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A REGULARIZED TRACE FORMULA FOR SECOND
ORDER DIFFERENTIAL OPERATOR EQUATIONS

KEVSER KOKLU, INCI ALBAYRAK and AZAD BAYRAMOV

Abstract
In this paper, we deal with abstract Sturm-Liouville problems when the potential of the differential
equation is an operator function in a Hilbert spaceH . We generalize trace formula obtained by [7],
[9] for the classic regular Sturm-Liouville problems. We investigate the spectrum and obtained a
regularized trace formula for the Sturm-Liouville operator with an operator coefficient.

1. Introduction

Let H be a separable Hilbert space. In the Hilbert space H1 = L2([0, 1], H),
we consider the self-adjoint operator L generated by the expression

l(y) = −y ′′(x)+Q(x)y(x)

with the boundary conditions

(1) y(0) = 0, y ′(1)+ ay(1) = 0, a > 0.

Suppose that the operator function Q(x) in the expression l(y) satisfies the
following conditions:

(1◦) For ∀x ∈ [0, 1], Q(x) : H → H is a self-adjoint nuclear operator.
Moreover,Q(x) has a continuous derivative of second order with respect
to the norm in the space σ1(H) in the interval [0, 1] and for x ∈ [0, 1],
Q(i)(x) : H → H are self-adjoint operators (i = 1, 2).

(2◦) supx∈[0,1] ‖Q(x)‖ < 1
2 minm(μm+1 − μm), where μ1 < μ2 < · · · <

μm < · · · are the positive roots of the equation
√
λ cos

√
λ+a sin

√
λ =

0.

(3◦) There is an orthonormal basis {ϕn}∞n=1 of the space H such that∑∞
n=1 ‖Q(x)ϕn‖H1 < ∞. Here σ1(H) denotes the space of the nuclear

operators from H to H , as in Gorbachuk et al [8].
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LetL0 be the operator generated by the differential expression l0(y) = −y ′′(x)
and the boundary conditions (1). The spectrum of the operator L0 is the set
{μm}∞m=1, where μ1 < μ2 < · · · < μm < · · · are the positive roots of the
equation

√
λ cos

√
λ + a sin

√
λ = 0. Every number μm is eigenvalue of L0

with infinite multiplicity. The orthonormal eigenfunctions corresponding to
the eigenvalue μm have the form

(2) ψ0
mn = αm sin

√
μmx · ϕn, n = 1, 2, . . . ,

where

(3) αm =
√

2√
1 + a−1 cos2 √

μm
.

In this paper, we investigate the spectrum and the regularized trace of the
operator L. Gelfand and Levitan [7] first obtained a trace formula for the
Sturm-Liouville differential equation. After this study several mathematicians
were interested in developing trace formulas for different differential operators.
The current situation of this subject and studies related to it are presented in
the comprehensive survey paper [14].

The trace formulas of the abstract self-adjoint operators with continuous
spectrum were first analyzed by Krein [12]. In this work, he also proved the
formula mathematically, which had been obtained earlier [13] through physical
theories in quantum statistics and crystal theory. The trace formulas related
to the Sturm-Liouville problem with bounded self-adjoint operator given an
infinite interval and having a continuous spectrum were considered in [1],
[2]. Faddeev’s study of the regularized trace formula for the Sturm-Liouville
equation with the matrix coefficient in [6] has been a precursor for [1], [2].

Note that the trace formulas are used in the inverse problems of spectral
analysis of differential equations (see, for example [14]) and have applications
in the approximate calculation of eigenvalues of the related operator [4], [5].

Some special cases of the problem under consideration were previously
investigated in [3], [4], [7], [9] by different methods.

2. Investigation of the spectrum

Let R0
λ and Rλ be the resolvent of the operators L0 and L, respectively.

Lemma 1. If Q(x) satisfies the condition (3◦) and λ ∈ ρ(L0), then QR0
λ :

H1 → H1 is nuclear operator: QR0
λ ∈ σ1(H1).

