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A REGULARIZED TRACE FORMULA FOR SECOND
ORDER DIFFERENTIAL OPERATOR EQUATIONS

KEVSER KOKLU, INCI ALBAYRAK and AZAD BAYRAMOV

Abstract

In this paper, we deal with abstract Sturm-Liouville problems when the potential of the differential
equation is an operator function in a Hilbert space H. We generalize trace formula obtained by [7],
[9] for the classic regular Sturm-Liouville problems. We investigate the spectrum and obtained a
regularized trace formula for the Sturm-Liouville operator with an operator coefficient.

1. Introduction

Let H be a separable Hilbert space. In the Hilbert space H; = L, ([0, 1], H),
we consider the self-adjoint operator L generated by the expression

1(y) = —y"(x) + Q(x)y(x)
with the boundary conditions
(1) y0)=0, y1)+ay(l)=0, a>0.

Suppose that the operator function Q(x) in the expression /(y) satisfies the
following conditions:

(1°) For Vx € [0,1], Q(x) : H — H is a self-adjoint nuclear operator.
Moreover, Q(x) has a continuous derivative of second order with respect
to the norm in the space oy (H) in the interval [0, 1] and for x € [0, 1],
0W(x) : H — H are self-adjoint operators (i = 1, 2).

(2°) sup,cio.y 1O < 3 miny (w1 — fm), Where g < pp < -++ <
Wm < - - - are the positive roots of the equation VA cos VA +asin /A =
0.

(3°) There is an orthonormal basis {¢,}.2, of the space H such that
220:1 1Q(x)@nlln, < oo. Here o1(H) denotes the space of the nuclear
operators from H to H, as in Gorbachuk et al [8].
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Let L be the operator generated by the differential expression lo(y) = —y” (x)
and the boundary conditions (1). The spectrum of the operator L is the set
{m}or, where ; < po < --- < W, < --- are the positive roots of the
equation ~/A cos v/A + a sin+/A = 0. Every number 1, is eigenvalue of L,
with infinite multiplicity. The orthonormal eigenfunctions corresponding to
the eigenvalue w,, have the form

2) w2n=amsin4/umx-¢n, n=172,...,
where

2
() oy V2

B V1+aTcos? S

In this paper, we investigate the spectrum and the regularized trace of the
operator L. Gelfand and Levitan [7] first obtained a trace formula for the
Sturm-Liouville differential equation. After this study several mathematicians
were interested in developing trace formulas for different differential operators.
The current situation of this subject and studies related to it are presented in
the comprehensive survey paper [14].

The trace formulas of the abstract self-adjoint operators with continuous
spectrum were first analyzed by Krein [12]. In this work, he also proved the
formula mathematically, which had been obtained earlier [13] through physical
theories in quantum statistics and crystal theory. The trace formulas related
to the Sturm-Liouville problem with bounded self-adjoint operator given an
infinite interval and having a continuous spectrum were considered in [1],
[2]. Faddeev’s study of the regularized trace formula for the Sturm-Liouville
equation with the matrix coefficient in [6] has been a precursor for [1], [2].

Note that the trace formulas are used in the inverse problems of spectral
analysis of differential equations (see, for example [14]) and have applications
in the approximate calculation of eigenvalues of the related operator [4], [5].

Some special cases of the problem under consideration were previously
investigated in [3], [4], [7], [9] by different methods.

2. Investigation of the spectrum

Let R) and R; be the resolvent of the operators Lo and L, respectively.

LEmMA 1. If Q(x) satisfies the condition (3°) and ) € p(Ly), then QR;) :
H, — H, is nuclear operator: QRR) € o1 (Hy).

ProoF. The system (2) of eigenfunctions of the operator Ly is an orthonor-
mal basis of the space H;. Then, as shown in Gorbachuk et al [8], it is sufficient
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to observe that the series Y oo 3> | [|QRY?C |l x, is a convergent series in
order to prove that QRO € 01(H}). By means of the formulas (2) and (3)

oo o0

D QRN ln,

m=1 n=1

IM,n—kl HNov, I,

I
Nk

“4) |

I
Me 1
NERANE:

1
IMm—kll[/O (0t sin me)2”Q(x)§0n“%{dxi|

1

3
n

n

{l
||M8

Z s = A7 Q@) @l

is found. From the formula (see, for example [10])

a+}fyq@adr +0< 1 )

(m—3)=

5) o = (m — 3)7 +

and (4) we have

6) Z Z HQR Yo Nl < Ci Y m™> > 10x)@ull,-

m=1 m=1 n=1

Here C;, is a positive constant related only to A. By virtue of the condition (3°)

we obtain from (6) o oo
DD IR, < oo.

m=1 n=1
Lemma 1 is proved.

