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ASYMPTOTICS OF EIGENVALUES OF REGULAR
STURM-LIOUVILLE PROBLEMS WITH EIGENVALUE
PARAMETER IN THE BOUNDARY CONDITION
FOR INTEGRABLE POTENTIAL

HASKIZ COSKUN and ELIF BASKAYA

Abstract

In this paper we obtain asymptotic estimates of eigenvalues for regular Sturm-Liouville problems
having the eigenparameter in the boundary condition without smoothness conditions on ¢.

1. Introduction

In this paper we consider the boundary value problem

() ty:=—y'4+qgy=A4, y.t € [a,b],
(2) aiy(a) —axy'(a) = Mayy(a) —ayy' (@),  ai,axay,a) €R,
(3) y(b)cosB + y' (b)sinp =0, g €0, ],

where A is a real parameter, ¢ (¢) is a real-valued function. We assume that
q(t) is integrable on [a, b]. This problem differs from the usual regular Sturm-
Liouville problem in the sense that the eigenvalue parameter A is contained
in the boundary condition at a. Problems of this type arise from the method
of separation of variables applied to mathematical models for certain physical
problems including that of heat conduction and wave propagation, etc. [7]. Itis
shown by Walter [14] that this problem is a self-adjoint problem if the relation

I

a, ap
/

a, ap

“4) 8= >0

holds.

The purpose of this paper is to obtain asymptotic approximations for the
eigenvalues A, of (1)—(3) when the condition (4) is satisfied under the sole con-
dition that g (¢) is integrable on [a, b]. Approximations of this type have been
derived before. We mention in particular [6], [7] and [1]. Fulton’s approach in
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[6] is based on an iteration of the usual Volterra integral equation, producing
an asymptotic expansion of the solution in higher powers of 1/ AZash — 0o
and in [7] is based on the analysis of [13] for regular Sturm-Liouville prob-
lems on a finite closed interval and involves some operator-theoretical results
of [14]. The approach used in [1] is based on an iterative procedure solving
the associated Riccati equation and Producing an asymptotic expansion of the
solution in the higher powers of 1 /12 as A — oo for smooth g (¢). There is also
a vast amount of literature dealing with asymptotic estimates of eigenvalues
for standard Sturm-Liouville problems with regular endpoints [2], [3], [4], [5],
(81, [9], [10], [12], [13].

Here we follow the similar approach in [3], [9], [11]. In this paper we
introduce a method of obtaining the asymptotic form of A, for the problem
(1)-(3) when the condition (4) is satisfied under the sole condition that ¢ (¢) is
integrable on [a, b] as n — oo.

We assume without loss of generality, that g (#) has mean value zero. That
is

b
5) / () dr = 0.

2. The results

Our results include the following four distinct cases concerning a} and B as
pointed out in [7]. These are a) # 0, B # 0;a, # 0,8 =0;a, =0, B # 0;
anda} =0, 8 =0.

THEOREM 1. The eigenvalues A, of (1)—(3) satisfy as n — 00

(ay#0, B #0

1 (mn+Drm 1 aj
M= 2(n+1)n{2a§ +2cotp
b
+ sin (_2(11 + l)na) / q(t) sin (—Z(n + 1)nt> dt
(6) b —a a b—a

b
+ COS (M) / q([) COS (M) dt}
b—a p b—a

+0m 'nm)» + 0(n *nn)),
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(i)a} #0, =0

A% _ @2n+3)m 1 a_i
" 2b—a)  @n+3)m| 4
b
+ sin (_2(11 + 3)7m> / q(t) sin(—(zn + 3)nt>dt
(7) b —d a b —da

b
_|_ cOS (M) f q(t) cOS (M) dt}
b—a a b—a
+0(m 'n(m)*) + 0 *n(n)).

THEOREM 2. The eigenvalues A, of (1)—(3) satisfy asn — 00

()a,=0,8#0

1 2 3 1
k,%=(n+ ) 20—2+200t,3
2(b —a) Cn+3)m | a;

b
(8) b—a a b—a

b
~ cos ((Zn +3)7ra)/ 4(1) cos ((2}1 +3)7rt) dt}
b—a 4 b—a

+0(m 'n(m)*» + 0~ *n(n)),

(i)a,=0,8=0

1 (n+m 1 { a

AR = —
(b—a) 2+ 2w | 4

b
— sin (_2(11 + 2)7“1) / q(t)sin (_2(11 + 2)7”) dt
(9) b—a a b —d

b
_am<%iizﬁﬁ)/ ﬂﬂam<%ﬁiﬁkz>d4
b—a 4 b—a
+0mn 'nm)» + 0 *nn)),

where 1n(n) is defined by (22).

