⊗ h = θk,l(g) ⊗ h = (θk,l ⊗ IdI1)(g ⊗ h).

Theorem 3.8. Let G = (X, E, r, s, λ) be a proper topological quiver and
G1 = (X1, E1, r1, s1, λ

1) the associated topological relation. With E = EG

and E 1 = EG1 the morphism (s#
1 , σ #

p ) : R(E ) → R(E 1) of C*-correspon-
dences is coisometric on the ideal JR(E ) with σ #

p (JR(E )) ⊆ JR(E 1).

Proof. First note that J (R(E )) = C0(Xfin ∩ r(E)), JR(E ) = C0(Xfin ∩
r(E) ∩ Int(s(E)), J (R(E 1)) = C0(X

1
fin ∩ r1(E

1)) = C0(X
1
fin ∩ (s−1(r(E)) �

F)) and JR(E 1) = C0(X
1
fin ∩ r1(E

1) ∩ Int(s1(E1))). In general s1(E
1) is dense

in E, so r1(E
1) ∩ Int(s1(E1)) = s−1(r(E)) ⊆ E and therefore JR(E 1) =

C0(X
1
fin ∩ s−1(r(E))).

View the map (φ1)I1(a) on R(E 1) as Mj #a ⊗ IdI1 on I1 EI ⊗ I (I1)I1 for
a ∈ C0(s

−1(r(E))⊕C0(F ) = I1 where M is the multiplication representation
of Cb(E) in L (E ) and j is the inclusion of s−1(r(E)) into s−1(r(E))�F (com-
ments following Theorem 2.9). Remark 3.13 of [14] shows that M−1(K (E )) =
C0(U) where U is the largest open set of E with the property that s|U is
a proper map and r|U is a local homeomorphism. In particular the descrip-
tion of Xfin implies that s−1(Xfin) ⊆ U , so the action M of C0(s

−1(Xfin))

is by elements in K (E ). Since j #(a) = 0 for a ∈ C0(F ) we have that
Mj #a ∈ K (E ) for a ∈ C0(s

−1(Xfin ∩ r(E))) ⊕ C0(F ) and so (cf. the first
paragraph of Proposition 3.7) (φ1)I1(a) = Mj #a ⊗ IdI1 ∈ K (E 1) for a ∈
C0(s

−1(Xfin ∩ r(E))) ⊕ C0(F ). Thus C0(s
−1(Xfin ∩ r(E))) ⊕ C0(F ) is con-

tained in J (R(E 1)), so s−1(Xfin ∩ r(E) ∩ Int(s(E))) � F is contained in
X1

fin ∩ (s−1(r(E)) � F) and s−1(Xfin ∩ r(E) ∩ Int(s(E))) is contained in
X1

fin ∩ s−1(r(E)). By Proposition 2.7 and the comments following we see that
the later containment shows C0(s

−1(Xfin ∩ r(E) ∩ Int(s(E)))) is contained in
JR(E 1). Since σ #

p (J (R(E ))) ⊆ C0(s
−1(Xfin∩r(E)))⊕C0(F ) and σ #

p (JR(E )) ⊆
C0(s

−1(Xfin ∩ r(E) ∩ Int(s(E)))) we have σ #
p (J (R(E ))) ⊆ J (R(E 1)) and

σ #
p (JR(E )) ⊆ JR(E 1).

For a ∈ JR(E ) = C0(Xfin ∩ r(E) ∩ Int(s(E))) we need to show that

(s1)# (φI (a)) = φI1(σ

#
p (a)). The comments after Theorem 2.9 show that
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(φ1)I1(a) = Mj #a ⊗ IdI1 for a ∈ C0(s
−1(r(E)) ⊕ C0(F ) = I1. However,

for a ∈ C0(Xfin ∩ r(E) ∩ Int(s(E))) we have that the element σ #
p (a) of

C0(s
−1(r(E))) ⊕ C0(F ) is equal to the element (s#

p(a), 0), so j #(σ #
p (a)) =

s#
p(a) ∈ C0(s

−1(Xfin∩r(E)∩Int(s(E)))). Thus (φ1)I1(σ
#
p (a)) = Ms#

p(a)⊗IdI1 .
Now Ms#

p(a) = φI (a) on R(E ) and Proposition 3.7 shows 
(s1)# (φI (a)) =
φI (a) ⊗ IdI1 .