THEOREM 2. If Q(x) satisfies conditions (1°)—(3°), then the spectrum of
the operator L is a subset of the union of the intervals

Qu = [m = 11Qlla,s o + 119111, m=1,2,...

which are pairwise disjoint and:

(a) Every point different from [,,, belonging to the interval 2, of the spec-
trum of the operator L, is a discrete eigenvalue, whose multiplicity is
finite.

(b) wm may be the eigenvalue, whose multiplicity is finite or infinite of the
operator L.
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(c) The equality limy,_, oo Ayn = [im holds. Here {A,,,},° | are the eigenval-
ues, belonging to the interval Q,, of the operator L and each eigenvalue
has been repeated according to multiplicity.

Proor. The resolvent R; of the operator L satisfies the equation
(7) R) — R, QR) = R;.
If A € R\ U, Q2 then by condition (2°) we have

®) A = ttm| > 1Ol ay s m=12....

For the self-adjoint operator RY = (Lo — A1)~ ||RY|| 5, = max,, |A — ptp| ™!
holds. From here and (8) we obtain

0 -1
IR < 119 Nla,-

Hence 0 o
IR N, < 1Qlla, - IR Iy, < 1.

Thus, A(B) = R? — BQR? is a contraction operator from ¥ (H,) to £ (Hj).
Here £ (H)) is the linear bounded operators space from H; to H;. According to
this, A(R;) = R, that is, the equation (7) has a single solution R, € Z(H)).
Thus, every point A ¢ (J,_, €2, is the regular point of the self-adjoint operator
L. So the spectrum of the operator L is o (L) C Uff:l ,,. From Formula (7)
and Lemma 1, for every A € p(L) N p(Lyp), Ry — Rg belongs to o1 (H)), that
is, R, — Rg is a nuclear operator. In this case, as it is proved in Kato [11,
p. 244], the continuous parts of the spectra of the operators L and L coincide.
According to this and since the spectrum of the operator L is continuous, the
continuous part of the spectrum of the operator L is the set {1,,}._;. This also
means that the assertions (a), (b) and (c¢) of Theorem 2 are satisfied.

3. A formula for the regularized trace

Let {un},, ,— be the orthonormal eigenfunctions corresponding to the eigen-

values {An},,,_; of the operator L and
Tp = {4 |4 = ptpl = 27" min(uper — ) }.
0 _ 0 0 —
an - ('» 1ﬁmn)Hl Wm,,, an - ('a Wmn)Hl wmn,

00 00
L(();)1 = Z/’L:nBr(l)m’ Lﬁr};) = Z )‘rmanna r=1, -1
n=1 n=1

Do 20



A REGULARIZED TRACE FORMULA 127

THEOREM 3. If the operator function Q(x) satisfies (2°) and (3°), then the
series

00
Z()‘pn_ﬂp), p=1,2,...
n=1

are absolute convergent series.

ProoF. The difference R; — R? satisfies the following formula

o 0o 00 an oo o0 B,(,)m
©) Ri-Ri=D D "5 =2.2
mn

m=1 n=1 m=1 n=1 Hom = A

Since except for the eigenvalues 1, and {A,,}° ; of the operators Ly and L, all
their eigenvalues are outside of the circle I',, from the last formula, we have

1 0
— | AR, — RY)da

2mi r,
g0 | hedh 1 / A-dh
i Jr =y 210 Jr, A= A

0 1 1
(pBpy = ApnBpn) = Ly — LS.

M

(10)

n=1

M

n=1

Since the operator function R; — RY is analytic with respect to the norm in the
o1(Hy) space in the region p (L), from (10) we obtain

(11) LY —Ly) eoi(H), p=12,...
Similarly it can be shown that
(12) LGV — L5 eo(H), p=1.2,...

Since the operator L may only have negative eigenvalues of finite number, in
order to prove the theorem, it is necessary to show that

Z|)\pn_ﬂp|<00, p=12,...
Apnn>0

For this reason we shall accept in the following that A, > 0, p,n =1,2, .. ..