Fora = 0, b = m we get the following corollaries:
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COROLLARY 3. The eigenvalues A,, of (1)—(3) satisfy as n — 00

(ay#0,8#0
(10)

b _ a i
A =m+1)+ T {261é +2cotB +/0 q(t)cos(2(n + 1)¢) dt}

+ 0~ 'n()*) + 0 *n(n)),
(i)a) #0, 8 =0
@2n+3) ! {2ﬁ + /n 4(1) cos((2n + 3)1) dt}
a 0

2

A=
an 2 2n +3)m

+0@m 'n)») + 0(n~*n(n)).

COROLLARY 4. The eigenvalues A, of (1)—(3) satisfy as n — oo

a;=0,8#0
(12)
= 2ntd ! {2@ 2 cot /n 1) cos((2 3)t)dt}
" 2 +(2n—|—3)71 ai+ cotp — 0 q(®) cos((2n +

+ 0@ 'nm)?) + 0 *n(n)),
(i)a, =0,8=0
1 I S P

13 A =m+2)+ T {2@i /0 q(1) cos(2(n+2)t)dt}

+0m 'nm)?) + 0(n~*n(n)).

As an illustrati?n of ourlresults we give the following example:
Let g(t) = t72 — 2w~ 2. Using (10)-(13) we get the following estimates
on A.

a; #0,8#0
L 1 aj JTC(Z«/n—Fl)}
M=+ 1)+ —Z(n TDn {Zaé 4+ 2cotB + ——n |
+ 0™ 'nm)?*) + 0> n(n));
ay#0,8=0
Bty {za_; N ﬁnC(«/2(2n+3))}
T2 n+3) | 4 V2n+3

+ 0 'n(m)» + 0 *n(n));



EIGENVALUE ASYMPTOTICS: REGULAR EIGENVALUE PROBLEMS 213

a,=0,8#0
L (Qn+3) 1 a V2rC(V22n +3))
b= +(2n+3)n{2Z+2°°tﬂ_ V2 +3 }

+ 0™ 'nm?*) + 0 n(n));

Z vn+2
+0m 'nm)») + 0(n (),

¥ :(n+2)+;{2

a 7C(2Vn+2) }
2(n +2)m

where C(x) is the Fresnel integral defined as C(x) = f(f cos(r?) dt.

3. The Method

We associate with (1) the Riccati equation

(14) vV =—A+q— 0.
We define

(15) S(t, ») == Re {v(r, 1)},
(16) T(r, %) :=Im{v(r, M)} .

It is shown in [2] that any real-valued solution of (1) is in the form

(17) y(t, 1) = R(t, X) cos(0(t, 1))
with

18 R'(t, ) S

(1%) R(t, %) (#,4),
(19) 0'(t,\) = T(t, A).

Our approach to calculating 1, is to approximate those A which are such
that

b
(20) 0(b, 1) —6(a, ) =f T(t, A)dt.
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We suppose that there exist functions A(¢) and 7 (A) so that

b
(21) / ¥ g (x) dx
t

< A(t)nr) forall ¢ € |a,b],

where

(i) A(?) is a decreasing function of ¢,
(i) n(A) - O0as A — oo,
(iii) A(.) € L'[a, b].

For ¢ € L'[a, b] the existence of the A and 5 functions may be established
for A positive as follows.

We note that, avoiding the trivial case flb lg(x)| dx =0,

b 1 b
f g () dx sf g0 dx < oo,
t t

so, if we define

22 F.0 }ﬂéezm%XQ(X)dx|/jfIq(x)|dx if [”1g(x)] #0,
t, =

0 if [71q(0)] =0,

then 0 < F(z,4) < 1 and we set n(4) := sup,,, F (¢, 1). Note that n(A) is
well defined by (22) and n(A) — 0 as A — oo [11].

We set A(t) := fth |g(x)|dx. Then A(¢) is clearly a decreasing function of

t and
b b pb b x
/ A(t)dt:// |q(x)|dxdt:/ |q(x)|/dtdx

b b
=f |q<x>|(x—a)dxsa/ ()] dx.

(23)

Our method of approximating a solution of (14) is similar to that of [11]. We
consider (14) on [a, b] and set

(24) u(t,0) 1= iA? + > v, ).

n=1
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Substitution of (24) into (14) and rearrangement then gives

W+ 20070 4 v) + 2070, + Z(v,’l + 2i)»%vn)

n=3 00

—q—vl Z(vn |+ 2v,- Iva)

n=3

We choose the v, so that

v —1—21')»%1)1 =g,
! 2')Ll = —?
(25) Uy, + 2i1A20; vy,
v+ ZiA%vn = —(vﬁ_1 4+ 2v,_1 va> for n =3,4,...
m=1
and
Lo
vi(t, A) = —e_Z’“’/ ¥ g (x) dx,
t
1 b
(26) vt h) =T / 0 e, 1) dx,
t
1 b 1 n—2
(£, 0) = e—mz;/ ez:mx(vﬁ_l + 2v,_1 Z vm)dx.
¢ m=1