Corollary 3.9. If G is a proper topological quiver, G1 the associated
topological relation and E = EG, E 1 = EG1 then there is an injective *-
homomorphism τ : OR(E ) → OR(E 1)

Proof. The first paragraph of Proposition 3.6 shows that σ #
p is injective

while the previous theorem shows that the morphism (s#
1 , σ #

p ) : R(E ) →
R(E 1) satisfies the conditions of Corollary 1.5.

4. Range finite topological quivers

We introduce conditions on a topological quiver to ensure that the unaugmented
Cuntz-Pimsner C*-algebras of a topological quiver and its associated relation
are isomorphic. One of these conditions involves the left action acting by
compact elements on the correspondence. Another condition is that the kernel
of the restricted left action ker(φI ) is complemented in 〈E , E 〉.

Definition 4.1. A topological quiver G = (X, E, r, s, λ) is range finite if
r(E) ⊆ Xfin.

Lemma 4.2. A topological quiver G = (X, E, r, s, λ) is range finite if and
only if Im(φI ) ⊆ K (E ) for the associated restricted correspondence R(E ).

Proof. Since φ−1(K (E )) = C0(Xfin) where φ is the left action for E and
φI is defined on C0(r(E)) we have Im(φI ) ⊆ K (E ) if and only if r(E) ⊆ Xfin.

Since Xfin ⊆ Xp(s) a range finite topological quiver G must necessarily
be proper. As is the case with Xp, Xfin always contains X − s(E), and so
r(E) ⊆ Xfin if r(E)∩ s(E) ⊆ Xfin. If this is the case then, since Xfin ⊆ Xp(s),
Lemma 3.2 implies r(E)∩s(E) = r(E)∩s(E). Since Xfin = Xp(s) whenever
r restricted to s−1(r(E)) is a local homeomorphism we have that G is proper
if and only if G is range finite for such G. So, for example, if G is a discrete
directed graph, or arises from a continuous map f : X → Y , or is a topological
graph in the sense of Katsura ([8]), then there is no distinction between proper
and range finite.

Proposition 4.3. If G is a range finite quiver then the associated topolo-
gical relation G1 is range finite.
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Proof. By the above comment it is enough to show that r1(E
1)∩(s1(E1)) =

s−1(r(E)) is contained in (X1)fin. By the previous theorem C0(s
−1(Xfin ∩

r(E))) ⊕ C0(F ) is contained in J (R(E 1)) and since r(E) ⊆ Xfin we have
C0(s

−1(r(E))) is contained in J (R(E 1)) = C0((X
1)fin ∩ r1(E

1)).

A final condition that will ensure that the unaugmented Cuntz-Pimsner C*-
algebras of a topological quiver G and its desingularization are isomorphic
involves a topological condition on the quiver G; namely that the set of nonisol-
ated sinks F = r(E)−s(E) is closed, hence clopen, in r(E). That F is clopen
in r(E) is certainly the case when F is empty or when the subspace r(E) of the
vertex space X is discrete, which, since r is an open map, entails conditions on
E also. Note that this condition is automatically satisfied for the desingularized
quiver G1 as we have (Proposition 2.7) that FG1 = r1(E

1) − s1(E1) = F , a
clopen set in r1(E

1).
In the following definition the condition that F is clopen implies that C0(F ),

which is a direct summand in the C*-algebra I1 = C0(r1(E
1)), is the same

as C0(F ), the ideal ker(φI ) in the C*-algebra I = C0(r(E)). Thus if π is
a representation of I we may apply it to this direct summand C0(F ) of I1.
Also recall that for G a range finite quiver the map (φ1)I1(b) on R(E 1) is the
map Mj #b ⊗ IdI1 where Mj #b ∈ K (E ) for b ∈ I1 = C0(s

−1(r(E))) ⊕ C0(F )

(Theorem 3.8) and j is the inclusion s−1(r(E)) into s−1(r(E)) � F . Writing
an element b of I1 as (b1, b2) we have j #b = b1.