Proof. The system (2) of eigenfunctions of the operator L0 is an orthonor-
mal basis of the spaceH1. Then, as shown in Gorbachuk et al [8], it is sufficient
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to observe that the series
∑∞

m=1

∑∞
n=1 ‖QR0

λψ
0
mn‖H1 is a convergent series in

order to prove that QR0
λ ∈ σ1(H1). By means of the formulas (2) and (3)

(4)

∞∑
m=1

∞∑
n=1

‖QR0
λψ

0
mn‖H1

=
∞∑
m=1

∞∑
n=1

|μm − λ|−1‖Qψ0
mn‖H1

=
∞∑
m=1

∞∑
n=1

|μm − λ|−1

[∫ 1

0

(
αm sin

√
μmx

)2‖Q(x)ϕn‖2
H dx

] 1
2

≤ √
2

∞∑
m=1

∞∑
n=1

|μm − λ|−1 · ‖Q(x)ϕn‖H1

is found. From the formula (see, for example [10])

(5) μm = (
m− 1

2

)
π + a + 1

2

∫ 1
0 q(τ) dτ(

m− 1
2

)
π

+O

(
1

m2

)
,

and (4) we have

(6)
∞∑
m=1

∞∑
n=1

‖QR0
λψ

0
mn‖H1 ≤ Cλ

∞∑
m=1

m−2
∞∑
n=1

‖Q(x)ϕn‖H1 .

Here Cλ is a positive constant related only to λ. By virtue of the condition (3◦)
we obtain from (6) ∞∑

m=1

∞∑
n=1

‖QR0
λψ

0
mn‖H1 < ∞.

Lemma 1 is proved.

Theorem 2. If Q(x) satisfies conditions (1◦)–(3◦), then the spectrum of
the operator L is a subset of the union of the intervals


m = [μm − ‖Q‖H1 , μm + ‖Q‖H1 ], m = 1, 2, . . .

which are pairwise disjoint and:

(a) Every point different from μm, belonging to the interval
m of the spec-
trum of the operator L, is a discrete eigenvalue, whose multiplicity is
finite.

(b) μm may be the eigenvalue, whose multiplicity is finite or infinite of the
operator L.
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(c) The equality limn→∞ λmn = μm holds. Here {λmn}∞n=1 are the eigenval-
ues, belonging to the interval
m of the operator L and each eigenvalue
has been repeated according to multiplicity.

Proof. The resolvent Rλ of the operator L satisfies the equation

(7) R0
λ − RλQR

0
λ = Rλ.

If λ ∈ R \ ⋃∞
m=1
m then by condition (2◦) we have

(8) |λ− μm| > ‖Q‖H1 , m = 1, 2, . . . .

For the self-adjoint operator R0
λ = (L0 − λI)−1, ‖R0

λ‖H1 = maxm |λ−μm|−1

holds. From here and (8) we obtain

‖R0
λ‖H1 < ‖Q−1‖H1 .

Hence
‖QR0

λ‖H1 ≤ ‖Q‖H1 · ‖R0
λ‖H1 < 1.

Thus, A(B) = R0
λ − BQR0

λ is a contraction operator from L (H1) to L (H1).
Here L (H1) is the linear bounded operators space fromH1 toH1. According to
this, A(Rλ) = Rλ, that is, the equation (7) has a single solution Rλ ∈ L (H1).
Thus, every point λ /∈ ⋃∞

m=1
m is the regular point of the self-adjoint operator
L. So the spectrum of the operator L is σ(L) ⊂ ⋃∞

m=1
m. From Formula (7)
and Lemma 1, for every λ ∈ ρ(L) ∩ ρ(L0), Rλ − R0

λ belongs to σ1(H1), that
is, Rλ − R0

λ is a nuclear operator. In this case, as it is proved in Kato [11,
p. 244], the continuous parts of the spectra of the operators L0 and L coincide.
According to this and since the spectrum of the operator L0 is continuous, the
continuous part of the spectrum of the operator L is the set {μm}∞m=1. This also
means that the assertions (a), (b) and (c) of Theorem 2 are satisfied.