(r)
0

Since the spectrum of the operator L » is the set {0; u;}, we have

:u;; = (L(()2 an: an)Hl , )‘;n = (L;r) an: l[’pn)yl
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ST 0h, —uy < > (LY~ L) Yne Yin)

n n
Mo 14 ot
<ZZ| (LY = Lo Vs Youn) |
m=1 n=1
S”L(r) L(r)”

o1 (H1)®

Using formulas (11) and (12), from the above inequalities, we find

Z (Apn — 1p) < 00,

n
Apn>ttp
14—
E (1p — Apn) < const. X E (up — pn)ﬂp )\'
n n
Apn <Wp Apn <Hp
= const. X E ()»;nl — u;l) < 00.

From the last relations, we obtain

o
Zl)\pn—up|<oo, p=12,...

n=1
Theorem 3 is proved.

Since the operator function R; — Rg belongs to o1 (H,) for every A € p(L),
from the formula (9) and Theorem 3, we have

tr(RA—Rg)_ZZ( — 1—»)'

m n

Multiplying both sides of this equality by % and integrating over the circle
Al =b, = 2‘1(,up+1 + 1p), we have

1
— Atr(R, — RY) d)
27 |Al=b,

P 1 1
(13) = 2 AZZ(/\W —A x)dk

M=by =1 n=1 Hm —

1 1
— dx.
27—” [A=b, A — A Mm_)"

m= p+ln 1
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By Theorem 2 and condition (2°)

o = 1Ql, < ho < g+ 1QI, < 22— =12,
Hence
(14) [Apn| < bp, m < p; p=>1; n=12,...
and moreover, for m > p,
(15)  Jn = o = 10l = iyt — 101y, > “2 25 =,
From (13), (14) and (15)
1 0 P&
(16) 2t o, Mr(Ry — R AL =" " (tm — hmn)-

m=1 n=1

On the other hand, from the formula R, = Rg — Ry, QRO, the equality

N
(17)  Ri—R) =) (=1)/RY(QR)) + (=D""' Ry (QR)N'
j=1

is obtained for every natural number N. From (16) and (17), we have

Sy (=)
_ — 0 0N Jj
2D (o = h) =) /Al:bp)»tr[Rk(QRk) ldr

(18) m=1 n=1 j=1
n (=N / Ate[Ry(QRO)NH1] d
i [Al=by, ’ ‘
Let
(19) M = (=n* / Atr[RO(QRO)j]d)»
P 27 I » » ’
(=D 0\N+1
(20) My = —— / Atr[R, (QR)N ] da.
L Jirl=b,

Then from (18), (19) and (20), we have

N

p o0
@1) DO o — tm) =Y Mj + My

m=1 n=1 j=1
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Now we shall compute the right side of (21). Since the operator function Q RY
in the domain C \ {1, }5,_, is analytic with respect to the norm in o (H;), we
can show that for M, / the following formula is true

. —1)/ .
(22) M/ = S tr(QR})’ dh.
27'[1] |A|=b,
From (2) and (22), we have
M = L tr(QRY) d
P 27 |Al=b, A

0,70 0
27‘[1 /.M b ZZ(QRAwmn’ 1/fmn)Hl di

7 m=1 n=1

Z( "/I n w Zl) 2 )\’
!? ) y H *W =
! Tl |)|_bp )\. Mm

I
M8

m=1 n=1
(23) P o
= Z Z(Q«m?m, Vo Hy
; =
-3 / (O, ) sin? /i dx
S
= Z tr Q(x)oz,zn sin? \/Timx dx.
m=1 0
Let
P
(24) T,(x) =Y oy sin® /itax,  x€[0,1]
and .
4a sin” xz
F(z) =

2zcos?z 4+ asin2z’

The function F(z) may not be analytic only at the points z = /i, (m =

.)and z = (k — )71 (k = F1, F2, ...) of the complex plane. It can
be eas1ly shown that if the point z = /i, or z = (k — %)n is the singular
point of F(z), then this point is the simple pole point and

4a sin® U X 5 ..
(25) Res[F(2)]:=ym, = 2a + o5 i) = o, Sin° /i X.




A REGULARIZED TRACE FORMULA 131

4asin® /i x

y = -2 sinz(k — %)nx.