Definition 4.4. Let G = (X, E, r, s, λ) be a range finite topological quiver
with FG closed in r(E). For (T , π) : R(EG) → B a representation of the
correspondence R(EG) in a C*-algebra B define (T1, π1) : R(E 1) → B

as follows: for b = (b1, b2) ∈ I1 = C0(s
−1(r(E))) ⊕ C0(F ) set π1(b) =


T (Mb1) + π(b2), for g ⊗ h ∈ Cc(E) ⊗ Cc(s
−1(r(E)) � F) set T1(g ⊗ h) =

T (g)π1(h).

Using Proposition 1.2 we have for c ∈ C0(s
−1(r(E))) and d ∈ C0(F ) =

ker φI that π(d)
T (Mc) = 
T (φI (d)Mc) = 0 and also 
T (Mc)π(d) = 0. It
follows that π1 is a *-homomorphism of C*-algebras. In fact more is true; the
pair (π1, π) may be viewed as a representation of the correspondence I (I1)I1

in the C*-algebra B where we recall the definition of the left action of I on I1

is via the map σ #. To see this we need to check π(a)π1(b) = π1(ab) for a ∈
I = C0(r(E)) and b ∈ I1. The left side π(a)π1(b1, b2) = π(a)[
T (Mb1) +
π(b2)], which by Proposition 1.2 is equal to 
T (φI (a)Mb1) + π(ab2) =

T (Mσ #

p (a)b1)+π(ab2) = 
T (Ms#(a)b1)+π(ab2) = π1((s
#(a)b1, ab2)). This

is the right side by the definition of the left action of I on I1.
Clearly T1 defines a linear map on the algebraic tensor product. For a ∈ I

we have T1(ga ⊗ h) = T (ga)π1(h) = T (g)π(a)π1(h) = T (g)π1(ah) =
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T1(g ⊗ ah). Thus T1 is a well defined linear map from the pre-Hilbert I1-
module interior algebraic tensor product Cc(E)I ⊗alg ICc(r1(E

1)) to B.

Proposition 4.5. Let G be a range finite topological quiver with F closed in
r(E) and (T , π) : R(EG) → B a representation in a C*-algebra B. The map
(T1, π1) : R(E 1) → B defined above is a representation of the correspondence
R(E 1). If (T , π) admits a gauge action then so does (T1, π1). If π is injective
then so is π1.

Proof. For g ⊗ h and k ⊗ l ∈ Cc(E)I ⊗alg ICc(r1(E
1)) we first show that

T1(g⊗h)∗T1(k⊗l) = π1(〈g⊗h, k⊗l〉I1). The left side isπ1(h)T (g)∗T (k)π1(l)

= π1(h)π〈g, k〉I π1(l) = π1(h)π1(〈g, k〉I (l)) = π1(h(〈g, k〉I l)) which is the
right side. Thus T1 is continuous (bounded by 1) and extends to a linear map
on the completed tensor product correspondence R(E 1).

For b∈I1 and g∈Cc(E) we compute, using Proposition 1.2, that π1(b)T (g)

= [
T (Mb1) + π(b2)]T (g) = T (Mb1(g)) + T (φI (b2)g) = T (Mb1(g)) since
b2 ∈ ker(φI ). We check the second condition of Definition 1.1:

T1((φ1)I1(b)(g ⊗ h)) = T1(Mb1 ⊗ IdI1)(g ⊗ h) = T1(b1g ⊗ h)

= T (b1g)π1(h) = π1(b)T (g)π1(h) = π1(b)T1(g ⊗ h).

If γ : T → Aut C∗(T , π) is a gauge action then γt (π1(b)) = γt
T (Mb1) +
γtπ(b2) = π1(b) and γtT1(g ⊗ h) = γt (T (g)π1(h)) = γt (T (g))π1(h) =
tT1(g ⊗h) so γ restricts to an element of Aut C∗(T1, π1) and is a gauge action
for (T1, π1).