3. A formula for the regularized trace

Let {ψmn}∞m,n=1 be the orthonormal eigenfunctions corresponding to the eigen-
values {λmn}∞m,n=1 of the operator L and

�p = {
λ, |λ− μp| = 2−1 min

m
(μm+1 − μm)

}
,

B0
mn = (·, ψ0

mn)H1ψ
0
mn, Bmn = (·, ψmn)H1ψmn,

L
(r)
0m =

∞∑
n=1

μrmB
0
mn, L(r)m =

∞∑
n=1
λmn 
=0

λrmnBmn, r = 1 , − 1.



a regularized trace formula 127

Theorem 3. If the operator function Q(x) satisfies (2◦) and (3◦), then the
series ∞∑

n=1

(λpn − μp), p = 1, 2, . . .

are absolute convergent series.

Proof. The difference Rλ − R0
λ satisfies the following formula

(9) Rλ − R0
λ =

∞∑
m=1

∞∑
n=1

Bmn

λmn − λ
−

∞∑
m=1

∞∑
n=1

B0
mn

μm − λ
.

Since except for the eigenvaluesμp and {λpn}∞n=1 of the operatorsL0 andL, all
their eigenvalues are outside of the circle �p, from the last formula, we have

(10)

1

2πi

∫
�p

λ(Rλ − R0
λ) dλ

=
∞∑
n=1

[
B0
pn

1

2πi

∫
�p

λ · dλ
λ− μp

− Bpn
1

2πi

∫
�p

λ · dλ
λ− λpn

]

=
∞∑
n=1

(μpB
0
pn − λpnBpn) = L

(1)
0p − L(1)p .

Since the operator function Rλ−R0
λ is analytic with respect to the norm in the

σ1(H1) space in the region ρ(L), from (10) we obtain

(11) L(1)p − L
(1)
0p ∈ σ1(H1), p = 1, 2, . . .

Similarly it can be shown that

(12) L(−1)
p − L

(−1)
0p ∈ σ1(H1), p = 1, 2, . . .

Since the operator L may only have negative eigenvalues of finite number, in
order to prove the theorem, it is necessary to show that

∑
n

λpn>0

|λpn − μp| < ∞, p = 1, 2, . . .

For this reason we shall accept in the following that λpn > 0, p, n = 1, 2, . . ..
Since the spectrum of the operator L(r)0p is the set {0;μrp}, we have

μrp ≥ (
L
(r)
0pψpn, ψpn

)
H1
, λrpn = (

L(r)p ψpn, ψpn
)
H1
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∑
n

λrpn>μ
r
p

(λrpn − μrp) ≤
∑
n

λrpn>μ
r
p

((
L(r)p − L

(r)
0p

)
ψpn, ψpn

)
H1

≤
∞∑
m=1

∞∑
n=1

∣∣((L(r)p − L
(r)
0p

)
ψmn,ψmn

)
H1

∣∣

≤ ∥∥L(r)p − L
(r)
0p

∥∥
σ1(H1)

.

Using formulas (11) and (12), from the above inequalities, we find
∑
n

λpn>μp

(λpn − μp) < ∞,

∑
n

λpn<μp

(μp − λpn) ≤ const.×
∑
n

λpn<μp

(μp − λpn)μ
−1
p λ

−1
pn

= const.×
∑
n

λpn<μp

(λ−1
pn − μ−1

p ) < ∞.

From the last relations, we obtain

∞∑
n=1

|λpn − μp| < ∞, p = 1, 2, . . .

Theorem 3 is proved.

Since the operator functionRλ−R0
λ belongs to σ1(H1) for every λ ∈ ρ(L),

from the formula (9) and Theorem 3, we have

tr(Rλ − R0
λ) =

∞∑
m=1

∞∑
n=1

(
1

λmn − λ
− 1

μm − λ

)
.

Multiplying both sides of this equality by λ
2πi and integrating over the circle

|λ| = bp = 2−1(μp+1 + μp), we have

(13)

1

2πi

∫
|λ|=bp

λ tr(Rλ − R0
λ) dλ

= 1

2πi

∫
|λ|=bp

λ

p∑
m=1

∞∑
n=1

(
1

λmn − λ
− 1

μm − λ

)
dλ

+ 1

2πi

∫
|λ|=bp

λ

∞∑
m=p+1

∞∑
n=1

(
1

λmn − λ
− 1

μm − λ

)
dλ.
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By Theorem 2 and condition (2◦)

μm − ‖Q‖H1 ≤ λmn ≤ μm + ‖Q‖H1 <
μm + μm+1

2
= bm, n = 1, 2, . . .