It is proven in [2] that Y °7
the series in? 4+ Y

a—1 Un (2, 1) is uniformly absolutely convergent and
v/ (¢, A) is thus a solution of (14) and

n=1Un
oo
1
27) T(t,2) =27 +1Im Y _v,(t, 2).
n=1
It is also proven in [2] that there exist a sequence {k,} of real numbers with
(28) loa (£, M| < kan(W)",

(Lemma 2.2, [2]).
It may easily be obtained, by a change in the order of integration and (5)
that

’ —i b )
f vit, 2)di = ) ll f Q(X)(l — ezl“(xfa)) dx
a r: Ja

2
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. b |
(29) = 21 1 / 2R =D g (x) dx,
A2 Ja
b i b 1
30) / v (t, A) dt = 5 1 / U%(X, )»)(1 _ eZzAZ(xfa)) dx
a A2 Ja
and

b
31 / v (2, A) dt

. n—2
1

b |
_ 2 2ir2 (x—a)
= vo_(x, )+ 2v,1(x, A E Un(x, M) J(1 —e dx.
ZM/; ( w1 A) 1 )m:l ( ))( )

It is shown in [11] that any real valued solution y(¢, 1) of (1) is of the form
(32) y(t,A) = R(t,A)cosO(t, L),

hence

(33) y'(t,A) = R'(t, A) cosO(t, L) — R(t, \)O' (¢, 1) sinO(¢, 1).

We now determine the conditions under which the first boundary condition (2)
and the second boundary condition (3) are satisfied. Considering (32) and (33)
one observes that equation (2) holds if

R'(a, ))
R(a, ))

(34) R(a, A){cos@(a, A) |:a1 —ap

- ,\(a; - @%)] +sinf(a, A)(a — ra)b'(a, x)} —0.

We can write (34) as
(35 R(a, M) sin(y; +6(a, 1)) =0,

where

sin Y1 =4y —ay

R'(a, \) ( . ,R’(a,/\))
—Ma) —a——-7),
R(a, ) R(a, \)

cosy1 = (ax — ra5)b'(a, A).
From (18)—(19)
(36) siny; = a; — apS(a, &) — Aa; — ayS(a, 1)),
37) cosy; = (ax — ray) T (a, 1).
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We define Q2 := tan y;. From (35) the first boundary condition (2) is satisfied
(i) foraj, #0
(38) O(a,\) = —y; = —tan ().

For a} = 0, (34) reduces to

R'(a, ) , . ,
R(a,))jcosB(a, )| a —as —Aa) | +axsinf(a, A)'(a, L)
R(a, ))
=0
(39) = R(a, A) sin(8; + 6(a, 1)),
where s R'(a. ) /
i =a; —a—— — \a,,
1 1 2 R(a,A) 1

cosd; = ax0’(a, ).
Again from (18)—(19)
(40) sind; =a; —axS(a, 1) — Aaj,
41 cosd; = arT (a, )).
We define I' := cot §;. From (39) the first boundary condition (2) is satisfied
(i) fora), = 0
(42) 0(a, ) = =8, = —cot” /().
Similarly the second boundary condition (3) holds if

R'(b, ))
R(b, 1)

R, )\) !cos 6(b, ) |:cos B+ sin ,8} —sin@(b, 1)0'(b, 1) sin ,3} =0.

One can write (42) as

(43) R(b, M) sin(y, — (b, 1)) =0,
where

(44) siny, = cos B + S(b, A) sin B,
(45) cosy, = T(b, 1) sin B.

We define  := tan y,. From (43) the second boundary condition (3) is satisfied
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(iii) for B # 0

(46) 0, \) =1+ m+ D =tan" () + (n + D.
For B = 0, (43) reduces to

(47) R(b, ) cos6(b, 1) = 0.

From (47), the second boundary condition (3) is satisfied

@iv)forg =0

(48) (b, 2) = % ¥ (n+ .

4. Proof of the results
We first give the following theorems:

THEOREM 5. Let q(t) be a real-valued integrable function on [a, b]. Then
the eigenvalues of (1)-(3) satisfy as A — 00

(i) foray, #0and B # 0
b
(49) (n+Hm = / T(t, 1)dt —tan~' () —tan™! (1)),

(ii) for ab #0and g =0

b
(50) @ =/ T(t, \)dt —tan~' (Q).