If π is injective on I then T is an isometry on Cc(E). Suppose π1(b) = 0
for some b ∈ I1. Then 0 = π1(b)T (g) = T (b1g) for all g ∈ Cc(s

−1(r(E)))

and since T is injective b1g = 0 for all such g, where b1 is an element of
C0(s

−1(r(E))). Thus b1 = 0 and 0 = π1(b) = π(b2), and since π is injective
b2, and thus also b = 0.

Theorem 4.6. Let G be a range finite topological quiver with FG closed in
r(E), E = EG, and (T , π) : R(EG) → B a representation in a C*-algebra B

coisometric on JE . Then (T , π) = (T1, π1) ◦ (s#
1 , σ #

p ).

Proof. We first show π1 ◦ σ #
p = π on I = C0(r(E) ∩ s(E)) ⊕ C0(F ).

Writing k = (k1, k2) ∈ I we have π1(σ
#
p (k)) = π1((s

#k1, k2)) = 
T φI (k1) +
π(k2). Using that (T , π) is coisometric on JE = C0(r(E) ∩ s(E)) this is
π(k1) + π(k2) = π(k).

To show T = T1 ◦ s#
1 on E it is enough to show this on the dense subspace

Cc(E). For g ∈ Cc(E) choose a real valued element k ∈ Cc(r(E))) with
values between 0 and 1 so that k = 1 on the compact set r(supp(g)). Then
σ #

p (k) ∈ Cc(s
−1(r(E))�F) and g⊗σ #

p (k) = s#
1 (g) as elements of Cc(E

1) and
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(T1◦s#
1 )(g) = T1(g⊗σ #

p (k)) = T (g)π1(σ
#
p (k)) = T (g)π(k) = T (g(r#(k)) =

T (g) by the choice of k.

Corollary 4.7. With the hypothesis of the previous theorem the represent-
ation (T1, π1) : R(E 1) → B is coisometric on JE 1 .

Proof. For b = (b, 0) an element of the ideal JE 1 = C0(s
−1(r(E))) of I1 =

C0(s
−1(r(E)))⊕C0(F ) (Proposition 2.7), 
T1((φ1)I1(b)) = 
T1(Mb⊗IdI1) =


T1 [
s#
1
(Mb)] by Proposition 3.7. This however equals 
T1◦s#

1
(Mb) = 
T (Mb)

by the above theorem, and this is π1(b).

Theorem 4.8. Let G be a range finite topological quiver with FG closed in
r(E) and G1 the associated topological relation. With E = EG and E 1 = EG1

then OR(E )
∼= OR(E 1) via the *-homomorphism τ of Corollary 3.9; so the

unaugmented Cuntz-Pimsner C*-algebras of the topological quiver G and its
desingularization are isomorphic.

Proof. For (T , π) : R(E ) → O R(E ) a universal representation coisomet-
ric on I = JE there is a representation (T1, π1) : R(E 1) → OR(E ) coisometric
on I1 = JE 1 . Since (T , π) admits a gauge action, so does (T1, π1), and since
π is injective then so is π1. Thus the *-homomorphism ρ : OR(E 1) → OR(E )

ensured by the universal property applied to (T1, π1) is injective by the gauge
invariant uniqueness theorem. By considering the diagram of morphisms and
*-homomorphisms we have that ρ ◦ τ ◦ (T , π) = (T1, π1) ◦ (s#

1 , s#), which
by Theorem 4.6 is (T , π). Therefore the *-homomorphism ρ ◦ σ must be the
identity map on the generators Im T (E ) and π(I) of OR(E ), so ρ ◦ τ = IdOR(E )

.
Thus ρ is surjective as well as injective, and both ρ and τ are *-isomorphisms.

Corollary 4.9. Let G be a range finite topological quiver and G1 the
associated topological relation. If E 1 = EG1 and E 1,1= E (G1)1 then OR(E 1)

∼=
OR(E 1,1).

Proof. We have noted that FG1 is clopen for the desingularized quiver G1.
Proposition 4.3 then shows that G1 satisfies the hypothesis of the theorem.