Hence

(14) |λmn| < bp, m ≤ p; p ≥ 1; n = 1, 2, . . .

and moreover, for m > p,

(15) λmn ≥ μm − ‖Q‖H1 ≥ μp+1 − ‖Q‖H1 >
μp + μp+1

2
= bp

From (13), (14) and (15)

(16)
1

2πi

∫
|λ|=bp

λ tr(Rλ − R0
λ) dλ =

p∑
m=1

∞∑
n=1

(μm − λmn).

On the other hand, from the formula Rλ = R0
λ − RλQR

0
λ, the equality

(17) Rλ − R0
λ =

N∑
j=1

(−1)jR0
λ(QR

0
λ)
j + (−1)N+1Rλ(QR

0
λ)
N+1

is obtained for every natural number N . From (16) and (17), we have

(18)

p∑
m=1

∞∑
n=1

(μm − λmn) =
N∑
j=1

(−1)j

2πi

∫
|λ|=bp

λ tr
[
R0
λ(QR

0
λ)
j
]
dλ

+ (−1)N

2πi

∫
|λ|=bp

λ tr
[
Rλ(QR

0
λ)
N+1

]
dλ.

Let

(19) Mj
p = (−1)j+1

2πi

∫
|λ|=bp

λ tr
[
R0
λ(QR

0
λ)
j
]
dλ,

(20) MpN = (−1)N

2πi

∫
|λ|=bp

λ tr
[
Rλ(QR

0
λ)
N+1

]
dλ.

Then from (18), (19) and (20), we have

(21)
p∑

m=1

∞∑
n=1

(λmn − μm) =
N∑
j=1

Mj
p +MpN
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Now we shall compute the right side of (21). Since the operator functionQR0
λ

in the domain C \ {μm}∞m=1 is analytic with respect to the norm in σ1(H1), we
can show that for Mj

p the following formula is true

(22) Mj
p = (−1)j

2πij

∫
|λ|=bp

tr(QR0
λ)
j dλ.

From (2) and (22), we have

(23)

M1
p = − 1

2πi

∫
|λ|=bp

tr(QR0
λ) dλ

= − 1

2πi

∫
|λ|=bp

∞∑
m=1

∞∑
n=1

(QR0
λψ

0
mn, ψ

0
mn)H1 dλ

=
∞∑
m=1

∞∑
n=1

(Qψ0
mn, ψ

0
mn)H1 · 1

2πi

∫
|λ|=bp

dλ

λ− μm

=
p∑

m=1

∞∑
n=1

(Qψ0
mn, ψ

0
mn)H1

=
p∑

m=1

∞∑
n=1

∫ 1

0
(Q(x)ϕn, ϕn)α

2
m sin2 √

μmx dx

=
p∑

m=1

∫ 1

0
trQ(x)α2

m sin2 √
μmx dx.

Let

(24) Tp(x) =
p∑

m=1

α2
m sin2 √

μmx, x ∈ [0, 1]

and

F(z) = 4a sin2 xz

2z cos2 z+ a sin 2z
.

The function F(z) may not be analytic only at the points z = √
μm, (m =

1, 2, . . .) and z = (
k − 1

2

)
π , (k = ∓1,∓2, . . .) of the complex plane. It can

be easily shown that if the point z = √
μm or z = (

k − 1
2

)
π is the singular

point of F(z), then this point is the simple pole point and

(25) Res[F(z)]z=√
μm = 4a sin2 √

μmx

2(a + cos2 √
μm)

= α2
m sin2 √

μmx.
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(26) Res[F(z)]z=(k− 1
2 )π

= 4a sin2 √
μmx

−2a
= −2 sin2

(
k − 1

2

)
πx.

If the function F(z) is analytic at the point z = √
μm and z = (

k − 1
2

)
π ,

then it is clear that the formulas (25) and (26) are satisfied.
Let us denote by � the contour of the rectangle, whose corners are ∓Ei,

Dp ∓Ei, where B is a positive variable andDp = pπ . Here we shall assume
that p is a natural number such that

√
μp < Dp <

√
μp+1. Hence, as known,

1

2πi

∫
�

F (z) dz =
p∑

m=1

Res[F(z)]z=√
μm +

p∑
m=1

Res[F(z)]z=(m− 1
2 )π
.