THEOREM 6. Let q(t) be a real-valued integrable function on [a, b]. Then
the eigenvalues of (1)—(3) satisfy as > — oo
(i) fora, =0and B # 0

b
(51) (n+hHm =/ T(t, M)dt —cot™' (I') — tan™! (1),

(ii) foray = 0and B =0

2n +3)m

b
(52) — = / T(t, \)dt —cot™ 1 ('),
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where S(t, A), T (t, \) are defined by (15)—(16) and

ay —axS(a, ) — Ala) —asS(a, 1)]

(53) Q= ;
(ar — ray))T(a, A)
(54) __cosB+ S(b,1)sinp
N sinT(b,A)
(55 arT(a, A)

- ay —aS(a, ) — ra)

PrROOF OF THEOREM 5 AND THEOREM 6. Theorem 5(i) follows from (20),
(38) and (46). Theorem 5(ii) follows from (20), (38) and (48). Similarly The-
orem 6(i) follows from (20), (42) and (46). Theorem 6(ii) follows from (20),
(42) and (48).

In the following lemma, we evaluate tan~! (), tan~! (1) and cot~!(I).

LEMMA 7. As A — o0

(1)

(56)  tan"1(Q) = A2 [Z—i +sin2h2a + ga)} + 00" 1)),
(1)

(57) tan"'(n) = A2 cot B+ O 20D,
(iif)

(58) ot ) = E + 2 L 00,

/
2 a,

where ay, ay and B are as in (2), (3) and
b 1
(59) sin ¢, = / q(x)cos(Qr2x)dx,
t
b 1
(60) cos¢ = f q(x)sin(2AZx) dx.
t

Proor. From (15), (24) and (28)

S(t, 1) = —sin(2r2t + &) + O((W)?).
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From (16), (24) and (28)

T(t,2) = A2 — cos(2A21 + &) + O(n(M)?).

Hence

1) Sa.3) = —siniza + &) + 0(()?),
(62) T(a, 1) =A% —cos2Ara + &) + 0(()?).
(63) S(b, A) = —sin@A2b + &) + 0((W)?),
(64) T(b, %) = A2 — cos2A2b + &) + O(n()D).
From (36) and (37)

©5) anyy = QL= @S(@}) = A — ayS(a, )

(a2 — ray)T(a, 1)
Substituting the values of S(a, A) and T (a, A) given by (61) and (62) into (65),

one obtains

(66) tany; = A2 [ﬁ +sin2rza + ;a)} + 00" ().
a
Similarly from (44) and (45)
cos B+ S(b, A)sin B
sin BT (b, )

67) tany, =

Substituting the values of S(b, 1) and T (b, A) given by (63) and (64) into (67),
one obtains

(68) tany, = A"2 cot B+ O(A"2n(1)?).
From (40) and (41)

T(a, A
(69) cots; = alfa. 1)

ay —aS(a, ») — ray
Substituting the values of S(a, A) and T (a, A) given by (61) and (62) into (69),

one obtains

(70) ot = — 2375 + 0T,
a

Proof is done by using (66), (68) and (70) together with inverse trigonometric
series.
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USE OF REVERSION TO PROVE THEOREM 1 AND THEOREM 2. By (5), (28),
(49) and (29)-(31)

n+Dm

3 _ -
) i = T O ),
where we have written 1 (n) for n(%). Also
(72) P G RO Y By
" T+ )n 7
and
p2iki (x—a) _ exp {21’ <Z jcll)n(x —a)+ O(n—ln(n))}
(73) :exp{2i<Z+l>n(x—a)} + oM 'n)).
—da

Thus, by (28), (49), (56), (57) and (71)—(73)
3 (b —a)
_ b=a) [a (oD
=m+ D+ e {aé +sm(2< b—a) )a+§a) +cot/3}

i b S (ntDm
Cm i(b—a) ez,(((b_lz) )(x—a)q(x) dx
2n+ Hm J,

+0m 'nm)* + 0(n~*n(n)).

Finally, Theorem 1(i) is proved by substituting the values of sin ¢, and cos ¢,
given by (59), (60) respectively.
Similarly by (5), (28), (50) and (29)-(31)

1 2n+3)m 1
(74) An = 20 —a) + O™ nn)),
-1 2(b —a) 3
(75) At = Gntn + O "n(n))
and

(76) = exp{i<(2bn__'_a3))n(x - a)} + 0 ().

eZi)é(x—a) _ eXp=1.<(2bn + 3)>n(x —a) + O(n—ln(n))}
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Again, by (28), (50), (56) and (74)—(76)

i a) @n+3) . 2b-a) {ﬂ+sin<(2n+3)ﬂ)a ;a}

2 T 2nt3)m (b — a)

. b
N Y O
2n+3)r J,

/
a,

+0m 'nm)») + 0(n~*n(n)).

Theorem 1(ii) is proved by substituting the values of sin ¢, and cos ¢, given
by (59), (60) respectively.

Similar to the proof of Theorem 1, Theorem 2 is proved by using Theorem 6

and Lemma 7.
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