(26) Res[F(z)]Zz(k,%)n =
If the function F(z) is analytic at the point 7 = /i, and z = (k - %)n
then it is clear that the formulas (25) and (26) are satisfied.
Let us denote by I' the contour of the rectangle, whose corners are FEi,

D,  Ei, where B is a positive variable and D, = pm. Here we shall assume
that p is a natural number such that , /it, < D, < ,/ft,11. Hence, as known,

57 ) F@dz= mzl Res[F (2)]:= i, + ;Res F@) = (1)

From the formulas (23), (25), (26) and the last equality, we obtain

(27) T)(x) =2 Z sin’ )rx + ZL F(z)dz.

LeEmMMA 4. For every x € [0, 1), we have

D,+ioco
(28) /F(z)dzzf F(z)dz.
r

D,—ioco

ProoF. We have

4
(29) f F(z)dz = lim Y f F(z)dz,
r E—o0 o T;
where I'; (j = 1,2, 3,4) are the edges of the rectangle whose contour is I'.

The integral i
/ F(z)dz=f F(z)dz
r iE

may be shown as follows:
ir —iE
/ F(z)dz:lim|:/ F(Z)dz—l-/ _ F(z)dz—i—/ F(z)dz:|.
r r=>0LJie ﬂilz_zro —ir
Since F(z) is an odd function, we have

ir —iE
/F(z)dz+/ F(z)dz =0.

i E —ir
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Moreover, since lim,_, o F(z) = 0, from the last relations, we obtain
(30) / F(z)dz = 0.
ry

For large values of |z| and u > 0, we have

|F(z)| < const. e~ @291Vl

where z = u +iv. So, for every constant value of D, and every x € [0, 1), the
integrals over the upper and the lower edges of the above mentioned rectangle
approaches zero as £ — o0, i.e.,

lim F(z)dz = lim / F(z)dz=0.
E—o00 I,

E—o0 I,

From (29), (30) and the last equalities, the formula (28) is obtained. Lemma 4
is proved.

From (27) and (28) we find

(31 T,(x) = ZZsm J'rx + T (x), x €0, 1]

where T x) = f D, - ”+'°° F(2) dz. For large values of p, it can be shown that
the functlon T! b (%) satlsﬁes the equalities

(32) T, (x)| < const. p°~", xe[0,1—p7®),

(33) IT,(x)| <const. p'~*,  xe[l—p~ 1],

where ¢ is a constant number belonging to the interval (%, 1).
From (32) and (33) we have

lim
p—>00

x 1
Z/(; (Q(x)@n, Wn)Tpl (x)dx
n=1

= lim
(34) p—>00

1—-p~¢ 1
< const. lim |:/ P hdx + / pl=¢ dx]
p—=| Jo 1—p—¢

=const. lim [p*~ ' —p~ 1+ p!7]1=0
p—00

1—p~*¢ 1
f ’ trQ(x)Tpl(x)dx+/ tr Q(x)T, (x) dx
0 1—p~¢
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THEOREM 5. [f the operator function Q(x) satisfies conditions (1°)—(3°)
then

(35) lim MJ =0, j=>2,
p—>00

(36) lim M,y =0, N > 4.
p—>0o0

Proor. For j = 2 from (22), we write

1
M= — tr(QRY)*d)
4 [A|=b,
(37) 00
- f 3 S QR Y .
i Jii=p, m=1 n=1

Moreover, we know that

0
QRmen = men
Mm — A
and
(QR)* Y0, = (um — V) QR) QY
a8) = (m —2)~ QR"{Z Y (@, ¥, wﬁ’q}

r=1 g=1
= (=N e = 2@V Vo) 1, QY-

r=1 g=1

From (37) and (38), we have
(39)

. o e e (Qwos )H(Qw ’ O)H
M2 mn 1 rq mn/ ) da.
P 4mi Mh[§§§; (= i) O — 1) }

It is easy to verify that, form,r < p

di
40) f =0
w=b, A= m) X — )
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This formula is true also for m, r > p. Then from (39) and (40), we have

Sl vml | =) 0= )

[Al=b)

3

Il

i
Mz {10

B

(m — ,U«r)_l |(Q¢;?1n» Wroq)Hl |2

which implies that

IZEE D N T w S S (X e i

r=p+1 g=1 m=1 n=1
(41) 0 %0
= > =) Y10V,
r=p+1 qg=1

Using (2), (3) and condition (3°), we estimate the expression Z;’;l | QWSq ||%{1 :

o] o] 1
SIove i =Y /0 1Q (X)etm sin /X @17, dx
g=1 g=1
“2) 2% fo 100,13 dx
q=1

=2 10m)g,ll7, < C,
qg=1

where C is a positive constant. From (5), (41) and (42), we have

o o0
M <C Y u—u) =0 Y (=)= (p -3

r=p+1 r=p+1

where C| is a positive constant.