From the formulas (23), (25), (26) and the last equality, we obtain

(27) Tp(x) = 2
p∑

m=1

sin2
(
m− 1

2

)
πx + 1

2πi

∫
�

F (z) dz.

Lemma 4. For every x ∈ [0, 1), we have

(28)
∫
�

F (z) dz =
∫ Dp+i∞

Dp−i∞
F(z) dz.

Proof. We have

(29)
∫
�

F (z) dz = lim
E→∞

4∑
j=1

∫
�j

F (z) dz,

where �j (j = 1, 2, 3, 4) are the edges of the rectangle whose contour is �.
The integral ∫

�1

F(z) dz =
∫ −iE

iE

F (z) dz

may be shown as follows:

∫
�1

F(z) dz = lim
r→0

[∫ ir

iE

F (z) dz+
∫

|z|=r
Re z≥0

F(z) dz+
∫ −iE

−ir
F (z) dz

]
.

Since F(z) is an odd function, we have

∫ ir

iE

F (z) dz+
∫ −iE

−ir
F (z) dz = 0.
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Moreover, since limz→0 F(z) = 0, from the last relations, we obtain

(30)
∫
�1

F(z) dz = 0.

For large values of |z| and u ≥ 0, we have

|F(z)| ≤ const. e−(2−2x)|v|,

where z = u+ iv. So, for every constant value ofDp and every x ∈ [0, 1), the
integrals over the upper and the lower edges of the above mentioned rectangle
approaches zero as E → ∞, i.e.,

lim
E→∞

∫
�2

F(z) dz = lim
E→∞

∫
�4

F(z) dz = 0.

From (29), (30) and the last equalities, the formula (28) is obtained. Lemma 4
is proved.

From (27) and (28) we find

(31) Tp(x) = 2
p∑

m=1

sin2
(
m− 1

2

)
πx + T 1

p (x), x ∈ [0, 1]

where T 1
p (x) = ∫ Dp+i∞

Dp−i∞ F(z) dz. For large values of p, it can be shown that

the function T 1
p (x) satisfies the equalities

(32) |T 1
p (x)| < const. pε−1, x ∈ [0, 1 − p−ε),

(33) |T 1
p (x)| < const. p1−ε, x ∈ [1 − p−ε, 1],

where ε is a constant number belonging to the interval
(

1
2 , 1

)
.

From (32) and (33) we have

(34)

lim
p→∞

∣∣∣∣
∞∑
n=1

∫ 1

0
(Q(x)ϕn, ϕn)T

1
p (x) dx

∣∣∣∣
= lim

p→∞

∣∣∣∣
∫ 1−p−ε

0
trQ(x)T 1

p (x) dx +
∫ 1

1−p−ε
trQ(x)T 1

p (x) dx

∣∣∣∣
≤ const. lim

p→∞

[∫ 1−p−ε

0
pε−1 dx +

∫ 1

1−p−ε
p1−ε dx

]

= const. lim
p→∞[pε−1 − p−1 + p1−2ε] = 0
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Theorem 5. If the operator function Q(x) satisfies conditions (1◦)–(3◦)
then

(35) lim
p→∞M

j
p = 0, j ≥ 2,

(36) lim
p→∞MpN = 0, N ≥ 4.

Proof. For j = 2 from (22), we write

(37)

M2
p = 1

4πi

∫
|λ|=bp

tr(QR0
λ)

2dλ

= 1

4πi

∫
|λ|=bp

∞∑
m=1

∞∑
n=1

((QR0
λ)

2ψ0
mn, ψ

0
mn)H1 dλ.

Moreover, we know that

QR0
λψ

0
mn = Qψ0

mn

μm − λ

and

(38)

(QR0
λ)

2ψ0
mn = (μm − λ)−1QR0

λQψ
0
mn

= (μm − λ)−1QR0
λ

{ ∞∑
r=1

∞∑
q=1

(Qψ0
mn, ψ

0
rq)H1ψ

0
rq

}

= (μm − λ)−1
∞∑
r=1

∞∑
q=1

(μr − λ)−1(Qψ0
mn, ψ

0
rq)H1Qψ

0
rq .