We conclude with some examples. First note that if G is a discrete graph
then G is range finite if and only if G is proper, while FG is automatically
closed in r(E), so the hypothesis of the previous theorem are immediately
satisfied for proper discrete graphs. We illustrate that the C*-algebras OR(E )

and OR(E 1) are generally not isomorphic even for discrete directed graphs G

which are not proper. Consider the non-proper discrete directed graph with two
vertices p, q, and with edges u from q to p, and wi from p to q (i ∈ N). This
graph has no sources or sinks, and its associated discrete directed graph G1

is a graph with an infinite (discrete) vertex space with vertices u, wk , (k ∈ N)
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and an edge from u to each wk and also from each wk to u. Since the vertex
space of G is compact and that of G1 is not, the C*-algebra OR(E ) is unital
while the C*-algebra OR(E 1) is nonunital ([14]). The discrete directed graph
with an infinite number of loops on a single vertex yielding the Cuntz algebra
O∞ furnishes a similar example.

We next show that the failure of either condition in the last theorem can
lead to a failure of the conclusion. The first illustrates non-isomorphic, and
non Morita equivalent, algebras OR(E ) and OR(E 1) where the left action φI is
not by elements in K (E ) but FG closed in r(E) (since it is empty).

Let G = (X, E, r, s, λ) be the proper topological quiver given by X = {v}
a point, E = T, and r(t) = s(t) = v for all t ∈ T with λ normalized Haar
measure μ on T. One may view this as a loop of multiplicity T on a single vertex
v. Since r(E) = X the restricted correspondence R(EG) = EG is the Hilbert
space L2(T, μ) over C = C({v}) with left action φ(a) given by multiplication
Ma by the scalar a ∈ C on L2(T, μ). Thus ker(φI ) is zero and FG is empty.
Also φ−1(K (E )) is the zero ideal in C, and J (E ) = JE = 0. If (T , π) is a
representation of E then T is a linear isometry and is determined by its values
Tn = T (tn) on the orthogonal elements tn of L2(T, μ), n ∈ Z. Condition 2
of 1.1 ensures that T ∗

n Tm = δn,m so the universal C*-algebra OE is the Cuntz
algebra O∞, with K0 group Z and trivial K1 group.

The associated topological relation G1 = (X1, E1, r1, s1, λ
1) has X1 = T,

E1 = T × T, s1 and r1 the projections of T × T onto the first and second
components respectively, and λ1

t = μ for t ∈ T. The correspondence R(E 1) =
E 1 is the correspondence described in example c) of [2] where it is shown that
the C*-algebra OE 1 is isomorphic to the crossed product of the Cuntz algebra
O∞ by an outer automorphism. It is a classifiable unital Kirchberg algebra with
both K-groups isomorphic to Z. Thus OR(E ) is not Morita equivalent to OR(E 1).

We next describe an example of a range finite quiver G, in fact a topo-
logical relation arising from a function, where FG is not closed in r(E) and
the associated C*-algebras for G and G1 are neither isomorphic nor Morita
equivalent.

For v ∈ T define a topological quiver G = (X, E, r, s, λ) with X = T,
E ∼= T with elements {et | t ∈ T}, r(et ) = t , s(et ) = v and λt counting
measure on r−1(t) = {et }. This describes the topological relation arising from
the function on T with constant value v ([2]). Since r(E) = X the restricted
correspondence R(EG) is identical with the correspondence EG where EG = E

is the standard Hilbert module of the C*-algebra C(T) over itself, with the left
action φ(f ) equal to multiplication by the scalar value f (v), f ∈ C(T). Since
C(T) is unital this left action is by elements of K (E ), so r(E) ⊆ Xfin and the
quiver is range finite. Also ker φ is the ideal C0(F ) with F = T − {v}. Thus
F = T and the ideal JE = φ−1(K (E )) ∩ (ker φ)⊥ = C(T) ∩ C0(F )⊥ = 0.
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The unaugmented Cuntz-Pimsner C*-algebra OR(E ) is identical to the C*-
algebra OE which, since JE = 0, is the universal Toeplitz C*-algebra T (E ). If
(T , π) is a representation of E in a C*-algebra B, condition 2 of Definition 1.1
shows T (1) is a partial isometry with initial projection π(1) where 1 is the
unit of C(T). If p is the final projection of T (1) we have from condition 3
that π(1)p = 1(v)p = 1p = p, so p ≤ π(1). Thus π(1)T = π(1)T T ∗T =
π(1)pT = pT = T and it follows that π(1) is the unit for C∗(T , π). So
T (1) is an isometry, and T (E ) is the universal C*-algebra generated by an
isometry T and the C*-algebra C(T) with π(f )T = f (v)T . One can view
this as adjoining both the spectral projection for the point {v} of T as well as
an isometry T with this projection as its final projection to the algebra C(T).
By Propositions 2.7 and 2.8 of [9] there is a *-homomorphism of T (E ) to the
Toeplitz algebra T with kernel C0(T − {v}) ⊗ K and the K-groups of T (E )