It can be shown that the inequality

o0

(43) (=== <20 -3

r=p+1

is true. From the last two inequalities, we have

lim M, = 0.

p—>00
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In a similar form it can be proved that
. 3 _
lim M, =0.

p—>00

We shall now prove formula (35). For this we estimate the expression
| ORY|l6, (s, on the circle || = b,. As shown in [8]

o o
0 0.,0
IORloyctry < D Y IQRIY S, Il -
m=1 n=1

By (4) and condition (3°), we get

0
IO R; Moy ()

o0
<Gy lum— A
m=1

- P o0
<G Y M=)+ D (i — mr‘]
—m=1 m=p+1
(44 (o e .
Y Dy + tper = 2mm) "+ D Qe — 1y — ppr)”
-m=1 m=p+1
- D o0
<G| (psr =)+ Y (i — Mp)1:|
“m=1 m=p+1
— o0
< G| p(psr — ) 4 Y (m — Mp)‘l], G, > 0.
- m=p+1

It is easy to see that the inequality

(45) i — tap] = C3|(m = 1)* = (p = 1)?

is true. From (43), (44) and (45), we have

y C3>O

HOR o, () < 64[1 + i ((m=3)" = (= %)2)1}

m=p+1

<Cs, C4>0, C5>0, (JA]=0bp).

(40)

Now we estimate || R? ||, on the circle |A| = b,.Form < p,

litm = A = A = o = 5 (Ups1 — 1p) — M > 5 (p1 — [4p) = cODSL. p
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and form > p 4+ 1

ltm — Al = o — X > 3 (ps1 — 11p) = const. p.
Hence
47) ltem — 2|71 < const. p~!, Al = b,

On the other hand
IR 1, = max{ | — &'}

From here and (47), we have
(48) IR, < Cs-p~", Cs > 0.

Using Theorem 2 and condition (3°) it can be shown that, on the circle |A| = b,
for sufficiently large p,

(49) IR, < Cap™", C; > 0.

From (19) and (48) and since Q(x) satisfies the condition (2°), we have

. 1 .
M| = — / tr(QRY)/ dk‘
b 2nj IAl=b,, g
< ICQR) I, 1dA|
27j Jin=s, * l
< RY||, RO g, |dA
=207 Jms, 1O R; oy ICQR;) ™ My 1d A

j—1 ) p0 i1
< const. / 101 RO 1Al
[Al=bp
< const./ p'=|dx| < const. p>/.
[Al=b),

From here, we get
lim M]f7 =0, j=4

p—>00

and so formula (34) is proved.
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We now prove formula (35). From (20), (46), (48) and (49), we have

1
M| = —/ Atr[ R, (QR)HN 1 dn
27 Al=b

<b, /M IR QR oy 1A

|=bp

<b, [ 1R QRN sy 1

|)“|=b/)
< Cibyp! / 1 QRO 1 QRO vt 2] < Csp™™.  Cy > 0.
W:bp

From here, we get
lim M,y =0, N > 4.
p—>00
Theorem 5 is proved.
The main result of this article is given by the following theorem.

THEOREM 6. [f the operator function Q(x) satisfies conditions (1°)—(3°)
then

o0 X

! 1
Z[Z(xmn —(m—1)?% —/0 tr Q(x)dx} = J[r Q1) ~w Q).

m=1=n=1

The series on the left side of this equality is called the regularized trace of the
operator L.

Proor. From (21), (23), (24), (31), (34), (35) and (36), we obtain

1
lim [ZZ(AW, w = [ w0 ]

m=1 n=1

= lim [ZZ(AM un)—Z / trQ(x)dx]

m=1 n=1

= — lim Z/ tr Q(x)cos(2m — 1)wx dx
0

p—>00

o0 1
Z[/ tr Q(x)cosmmxdx — (—1)" / tr Q(x) cosmmx dx]
0

m=1

Z{[/ tr Q(x)ﬁcosmnxdx}/icosmn-o

0

1
2

-lkl»—‘

m=1
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1
- |:/ tr Q(x)«/zcosmnxdx]ﬁcosmn . 1}
0

1
= —4[r Q(0) —tr Q()]

This proves Theorem 6.

10.
11.
12.
13.

14.

Note that this formula is also valid for a < 0.
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