From (37) and (38), we have
(39)

M2
p = 1

4πi

∫
|λ|=bp

[ ∞∑
m=1

∞∑
n=1

∞∑
r=1

∞∑
q=1

(Qψ0
mn, ψ

0
rq)H1(Qψ

0
rq , ψ

0
mn)H1

(λ− μm)(λ− μr)

]
dλ.

It is easy to verify that, for m, r ≤ p

(40)
∫

|λ|=bp

dλ

(λ− μm)(λ− μr)
= 0.
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This formula is true also for m, r > p. Then from (39) and (40), we have

M2
p

= 1

2πi

p∑
m=1

∞∑
n=1

∞∑
r=p+1

∞∑
q=1

∣∣(Qψ0
mn, ψ

0
rq)H1

∣∣2
∫

|λ|=bp
(λ− μm)

−1(λ− μr)
−1 dλ

=
p∑

m=1

∞∑
n=1

∞∑
r=p+1

∞∑
q=1

(μm − μr)
−1

∣∣(Qψ0
mn, ψ

0
rq)H1

∣∣2

which implies that

(41)

|M2
p | ≤

∞∑
r=p+1

∞∑
q=1

(μr − μp)
−1

∞∑
m=1

∞∑
n=1

∣∣(Qψ0
rq , ψ

0
mn)H1

∣∣2

=
∞∑

r=p+1

(μr − μp)
−1

∞∑
q=1

‖Qψ0
rq‖2

H1
.

Using (2), (3) and condition (3◦), we estimate the expression
∑∞

q=1 ‖Qψ0
rq‖2

H1
:

(42)

∞∑
q=1

‖Qψ0
rq‖2

H1
=

∞∑
q=1

∫ 1

0
‖Q(x)αm sin

√
μmxϕn‖2

H dx

≤ 2
∞∑
q=1

∫ π

0
‖Q(x)ϕq‖2

H dx

= 2
∞∑
q=1

‖Q(x)ϕq‖2
H1
< C,

where C is a positive constant. From (5), (41) and (42), we have

|M2
p | ≤ C

∞∑
r=p+1

(μr − μp)
−1 ≤ C1

∞∑
r=p+1

((
r − 1

2

)2 − (
p − 1

2

)2)−1

where C1 is a positive constant.
It can be shown that the inequality

(43)
∞∑

r=p+1

((
r − 1

2

)2 − (
p − 1

2

)2)−1
< 2

(
p − 1

2

)−1/2

is true. From the last two inequalities, we have

lim
p→∞M

2
p = 0.
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In a similar form it can be proved that

lim
p→∞M

3
p = 0.

We shall now prove formula (35). For this we estimate the expression
‖QR0

λ‖σ1(H1) on the circle |λ| = bp. As shown in [8]

‖QR0
λ‖σ1(H1) ≤

∞∑
m=1

∞∑
n=1

‖QR0
λψ

0
mn‖H1 .

By (4) and condition (3◦), we get

(44)

‖QR0
λ‖σ1(H1)

≤ C2

∞∑
m=1

|μm − λ|−1

≤ C2

[ p∑
m=1

(|λ| − μm)
−1 +

∞∑
m=p+1

(μm − |λ|)−1

]

< C2

[ p∑
m=1

(μp + μp+1 − 2μm)
−1 +

∞∑
m=p+1

(2μm − μp − μp+1)
−1

]

< C2

[ p∑
m=1

(μp+1 − μm)
−1 +

∞∑
m=p+1

(μm − μp)
−1

]

< C2

[
p(μp+1 − μm)

−1 +
∞∑

m=p+1

(μm − μp)
−1

]
, C2 > 0.

It is easy to see that the inequality

(45) |μm − μp| ≥ C3

∣∣(m− 1
2

)2 − (
p − 1

2

)2∣∣, C3 > 0

is true. From (43), (44) and (45), we have

(46)
‖QR0

λ‖σ1(H1) ≤ C4

[
1 +

∞∑
m=p+1

((
m− 1

2

)2 − (
p − 1

2

)2)−1
]

≤ C5, C4 > 0, C5 > 0, (|λ| = bp).