are isomorphic to the K-groups of C(T); so both K-groups are isomorphic to
the group Z.

The topological relation G1 = (X1, E1, r1, s1, λ
1) associated with G has

X1 = E � T while E1 is homeomorphic to X1 via the map r1, and FG1 =
F = T. Again, the restricted correspondence R(E 1) is identical with the
correspondence E 1, so OR(E 1) is OE 1 , and E 1 is the standard Hilbert module of
the unital C*-algebra C(E1) = C(T)⊕C(T) over itself. The left action φ1(a, b)

is given by Ma(ev) ⊕Ma for (a, b) ∈ C(E1), where M is the left multiplication
representation. This topological relation still arises from a function (defined on
X1) but it is no longer a constant function. The ideal JE 1 = C(E) ⊕ 0 and the
algebra OE 1 is the universal C*-algebra for representations coisometric on this
ideal. Just as in the previous paragraph if (T , π) is a representation of E 1 in a
C*-algebra B then T is an isometry. For (a, b) ∈ C(E1) one can check that the
representation must satisfy π(a, b)T = a(ev)T π(1, a) and T T ∗ = π(1, 0),
the last arising from the coisometric condition. Set (T , π) to be a universal
representation of E 1 in the C*-algebra OE 1 .

Consider the hereditary and saturated (Section 8 of [14]) open subset U =
(E − {ev}) � (T − {v}) of X1 and form the quiver G1

U = (X1
U , E1

U , (r1)U ,

(s1)U , λU) defined in [14], with X1
U = X1 − U , E1

U = E1 − (r1)
−1(U), the

maps (r1)U and (s1)U the restrictions of r1 and s1 to U , and λU the map λ

restricted to X1
U . We see that G1

U is the directed graph on the two vertices ev

and v, along with the two edges given by a loop on ev and an edge from v to
ev . It is known, and easy to check, that the C*-algebra of this directed graph,
so the C*-algebra OE 1

U
where E 1

U is the correspondence of the quiver G1
U , is

the usual Toeplitz C*-algebra T generated by an isometry. The hypothesis of
Corollary 8.2.3. of [14] are satisfied, so if IU denotes the ideal of OE 1 generated
by π(C0(U)) then the quotient C*-algebra OE 1/(IU) is OE 1

U
, which we have

just seen is T .
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Using the relations defining OE 1 one can check that the ideal IU is the
closure of {T k(a, b)T ∗l | k, l ≥ 0, (a, b) ∈ C0(U)} and that this is isomorphic
to C0(U) ⊗ K . We therefore have a short exact sequence 0 → C0(U) ⊗
K → OR(E 1) → T → 0, and letting C0(U)∼ denote the unitization of
C0(U) there is therefore a map of the short exact sequence 0 → C0(U) →
C0(U)∼ → C → 0 to this exact sequence. The same 5-lemma argument used
in Proposition 2.8 of [9], where it is noted that the maps C0(U) → C0(U)⊗K

and C → T are isomorphisms on the level of K-theory, show the K-groups of
OR(E 1) and C0(U)∼ are isomorphic. Thus K0(OR(E 1)) ∼= K0(C0(U)) ⊕ Z = Z
and K1(OR(E 1)) ∼= K1(C0(U)∼) = K1(C0(U)) = Z ⊕ Z. Thus OE is not
isomorphic, nor Morita equivalent, to OE 1 .
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