Now we estimate ‖R0
λ‖H1 on the circle |λ| = bp. For m ≤ p,

|μm − λ| ≥ |λ| − μm = 1
2 (μp+1 − μp)− μm >

1
2 (μp+1 − μp) ≥ const. p
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and for m ≥ p + 1

|μm − λ| ≥ μm − |λ| > 1
2 (μp+1 − μp) ≥ const. p.

Hence

(47) |μm − λ|−1 ≤ const. p−1, |λ| = bp

On the other hand
‖R0

λ‖H1 = max
m

{ |μm − λ|−1}.

From here and (47), we have

(48) ‖R0
λ‖H1 < C6 · p−1, C6 > 0.

Using Theorem 2 and condition (3◦) it can be shown that, on the circle |λ| = bp,
for sufficiently large p,

(49) ‖Rλ‖H1 < C7p
−1, C7 > 0.

From (19) and (48) and since Q(x) satisfies the condition (2◦), we have

|Mj
p | = 1

2πj

∣∣∣∣
∫

|λ|=bp
tr(QR0

λ)
j dλ

∣∣∣∣
≤ 1

2πj

∫
|λ|=bp

‖(QR0
λ)
j‖H1 |dλ|

≤ 1

2πj

∫
|λ|=bp

‖QR0
λ‖σ1(H1)‖(QR0

λ)
j−1‖H1 |dλ|

≤ const.
∫

|λ|=bp
‖Q‖j−1

H1
‖R0

λ‖j−1
H1

|dλ|

≤ const.
∫

|λ|=bp
p1−j |dλ| < const. p3−j .

From here, we get
lim
p→∞M

j
p = 0, j ≥ 4

and so formula (34) is proved.
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We now prove formula (35). From (20), (46), (48) and (49), we have

|MpN | = 1

2π

∣∣∣∣
∫

|λ|=bp
λ tr[Rλ(QR

0
λ)
N+1] dλ

∣∣∣∣
≤ bp

∫
|λ|=bp

‖Rλ(QR0
λ)
N+1‖σ1(H1) |dλ|

≤ bp

∫
|λ|=bp

‖Rλ‖H1‖(QR0
λ)
N+1‖σ1(H1) |dλ|

≤ C7bpp
−1

∫
|λ|=bp

‖QR0
λ‖NH1

‖QR0
λ‖σ1(H1) |dλ| ≤ C8p

3−N, C8 > 0.

From here, we get
lim
p→∞MpN = 0, N ≥ 4.

Theorem 5 is proved.

The main result of this article is given by the following theorem.

Theorem 6. If the operator function Q(x) satisfies conditions (1◦)–(3◦)
then

∞∑
m=1

[ ∞∑
n=1

(
λmn − (

m− 1
2

)2) −
∫ 1

0
trQ(x) dx

]
= 1

4
[trQ(1)− trQ(0)].

The series on the left side of this equality is called the regularized trace of the
operator L.

Proof. From (21), (23), (24), (31), (34), (35) and (36), we obtain

lim
p→∞

[ p∑
m=1

∞∑
n=1

(λmn − μn)− p

∫ 1

0
trQ(x) dx

]

= lim
p→∞

[ p∑
m=1

∞∑
n=1

(λmn − μn)−
p∑

m=1

∫ 1

0
trQ(x) dx

]

= − lim
p→∞

p∑
m=1

∫ 1

0
trQ(x) cos(2m− 1)πx dx

= −1

2

∞∑
m=1

[∫ 1

0
trQ(x) cosmπx dx − (−1)m

∫ 1

0
trQ(x) cosmπx dx

]

= −1

4

∞∑
m=1

{[ ∫ 1

0
trQ(x)

√
2 cosmπx dx

]√
2 cosmπ · 0
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−
[∫ 1

0
trQ(x)

√
2 cosmπx dx

]√
2 cosmπ · 1

}

= −1

4
[trQ(0)− trQ(1)]

This proves Theorem 6.

Note that this formula is also valid for a ≤ 0.
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